Weighted censored quantile regression

Section 3. Estimation of weighted censored quantile regression parameters

Define the distribution function of T i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaWGPbaabeaaaaa@37EA@ conditional on the p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCaaaa@36EC@ -vector covariate, X i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCiwamaaBa aaleaacaWGPbaabeaaaaa@37F2@ as F T i ( t | X i ) = Pr ( T i t | X i ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBa aaleaacaWGubWaaSbaaWqaaiaadMgaaeqaaaWcbeaakmaabmaabaGa amiDaiaaykW7daabbaqaaiaaykW7caWHybWaaSbaaSqaaiaadMgaae qaaaGccaGLhWoaaiaawIcacaGLPaaacqGH9aqpciGGqbGaaiOCamaa bmaabaGaamivamaaBaaaleaacaWGPbaabeaakiabgsMiJkaadshaca aMc8+aaqqaaeaacaaMc8UaaCiwamaaBaaaleaacaWGPbaabeaaaOGa ay5bSdaacaGLOaGaayzkaaGaaiOlaaaa@528F@ Let Λ T i ( t | X i ) = log { 1 Pr ( T i t | X i ) } , N i ( t ) = I ( Y i t , δ i = 1 ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeu4MdW0aaS baaSqaaiaadsfadaWgaaadbaGaamyAaaqabaaaleqaaOWaaeWaaeaa caWG0bGaaGPaVpaaeeaabaGaaGPaVlaahIfadaWgaaWcbaGaamyAaa qabaaakiaawEa7aaGaayjkaiaawMcaaiabg2da9iabgkHiTiGacYga caGGVbGaai4zamaacmaabaGaaGPaVlaaigdacqGHsislciGGqbGaai OCamaabmaabaGaamivamaaBaaaleaacaWGPbaabeaakiabgsMiJkaa dshacaaMc8+aaqqaaeaacaaMc8UaaCiwamaaBaaaleaacaWGPbaabe aaaOGaay5bSdaacaGLOaGaayzkaaaacaGL7bGaayzFaaGaaiilaiaa ysW7caWGobWaaSbaaSqaaiaadMgaaeqaaOWaaeWaaeaacaWG0baaca GLOaGaayzkaaGaeyypa0Zefv3ySLgznfgDOjdaryqr1ngBPrginfgD Obcv39gaiuaacqWFicFsdaqadaqaaiaadMfadaWgaaWcbaGaamyAaa qabaGccqGHKjYOcaWG0bGaaiilaiaaysW7cqaH0oazdaWgaaWcbaGa amyAaaqabaGccqGH9aqpcaaIXaaacaGLOaGaayzkaaGaaiilaaaa@7CFD@ and M i ( t ) = N i ( t ) Λ T i ( t Λ Y i | X i ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytamaaBa aaleaacaWGPbaabeaakmaabmaabaGaamiDaaGaayjkaiaawMcaaiab g2da9iaad6eadaWgaaWcbaGaamyAaaqabaGcdaqadaqaaiaadshaai aawIcacaGLPaaacqGHsislcqqHBoatdaWgaaWcbaGaamivamaaBaaa meaacaWGPbaabeaaaSqabaGcdaqadaqaaiaadshacqqHBoatcaWGzb WaaSbaaSqaaiaadMgaaeqaaOGaaGPaVpaaeeaabaGaaGPaVlaahIfa daWgaaWcbaGaamyAaaqabaaakiaawEa7aaGaayjkaiaawMcaaiaac6 caaaa@51DF@ Here Λ T i ( | X i ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeu4MdW0aaS baaSqaaiaadsfadaWgaaadbaGaamyAaaqabaaaleqaaOWaaeWaaeaa cqGHflY1caaMc8+aaqqaaeaacaaMc8UaaCiwamaaBaaaleaacaWGPb aabeaaaOGaay5bSdaacaGLOaGaayzkaaaaaa@4423@ is the cumulative hazard function conditional on X i , N i ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCiwamaaBa aaleaacaWGPbaabeaakiaacYcacaaMe8UaamOtamaaBaaaleaacaWG PbaabeaakmaabmaabaGaamiDaaGaayjkaiaawMcaaaaa@3EB2@ is the counting process and M i ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytamaaBa aaleaacaWGPbaabeaakmaabmaabaGaamiDaaGaayjkaiaawMcaaaaa @3A6F@ is the martingale process associated with N i ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtamaaBa aaleaacaWGPbaabeaakmaabmaabaGaamiDaaGaayjkaiaawMcaaaaa @3A70@ (Fleming and Harrington, 2011). We consider an extension of censored quantile regression estimation procedure proposed by Peng and Huang (2008), incorporating the P i s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGPbaabeaaieaakiaa=LbicaWFZbaaaa@39A7@ as known weights arrived based on the auxiliary information available through the known parameter θ . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiUdeNaai Olaaaa@385F@ Note that θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiUdehaaa@37AD@ and β ( τ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOSdmaabm aabaGaeqiXdqhacaGLOaGaayzkaaaaaa@3A83@ are distinct parameters and estimating function g ( z : θ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zamaabm aabaGaamOEaiaaykW7caGG6aGaaGjbVlabeI7aXbGaayjkaiaawMca aaaa@3EF7@ used for computing P i s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGPbaabeaaieaakiaa=LbicaWFZbaaaa@39A7@ are different from the estimating functions used for quantile regression parameters in (1.1). Since P i s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGPbaabeaaieaakiaa=LbicaWFZbaaaa@39A7@ are independent of β ( τ ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdi2aae WaaeaacqaHepaDaiaawIcacaGLPaaacaGGSaaaaa@3B96@ E { P i M i ( t ) | X i } = 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaacm aabaGaamiuamaaBaaaleaacaWGPbaabeaakiaad2eadaWgaaWcbaGa amyAaaqabaGcdaqadaqaaiaadshaaiaawIcacaGLPaaacaaMc8+aaq qaaeaacaaMc8UaaCiwamaaBaaaleaacaWGPbaabeaaaOGaay5bSdaa caGL7bGaayzFaaGaeyypa0JaaCimaaaa@47D1@ (by the martingale property) for t 0 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiabgw MiZkaaicdacaGGSaaaaa@3A20@ we have

E { n i = 1 n P i X i ( N i ( e X i β 0 ( τ ) ) Λ T [ e X i β 0 ( τ ) Y i | X i ] ) } = 0 , ( 3.1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaacm aabaWaaOaaaeaacaWGUbaaleqaaOWaaabCaeaacaWGqbWaaSbaaSqa aiaadMgaaeqaaOGaaCiwamaaBaaaleaacaWGPbaabeaakmaabmaaba GaamOtamaaBaaaleaacaWGPbaabeaakmaabmaabaGaamyzamaaCaaa leqabaGaaCiwamaaDaaameaacaWGPbaabaqefqvyO9wBHbacfaGaa8 hPdaaaliaahk7adaWgaaadbaGaaGimaaqabaWcdaqadaqaaiabes8a 0bGaayjkaiaawMcaaaaaaOGaayjkaiaawMcaaiabgkHiTiabfU5amn aaBaaaleaacaWGubaabeaakmaadmaabaWaaqGaaeaacaWGLbWaaWba aSqabeaacaWHybWaa0baaWqaaiaadMgaaeaacaWFKoaaaSGaaCOSdm aaBaaameaacaaIWaaabeaalmaabmaabaGaeqiXdqhacaGLOaGaayzk aaaaaOGaey4jIKTaamywamaaBaaaleaacaWGPbaabeaakiaaykW7ai aawIa7aiaaykW7caWHybWaaSbaaSqaaiaadMgaaeqaaaGccaGLBbGa ayzxaaaacaGLOaGaayzkaaaaleaacaWGPbGaeyypa0JaaGymaaqaai aad6gaa0GaeyyeIuoaaOGaay5Eaiaaw2haaiabg2da9iaahcdacaGG SaGaaGzbVlaaywW7caaMf8UaaiikaiaaiodacaGGUaGaaGymaiaacM caaaa@7979@

where β 0 ( τ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOSdmaaBa aaleaacaaIWaaabeaakmaabmaabaGaeqiXdqhacaGLOaGaayzkaaaa aa@3B73@ denotes the true β ( τ ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOSdmaabm aabaGaeqiXdqhacaGLOaGaayzkaaGaaiilaaaa@3B33@ in (1.2) for a given quantile, τ . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdqNaai Olaaaa@386E@

Since Λ T i ( | X i ) , i = 1 , 2 , , n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeu4MdW0aaS baaSqaaiaadsfadaWgaaadbaGaamyAaaqabaaaleqaaOWaaeWaaeaa cqGHflY1caaMc8+aaqqaaeaacaaMc8UaaCiwamaaBaaaleaacaWGPb aabeaaaOGaay5bSdaacaGLOaGaayzkaaGaaiilaiaaysW7caWGPbGa eyypa0JaaGymaiaacYcacaaMe8UaaGOmaiaacYcacaaMe8UaeSOjGS KaaiilaiaaysW7caWGUbaaaa@5297@ are unknown functions, Peng and Huang (2008) derived the relationship between Λ T [ e X i β 0 ( τ ) Y i | X i ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeu4MdW0aaS baaSqaaiaadsfaaeqaaOWaamWaaeaacaWGLbWaaWbaaSqabeaacaWH ybWaa0baaWqaaiaadMgaaeaaruavHH2BTfgaiuaacaWFKoaaaSGaaC OSdmaaBaaameaacaaIWaaabeaalmaabmaabaGaeqiXdqhacaGLOaGa ayzkaaaaaOGaey4jIKTaamywamaaBaaaleaacaWGPbaabeaakiaayk W7daabbaqaaiaaykW7caWHybWaaSbaaSqaaiaadMgaaeqaaaGccaGL hWoaaiaawUfacaGLDbaaaaa@5118@ and β 0 ( τ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOSdmaaBa aaleaacaaIWaaabeaakmaabmaabaGaeqiXdqhacaGLOaGaayzkaaaa aa@3B73@ to use (3.1) to estimate β 0 ( τ ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOSdmaaBa aaleaacaaIWaaabeaakmaabmaabaGaeqiXdqhacaGLOaGaayzkaaGa aiOlaaaa@3C25@ Using the fact that F F [ e X i β 0 ( u ) | X i ] = τ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBa aaleaatuuDJXwAKzKCHTgD1jharyqr1ngBPrgigjxyRrxDYbacfaGa e8xbWBeabeaakmaadmaabaGaamyzamaaCaaaleqabaGaaCiwamaaDa aameaacaWGPbaabaqefqvyO9wBHbacgaGaa4hPdaaaliaahk7adaWg aaadbaGaaGimaaqabaWcdaqadaqaaiaadwhaaiaawIcacaGLPaaaaa GccaaMc8+aaqqaaeaacaaMc8UaaCiwamaaBaaaleaacaWGPbaabeaa aOGaay5bSdaacaGLBbGaayzxaaGaeyypa0JaeqiXdqhaaa@5A66@ and utilizing the monotonicity of X i T β 0 ( τ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaDa aaleaacaWGPbaabaGaamivaaaakiabek7aInaaBaaaleaacaaIWaaa beaakmaabmaabaGaeqiXdqhacaGLOaGaayzkaaaaaa@3EB1@ in τ , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdqNaai ilaaaa@386C@ they showed that Λ T [ e X i β 0 ( τ ) Y i | X i ] = 0 τ I [ Y i e X i β ( u ) ] d H ( u ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeu4MdW0aaS baaSqaaiaadsfaaeqaaOWaamWaaeaacaWGLbWaaWbaaSqabeaacaWH ybWaa0baaWqaaiaadMgaaeaaruavHH2BTfgaiuaacaWFKoaaaSGaaC OSdmaaBaaameaacaaIWaaabeaalmaabmaabaGaeqiXdqhacaGLOaGa ayzkaaaaaOGaey4jIKTaamywamaaBaaaleaacaWGPbaabeaakiaayk W7daabbaqaaiaaykW7caWHybWaaSbaaSqaaiaadMgaaeqaaaGccaGL hWoaaiaawUfacaGLDbaacqGH9aqpdaWdXaqaamrr1ngBPrwtHrhAYa qeguuDJXwAKbstHrhAGq1DVbacgaGae4hIWN0aamWaaeaacaWGzbWa aSbaaSqaaiaadMgaaeqaaOGaeyyzImRaamyzamaaCaaaleqabaGaaC iwamaaDaaameaacaWGPbaabaGaa8hPdaaaliaahk7adaqadaqaaiaa dwhaaiaawIcacaGLPaaaaaaakiaawUfacaGLDbaacaWGKbGaamisam aabmaabaGaamyDaaGaayjkaiaawMcaaiaacYcaaSqaaiaaicdaaeaa cqaHepaDa0Gaey4kIipaaaa@7564@ where H ( u ) = log ( 1 u ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisamaabm aabaGaamyDaaGaayjkaiaawMcaaiabg2da9iabgkHiTiGacYgacaGG VbGaai4zamaabmaabaGaaGymaiabgkHiTiaadwhaaiaawIcacaGLPa aaaaa@4235@ for 0 u < 1. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiabgs MiJkaadwhacqGH8aapcaaIXaGaaiOlaaaa@3BD1@

So, our weighted censored quantile regression estimating equation is

n S n ( β , τ ) = 0 , ( 3.2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOaaaeaaca WGUbaaleqaaOGaaGjcVlaadofadaWgaaWcbaGaamOBaaqabaGcdaqa daqaaiaahk7acaGGSaGaaGjbVlabes8a0bGaayjkaiaawMcaaiabg2 da9iaahcdacaGGSaGaaGzbVlaaywW7caaMf8UaaGzbVlaaywW7caGG OaGaaG4maiaac6cacaaIYaGaaiykaaaa@4F22@

where

S n ( β , τ ) = i = 1 n P i X i { i ( e X i β ( τ ) ) 0 τ I [ Y i e X i β ( u ) ] d H ( u ) } . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaBa aaleaacaWGUbaabeaakmaabmaabaGaaCOSdiaacYcacaaMe8UaeqiX dqhacaGLOaGaayzkaaGaeyypa0ZaaabCaeaacaWGqbWaaSbaaSqaai aadMgaaeqaaOGaaCiwamaaBaaaleaacaWGPbaabeaakmaacmaabaWe fv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuqacqWFveItda WgaaWcbaGaamyAaaqabaGcdaqadaqaaiaadwgadaahaaWcbeqaaiaa hIfadaqhaaadbaGaamyAaaqaaerbufgAV1wyaGGbaiaa+r6aaaWcca WHYoWaaeWaaeaacqaHepaDaiaawIcacaGLPaaaaaaakiaawIcacaGL PaaacqGHsisldaWdXaqaaGqbaiab9Hi8jnaadmaabaGaamywamaaBa aaleaacaWGPbaabeaakiabgwMiZkaadwgadaahaaWcbeqaaiaahIfa daqhaaadbaGaamyAaaqaaiaa+r6aaaWccaWHYoWaaeWaaeaacaWG1b aacaGLOaGaayzkaaaaaaGccaGLBbGaayzxaaGaamizaiaadIeadaqa daqaaiaadwhaaiaawIcacaGLPaaaaSqaaiaaicdaaeaacqaHepaDa0 Gaey4kIipaaOGaay5Eaiaaw2haaiaac6caaSqaaiaadMgacqGH9aqp caaIXaaabaGaamOBaaqdcqGHris5aaaa@7F33@

Here P i s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGPbaabeaaieaakiaa=LbicaWFZbaaaa@39A7@ are defined in (2.2). Let s ( β , τ ) = E { S n ( β , τ ) } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Camaabm aabaGaaCOSdiaacYcacaaMe8UaeqiXdqhacaGLOaGaayzkaaGaeyyp a0JaamyramaacmaabaGaam4uamaaBaaaleaacaWGUbaabeaakmaabm aabaGaaCOSdiaacYcacaaMe8UaeqiXdqhacaGLOaGaayzkaaaacaGL 7bGaayzFaaaaaa@4A83@ and the martingale property of M ( ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuqacqWFmcFtdaqadaqaaiab gwSixdGaayjkaiaawMcaaaaa@45BC@ gives s ( β 0 , τ ) = 0 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Camaabm aabaGaaCOSdmaaBaaaleaacaaIWaaabeaakiaacYcacaaMe8UaeqiX dqhacaGLOaGaayzkaaGaeyypa0JaaCimaiaac6caaaa@4119@ For a particular quantile, τ k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdq3aaS baaSqaaiaadUgaaeqaaaaa@38D8@ and an estimator of β 0 ( τ k ) , β ^ ( τ k ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOSdmaaBa aaleaacaaIWaaabeaakmaabmaabaGaeqiXdq3aaSbaaSqaaiaadUga aeqaaaGccaGLOaGaayzkaaGaaiilaiaaysW7ceWHYoGbaKaadaqada qaaiabes8a0naaBaaaleaacaWGRbaabeaaaOGaayjkaiaawMcaaaaa @4498@ is a right-continuous step function which jumps only on a grid, S L = { 0 = τ 0 < τ 1 < < τ L = τ U < 1 } . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuqacqWFsc=udaWgaaWcbaGa amitaaqabaGccqGH9aqpdaGadaqaaiaaicdacqGH9aqpcqaHepaDda WgaaWcbaGaaGimaaqabaGccqGH8aapcqaHepaDdaWgaaWcbaGaaGym aaqabaGccqGH8aapcqWIMaYscqGH8aapcqaHepaDdaWgaaWcbaGaam itaaqabaGccqGH9aqpcqaHepaDdaWgaaWcbaGaamyvaaqabaGccqGH 8aapcaaIXaaacaGL7bGaayzFaaGaaiOlaaaa@5AA4@ Here L MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaaaa@36C8@ depends on the sample size, n . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiaac6 caaaa@379C@ The size of S L MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuqacqWFsc=udaWgaaWcbaGa amitaaqabaaaaa@42F2@ is defined as S L = max k ( τ k τ k 1 ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaauWaaeaaca aMi8+efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuqacqWF sc=udaWgaaWcbaGaamitaaqabaGccaaMi8oacaGLjWUaayPcSdGaey ypa0ZaaCbeaeaaciGGTbGaaiyyaiaacIhaaSqaaiaadUgaaeqaaOWa aeWaaeaacqaHepaDdaWgaaWcbaGaam4AaaqabaGccqGHsislcqaHep aDdaWgaaWcbaGaam4AaiabgkHiTiaaigdaaeqaaaGccaGLOaGaayzk aaGaaiOlaaaa@58F8@

For different quantiles, τ 0 , τ 1 , , τ L ( 0 = τ 0 < τ 1 < < τ L < 1 ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdq3aaS baaSqaaiaaicdaaeqaaOGaaiilaiaaysW7cqaHepaDdaWgaaWcbaGa aGymaaqabaGccaGGSaGaaGjbVlablAciljaacYcacaaMe8UaeqiXdq 3aaSbaaSqaaiaadYeaaeqaaOWaaeWaaeaacaaIWaGaeyypa0JaeqiX dq3aaSbaaSqaaiaaicdaaeqaaOGaeyipaWJaeqiXdq3aaSbaaSqaai aaigdaaeqaaOGaeyipaWJaeSOjGSKaeyipaWJaeqiXdq3aaSbaaSqa aiaadYeaaeqaaOGaeyipaWJaaGymaaGaayjkaiaawMcaaiaacYcaaa a@5824@ based on (3.2), we can obtain β ^ ( τ k ) ( k = 1 , 2 , , L ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabCOSdyaaja WaaeWaaeaacqaHepaDdaWgaaWcbaGaam4AaaqabaaakiaawIcacaGL PaaadaqadaqaaiaadUgacqGH9aqpcaaIXaGaaiilaiaaysW7caaIYa GaaiilaiaaysW7cqWIMaYscaGGSaGaaGjbVlaadYeaaiaawIcacaGL Paaaaaa@4959@ by recursively solving the following monotone estimating equation for β ( τ k ) : MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOSdmaabm aabaGaeqiXdq3aaSbaaSqaaiaadUgaaeqaaaGccaGLOaGaayzkaaGa aGPaVlaacQdaaaa@3DF2@

n i = 1 n P i X i { i ( e X i β ( τ k ) ) r = 0 k 1 I [ Y i e X i β ^ ( τ r ) ] { H ( τ r + 1 ) H ( τ r ) } } = 0 . ( 3.3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOaaaeaaca WGUbaaleqaaOWaaabCaeaacaWGqbWaaSbaaSqaaiaadMgaaeqaaOGa aCiwamaaBaaaleaacaWGPbaabeaaaeaacaWGPbGaeyypa0JaaGymaa qaaiaad6gaa0GaeyyeIuoakmaacmaabaWefv3ySLgznfgDOjdaryqr 1ngBPrginfgDObcv39gaiuqacqWFveItdaWgaaWcbaGaamyAaaqaba GcdaqadaqaaiaadwgadaahaaWcbeqaaiaahIfadaqhaaadbaGaamyA aaqaaerbufgAV1wyaGGbaiaa+r6aaaWccaWHYoWaaeWaaeaacqaHep aDdaWgaaadbaGaam4AaaqabaaaliaawIcacaGLPaaaaaaakiaawIca caGLPaaacqGHsisldaaeWbqaaGqbaiab9Hi8jnaadmaabaGaamywam aaBaaaleaacaWGPbaabeaakiabgwMiZkaadwgadaahaaWcbeqaaiaa hIfadaqhaaadbaGaamyAaaqaaiaa+r6aaaWcceWHYoGbaKaadaqada qaaiabes8a0naaBaaameaacaWGYbaabeaaaSGaayjkaiaawMcaaaaa aOGaay5waiaaw2faaaWcbaGaamOCaiabg2da9iaaicdaaeaacaWGRb GaeyOeI0IaaGymaaqdcqGHris5aOWaaiWaaeaacaWGibWaaeWaaeaa cqaHepaDdaWgaaWcbaGaamOCaiabgUcaRiaaigdaaeqaaaGccaGLOa GaayzkaaGaeyOeI0IaamisamaabmaabaGaeqiXdq3aaSbaaSqaaiaa dkhaaeqaaaGccaGLOaGaayzkaaaacaGL7bGaayzFaaaacaGL7bGaay zFaaGaeyypa0JaaCimaiaac6cacaaMf8UaaGzbVlaaywW7caGGOaGa aG4maiaac6cacaaIZaGaaiykaaaa@918B@

We define the estimators, β ^ ( τ k ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabCOSdyaaja WaaeWaaeaacqaHepaDdaWgaaWcbaGaam4AaaqabaaakiaawIcacaGL Paaaaaa@3BB9@ as the generalized solutions (Fygenson and Ritov, 1994) because equation (3.3) is not continuous and the solution may not be unique.

3.1  Asymptotic theory

We derived the asymptotic properties of the EL based weighted censored quantile regression estimators using the approach of Peng and Huang (2008). Now we prove the uniform consistency and weak Gaussian convergence of the proposed weighted censored quantile regression estimator, β ^ ( ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabCOSdyaaja WaaeWaaeaacqGHflY1aiaawIcacaGLPaaacaGGUaaaaa@3BCA@

Define F ( t | X ) = Pr ( Y t | X ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaabm aabaGaamiDaiaaykW7daabbaqaaiaaykW7caWHybaacaGLhWoaaiaa wIcacaGLPaaacqGH9aqpciGGqbGaaiOCamaabmaabaGaamywaiabgs MiJkaadshacaaMc8+aaqqaaeaacaaMc8UaaCiwaaGaay5bSdaacaGL OaGaayzkaaGaaiilaaaa@4CF1@ F ¯ ( t | X ) = Pr ( Y > t | X ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaara WaaeWaaeaacaWG0bGaaGPaVpaaeeaabaGaaGPaVlaahIfaaiaawEa7 aaGaayjkaiaawMcaaiabg2da9iGaccfacaGGYbWaaeWaaeaacaWGzb GaeyOpa4JaamiDaiaaykW7daabbaqaaiaaykW7caWHybaacaGLhWoa aiaawIcacaGLPaaacaGGSaaaaa@4C5C@ F ˜ ( t | X ) = Pr ( Y t , δ = 1 | X ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaaia WaaeWaaeaacaWG0bGaaGPaVpaaeeaabaGaaGPaVlaahIfaaiaawEa7 aaGaayjkaiaawMcaaiabg2da9iGaccfacaGGYbWaaeWaaeaacaWGzb GaeyizImQaamiDaiaacYcacaaMe8UaeqiTdqMaeyypa0JaaGymaiaa ykW7daabbaqaaiaaykW7caWHybaacaGLhWoaaiaawIcacaGLPaaaca GGSaaaaa@52A3@ f ¯ ( y | X ) = f ( y | X ) = d F ( y | X ) / d y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaara WaaeWaaeaacaWG5bGaaGPaVpaaeeaabaGaaGPaVlaahIfaaiaawEa7 aaGaayjkaiaawMcaaiabg2da9iabgkHiTiaadAgadaqadaqaaiaadM hacaaMc8+aaqqaaeaacaaMc8UaaCiwaaGaay5bSdaacaGLOaGaayzk aaGaeyypa0ZaaSGbaeaacqGHsislcaWGKbGaamOramaabmaabaGaam yEaiaaykW7daabbaqaaiaaykW7caWHybaacaGLhWoaaiaawIcacaGL PaaaaeaacaWGKbGaamyEaaaaaaa@57B2@ and f ˜ ( y | X ) = d F ˜ ( y | X ) / d y . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSGbaeaace WGMbGbaGaadaqadaqaaiaadMhacaaMc8+aaqqaaeaacaaMc8UaaCiw aaGaay5bSdaacaGLOaGaayzkaaGaeyypa0JaamizaiqadAeagaacam aabmaabaGaamyEaiaaykW7daabbaqaaiaaykW7caWHybaacaGLhWoa aiaawIcacaGLPaaaaeaacaWGKbGaamyEaaaacaGGUaaaaa@4C8D@ (For a vector h , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAaiaacY caaaa@3794@ h 2 = h h T , h ( l ) = l th MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAamaaCa aaleqabaGaey4LIqSaaGOmaaaakiabg2da9iaadIgacaWGObWaaWba aSqabeaacaWGubaaaOGaaGzaVlaacYcacaaMe8UaamiAamaaCaaale qabaWaaeWaaeaacaWGSbaacaGLOaGaayzkaaaaaOGaeyypa0JaamiB amaaCaaaleqabaGaaeiDaiaabIgaaaaaaa@493B@ component of h , h MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAaiaacY cacaaMe8+aauWaaeaacaaMc8UaamiAaiaaykW7aiaawMa7caGLkWoa aaa@404B@ is the Euclidean norm of h . ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAaiaac6 cacaGGPaaaaa@3843@

Define W i = λ θ 0 g ( Z i ; θ 0 ) X i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaC4vamaaBa aaleaacaWGPbaabeaakiabg2da9iabeU7aSnaaDaaaleaacqaH4oqC daWgaaadbaGaaGimaaqabaaaleaaruavHH2BTfgaiuaacaWFKoaaaO Gaam4zamaabmaabaGaaCOwamaaBaaaleaacaWGPbaabeaakiaacUda caaMe8UaaCiUdmaaBaaaleaacaaIWaaabeaaaOGaayjkaiaawMcaai aahIfadaWgaaWcbaGaamyAaaqabaGccaGGSaaaaa@4CEA@ i = 1 , 2 , , n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiabg2 da9iaaigdacaGGSaGaaGjbVlaaikdacaGGSaGaaGjbVlablAciljaa cYcacaaMe8UaamOBaaaa@422E@ as a p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCaaaa@36EC@ -vector.

Regularity conditions:

  • R.1:
  • The observations, Z i , i = 1 , 2 , , n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOwamaaBa aaleaacaWGPbaabeaakiaacYcacaaMe8UaamyAaiabg2da9iaaigda caGGSaGaaGjbVlaaikdacaGGSaGaaGjbVlablAciljaacYcacaaMe8 UaamOBaaaa@4672@ are iid observations from some distribution. Without loss of generality, we assume that ( Y i , δ i , X i ) Z i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WGzbWaaSbaaSqaaiaadMgaaeqaaOGaaiilaiaaysW7cqaH0oazdaWg aaWcbaGaamyAaaqabaGccaGGSaGaaGjbVlaahIfadaqhaaWcbaGaam yAaaqaaerbufgAV1wyaGqbaiaa=r6aaaaakiaawIcacaGLPaaadaah aaWcbeqaaiaa=r6aaaGccqGHckcZcaWHAbWaaSbaaSqaaiaadMgaae qaaaaa@4BC8@ for all i = 1 , 2 , , n . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiabg2 da9iaaigdacaGGSaGaaGjbVlaaikdacaGGSaGaaGjbVlablAciljaa cYcacaaMe8UaamOBaiaac6caaaa@42E0@
  • R.2:
  • There exists θ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCiUdmaaBa aaleaacaaIWaaabeaaaaa@3820@ such that E { g ( Z i ; θ 0 ) } = 0 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaacm aabaGaam4zamaabmaabaGaaCOwamaaBaaaleaacaWGPbaabeaakiaa cUdacaaMe8UaaCiUdmaaBaaaleaacaaIWaaabeaaaOGaayjkaiaawM caaaGaay5Eaiaaw2haaiabg2da9iaaicdacaGGSaaaaa@445E@ the matrix Σ ( θ 0 ) = E { g ( Z i ; θ 0 ) g ( Z i ; θ 0 ) } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaC4Odmaabm aabaGaaCiUdmaaBaaaleaacaaIWaaabeaaaOGaayjkaiaawMcaaiab g2da9iaadweadaGadaqaaiaadEgadaqadaqaaiaahQfadaWgaaWcba GaamyAaaqabaGccaGG7aGaaGjbVlaahI7adaWgaaWcbaGaaGimaaqa baaakiaawIcacaGLPaaacaWGNbWaaeWaaeaacaWHAbWaaSbaaSqaai aadMgaaeqaaOGaai4oaiaaysW7caWH4oWaaSbaaSqaaiaaicdaaeqa aaGccaGLOaGaayzkaaWaaWbaaSqabeaaruavHH2BTfgaiuaacaWFKo aaaaGccaGL7bGaayzFaaaaaa@54B7@ is positive definite, g ( z ; θ ) θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSqaaSqaai abgkGi2kaadEgadaqadaqaaiaahQhacaGG7aGaaGjbVlaahI7aaiaa wIcacaGLPaaaaeaacqGHciITcaWH4oaaaaaa@412A@ is continuous in the neighborhood of θ 0 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCiUdmaaBa aaleaacaaIWaaabeaakiaac6caaaa@38DC@ The matrix E { g ( Z ; θ ) θ } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaacm aabaWaaSqaaSqaaiabgkGi2kaadEgadaqadaqaaiaahQfacaGG7aGa aGjbVlaahI7aaiaawIcacaGLPaaaaeaacqGHciITcaWH4oaaaaGcca GL7bGaayzFaaaaaa@440F@ is of full rank.
  • R.3:
  • There exist functions H l j ( z ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisamaaBa aaleaacaWGSbGaamOAaaqabaGcdaqadaqaaiaahQhaaiaawIcacaGL Paaaaaa@3B65@ such that for θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCiUdaaa@373A@ in the neighborhood of θ 0 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCiUdmaaBa aaleaacaaIWaaabeaakiaacYcaaaa@38DA@ | g l ( z ; θ ) θ j | H l j ( z ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaaca aMc8+aaSqaaSqaaiabgkGi2kaadEgadaWgaaadbaGaamiBaaqabaWc daqadaqaaiaahQhacaGG7aGaaGjbVlaahI7aaiaawIcacaGLPaaaae aacqGHciITcqaH4oqCdaWgaaadbaGaamOAaaqabaaaaOGaaGPaVdGa ay5bSlaawIa7aiabgsMiJkaadIeadaWgaaWcbaGaamiBaiaadQgaae qaaOWaaeWaaeaacaWH6baacaGLOaGaayzkaaGaaiilaaaa@51F7@ where for a constant C , E { H l j 2 ( Z ) } C < MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qaiaacY cacaaMe8UaamyramaacmaabaGaamisamaaDaaaleaacaWGSbGaamOA aaqaaiaaikdaaaGcdaqadaqaaiaahQfaaiaawIcacaGLPaaaaiaawU hacaGL9baacqGHKjYOcaWGdbGaeyipaWJaeyOhIukaaa@46F4@ for l = 1 , , q MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiBaiabg2 da9iaaigdacaGGSaGaaGjbVlablAciljaacYcacaaMe8UaamyCaaaa @3F3A@ and j = 1 , , d . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOAaiabg2 da9iaaigdacaGGSaGaaGjbVlablAciljaacYcacaaMe8Uaamizaiaa c6caaaa@3FDD@
  • R.4:
  • sup i X i < MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaCbeaeaaci GGZbGaaiyDaiaacchaaSqaaiaadMgaaeqaaOWaauWaaeaacaaMc8Ua aCiwamaaBaaaleaacaWGPbaabeaakiaaykW7aiaawMa7caGLkWoacq GH8aapcqGHEisPaaa@44C4@ and sup i X i Y i < . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaCbeaeaaci GGZbGaaiyDaiaacchaaSqaaiaadMgaaeqaaOWaauWaaeaacaaMc8Ua aCiwamaaBaaaleaacaWGPbaabeaakiaahMfadaWgaaWcbaGaamyAaa qabaGccaaMc8oacaGLjWUaayPcSdGaeyipaWJaeyOhIuQaaiOlaaaa @477C@
  • R.5:
  1. Each component of E [ X ( e X β 0 ( τ ) ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaadm aabaGaaCiwamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbac feGae8xfH40aaeWaaeaacaWGLbWaaWbaaSqabeaacaWHybWaaWbaaW qabeaaruavHH2BTfgaiyaacaGFKoaaaSGaaCOSdmaaBaaameaacaaI WaaabeaalmaabmaabaGaeqiXdqhacaGLOaGaayzkaaaaaaGccaGLOa GaayzkaaaacaGLBbGaayzxaaaaaa@5127@ is a Lipschitz function of τ . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdqNaai Olaaaa@386D@
  2. f ˜ ( t | x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaaia WaaeWaaeaacaWG0bGaaGPaVpaaeeaabaGaaGPaVlaahIhaaiaawEa7 aaGaayjkaiaawMcaaaaa@3F1D@ and f ( t | x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaabm aabaGaamiDaiaaykW7daabbaqaaiaaykW7caWH4baacaGLhWoaaiaa wIcacaGLPaaaaaa@3F0E@ are bounded above uniformly in t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@36EF@ and x . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCiEaiaac6 caaaa@37A9@
  • R.6:
  1. f ˜ ( e X b | X ) > 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaaia WaaeWaaeaacaWGLbWaaWbaaSqabeaacaWHybWaaWbaaWqabeaaruav HH2BTfgaiuaacaWFKoaaaSGaaCOyaaaakiaaykW7daabbaqaaiaayk W7caWHybaacaGLhWoaaiaawIcacaGLPaaacqGH+aGpcaaIWaaaaa@4691@ for all b B ( d 0 ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOyaiabgI Gioprr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaacqWF baVqdaqadaqaaiaadsgadaWgaaWcbaGaaGimaaqabaaakiaawIcaca GLPaaacaGGSaaaaa@48F0@ where B ( d ) = { b p : inf τ ( 0 , τ U ) μ ( b ) μ { β 0 ( τ ) } d } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=fa8cnaabmaabaGa amizaaGaayjkaiaawMcaaiabg2da9maacmaabaGaaCOyaiabgIGiol ab=XrisnaaCaaaleqabaGaamiCaaaakiaayIW7caGG6aGaaGjbVpaa xababaGaciyAaiaac6gacaGGMbaaleaacqaHepaDcqGHiiIZdaqada qaaiaaicdacaGGSaGaaGjbVlabes8a0naaBaaameaacaWGvbaabeaa aSGaayjkaiaawMcaaaqabaGcdaqbdaqaaiaaykW7caWH8oWaaeWaae aacaWHIbaacaGLOaGaayzkaaGaeyOeI0IaaCiVdmaacmaabaGaaCOS dmaaBaaaleaacaaIWaaabeaakmaabmaabaGaeqiXdqhacaGLOaGaay zkaaaacaGL7bGaayzFaaGaaGPaVdGaayzcSlaawQa7aiabgsMiJkaa dsgaaiaawUhacaGL9baaaaa@74CA@ for d > 0 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaiabg6 da+iaaicdacaGGSaaaaa@3951@ and μ ( b ) = E [ X ( e X b ) ] , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCiVdmaabm aabaGaaCOyaaGaayjkaiaawMcaaiabg2da9iaadweadaWadaqaaiaa hIfatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbbiab=v rionaabmaabaGaamyzamaaCaaaleqabaGaaCiwamaaCaaameqabaqe fqvyO9wBHbacgaGaa4hPdaaaliaahkgaaaaakiaawIcacaGLPaaaai aawUfacaGLDbaacaGGSaaaaa@5206@ is a neighbourhood containing { β 0 ( τ ) , τ ( 0 , τ U ) } . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiWaaeaaca WHYoWaaSbaaSqaaiaaicdaaeqaaOWaaeWaaeaacqaHepaDaiaawIca caGLPaaacaGGSaGaaGjbVlabes8a0jabgIGiopaabmaabaGaaGimai aacYcacaaMe8UaeqiXdq3aaSbaaSqaaiaadwfaaeqaaaGccaGLOaGa ayzkaaaacaGL7bGaayzFaaGaaiOlaaaa@4B30@
  2. To have the positive definiteness, E { X 2 } > 0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaacm aabaGaaCiwamaaCaaaleqabaGaey4LIqSaaGOmaaaaaOGaay5Eaiaa w2haaiabg6da+iaaicdacaGGUaaaaa@3F42@
  3. Each component of E [ X 2 f ¯ ( e X b | X ) e X b ] × ( E [ X 2 f ˜ ( e X b | X ) e X b ] ) 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaadm aabaGaaCiwamaaCaaaleqabaGaey4LIqSaaGOmaaaakiqadAgagaqe amaabmaabaWaaqGaaeaacaWGLbWaaWbaaSqabeaacaWHybWaaWbaaW qabeaaruavHH2BTfgaiuaacaWFKoaaaSGaaCOyaaaakiaaykW7aiaa wIa7aiaaykW7caWHybaacaGLOaGaayzkaaGaamyzamaaCaaaleqaba GaaCiwamaaCaaameqabaGaa8hPdaaaliaahkgaaaaakiaawUfacaGL DbaacqGHxdaTdaqadaqaaiaadweadaWadaqaaiaahIfadaahaaWcbe qaaiabgEPielaaikdaaaGcceWGMbGbaGaadaqadaqaamaaeiaabaGa amyzamaaCaaaleqabaGaaCiwamaaCaaameqabaGaa8hPdaaaliaahk gaaaGccaaMc8oacaGLiWoacaaMc8UaaCiwaaGaayjkaiaawMcaaiaa dwgadaahaaWcbeqaaiaahIfadaahaaadbeqaaiaa=r6aaaWccaWHIb aaaaGccaGLBbGaayzxaaaacaGLOaGaayzkaaWaaWbaaSqabeaacqGH sislcaaIXaaaaaaa@6C7B@ is uniformly bounded in b B ( d 0 ) ; B ( d 0 ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOyaiabgI Gioprr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaacqWF baVqdaqadaqaaiaadsgadaWgaaWcbaGaaGimaaqabaaakiaawIcaca GLPaaacaGG7aGaaGjbVlab=fa8cnaabmaabaGaamizamaaBaaaleaa caaIWaaabeaaaOGaayjkaiaawMcaaiaac6caaaa@5058@
  • R.7:
  • For any v ( 0 , τ U ) , inf τ [ v , τ U ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODaiabgI GiopaabmaabaGaaGimaiaacYcacaaMe8UaeqiXdq3aaSbaaSqaaiaa dwfaaeqaaaGccaGLOaGaayzkaaGaaiilamaaxababaGaciyAaiaac6 gacaGGMbaaleaacqaHepaDcqGHiiIZdaWadaqaaiaadAhacaGGSaGa aGjbVlabes8a0naaBaaameaacaWGvbaabeaaaSGaay5waiaaw2faaa qabaaaaa@4EC8@ eigmin E [ X 2 f ˜ ( e X β 0 ( τ ) | X ) e X β 0 ( τ ) ] > 0 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaadm aabaGaaCiwamaaCaaaleqabaGaey4LIqSaaGOmaaaakiqadAgagaac amaabmaabaWaaqGaaeaacaWGLbWaaWbaaSqabeaacaWHybWaaWbaaW qabeaaruavHH2BTfgaiuaacaWFKoaaaSGaaCOSdmaaBaaameaacaaI WaaabeaalmaabmaabaGaeqiXdqhacaGLOaGaayzkaaaaaOGaaGPaVd GaayjcSdGaaGPaVlaahIfaaiaawIcacaGLPaaacaWGLbWaaWbaaSqa beaacaWHybWaaWbaaWqabeaacaWFKoaaaSGaaCOSdmaaBaaameaaca aIWaaabeaalmaabmaabaGaeqiXdqhacaGLOaGaayzkaaaaaaGccaGL BbGaayzxaaGaeyOpa4JaaGimaiaacYcaaaa@5B50@ where eigmin ( ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacq GHflY1aiaawIcacaGLPaaaaaa@39C9@ denotes the minimum eigenvalue of a matrix.

Theorem 1. Assuming that the regularity conditions R.1-R.7 hold, if lim n S L = 0 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaCbeaeaaci GGSbGaaiyAaiaac2gaaSqaaiaad6gacqGHsgIRcqGHEisPaeqaaOWa auWaaeaacaaMc8+efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39 gaiuqacqWFsc=udaWgaaWcbaGaamitaaqabaGccaaMc8oacaGLjWUa ayPcSdGaeyypa0JaaGimaiaacYcaaaa@530C@ then sup τ [ v , τ U ] β ^ ( τ ) β 0 ( τ ) p 0 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaCbeaeaaci GGZbGaaiyDaiaacchaaSqaaiabes8a0jabgIGiopaadmaabaGaamOD aiaacYcacaaMe8UaeqiXdq3aaSbaaWqaaiaadwfaaeqaaaWccaGLBb GaayzxaaaabeaakmaafmaabaGaaGPaVlqahk7agaqcamaabmaabaGa eqiXdqhacaGLOaGaayzkaaGaeyOeI0IaaCOSdmaaBaaaleaacaaIWa aabeaakmaabmaabaGaeqiXdqhacaGLOaGaayzkaaGaaGPaVdGaayzc SlaawQa7aiabgkziUoaaBaaaleaacaWGWbaabeaakiaaicdacaGGSa aaaa@5A2D@ where 0 < v < τ U . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiabgY da8iaadAhacqGH8aapcqaHepaDdaWgaaWcbaGaamyvaaqabaGccaGG Uaaaaa@3D3A@

Theorem 2. Assuming that the regularity conditions R.1-R.7 hold, if lim n n 1 / 2 S L = 0 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaCbeaeaaci GGSbGaaiyAaiaac2gaaSqaaiaad6gacqGHsgIRcqGHEisPaeqaaOGa amOBamaaCaaaleqabaWaaSGbaeaacaaIXaaabaGaaGOmaaaaaaGcda qbdaqaaiaaykW7tuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3B aGqbbiab=jj8tnaaBaaaleaacaWGmbaabeaakiaaykW7aiaawMa7ca GLkWoacqGH9aqpcaaIWaGaaiilaaaa@55C3@ then n 1 / 2 { β ^ ( τ ) β 0 ( τ ) } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaCa aaleqabaWaaSGbaeaacaaIXaaabaGaaGOmaaaaaaGcdaGadaqaaiaa ykW7ceWHYoGbaKaadaqadaqaaiabes8a0bGaayjkaiaawMcaaiabgk HiTiaahk7adaWgaaWcbaGaaGimaaqabaGcdaqadaqaaiabes8a0bGa ayjkaiaawMcaaaGaay5Eaiaaw2haaaaa@476E@ weakly converges to a zero-mean Gaussian process for τ [ v , τ U ] , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdqNaey icI48aamWaaeaacaWG2bGaaiilaiaaysW7cqaHepaDdaWgaaWcbaGa amyvaaqabaaakiaawUfacaGLDbaacaGGSaaaaa@41EE@ where 0 < v < τ U . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiabgY da8iaadAhacqGH8aapcqaHepaDdaWgaaWcbaGaamyvaaqabaGccaGG Uaaaaa@3D3A@

To prove Theorems 1 and 2, we need to show that max 1 i n | λ θ 0 g ( Z i ; θ 0 ) | = o p ( 1 ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaCbeaeaaci GGTbGaaiyyaiaacIhaaSqaaiaaigdacqGHKjYOcaWGPbGaeyizImQa amOBaaqabaGcdaabdaqaaiaaykW7cqaH7oaBdaqhaaWcbaGaeqiUde 3aaSbaaWqaaiaaicdaaeqaaaWcbaqefqvyO9wBHbacfaGaa8hPdaaa kiaadEgadaqadaqaaiaahQfadaWgaaWcbaGaamyAaaqabaGccaGG7a GaaGjbVlaahI7adaWgaaWcbaGaaGimaaqabaaakiaawIcacaGLPaaa caaMc8oacaGLhWUaayjcSdGaeyypa0Jaam4BamaaBaaaleaacaWGWb aabeaakmaabmaabaGaaGymaaGaayjkaiaawMcaaiaac6caaaa@5C9A@ We consider two different types of g ( Z i ; θ ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zamaabm aabaGaaCOwamaaBaaaleaacaWGPbaabeaakiaacUdacaaMe8UaaCiU daGaayjkaiaawMcaaiaac6caaaa@3EB4@ First, g ( Z i ; θ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zamaabm aabaGaaCOwamaaBaaaleaacaWGPbaabeaakiaacUdacaaMe8UaaCiU daGaayjkaiaawMcaaaaa@3E02@ does not contain the censored observations, as given in (4.1). The second, g ( Z i ; θ ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zamaabm aabaGaaCOwamaaBaaaleaacaWGPbaabeaakiaacUdacaaMe8UaaCiU daGaayjkaiaawMcaaiaacYcaaaa@3EB2@ contains the censored observations, as given in (4.5).

In the case of uncensored observations, by Owen (1991) and Lemma 11.2 of Owen (2001), we have max 1 i n g ( Z i ; θ 0 ) = o p ( n ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaCbeaeaaci GGTbGaaiyyaiaacIhaaSqaaiaaigdacqGHKjYOcaWGPbGaeyizImQa amOBaaqabaGcdaqbdaqaaiaaykW7caWGNbWaaeWaaeaacaWHAbWaaS baaSqaaiaadMgaaeqaaOGaai4oaiaaysW7caWH4oWaaSbaaSqaaiaa icdaaeqaaaGccaGLOaGaayzkaaGaaGPaVdGaayzcSlaawQa7aiabg2 da9iaad+gadaWgaaWcbaGaamiCaaqabaGcdaqadaqaamaakaaabaGa amOBaaWcbeaaaOGaayjkaiaawMcaaiaac6caaaa@54C4@ By Lemma 1 of Tang and Leng (2012), we have under the regularity conditions R.2, R.3; the λ θ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdW2aaS baaSqaaiabeI7aXnaaBaaameaacaaIWaaabeaaaSqabaaaaa@3A7E@ in (2.2) satisfies λ θ 0 = O p ( 1 n ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaauWaaeaaca aMc8Uaeq4UdW2aaSbaaSqaaiabeI7aXnaaBaaameaacaaIWaaabeaa aSqabaGccaaMc8oacaGLjWUaayPcSdGaeyypa0Jaam4tamaaBaaale aacaWGWbaabeaakmaabmaabaWaaSqaaSqaaiaaigdaaeaadaGcaaqa aiaad6gaaWqabaaaaaGccaGLOaGaayzkaaGaaiOlaaaa@47F5@ So,

max 1 i n | λ θ 0 g ( Z i ; θ 0 ) | = O p ( 1 n ) o p ( n ) = o p ( 1 ) . ( 3.4 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaCbeaeaaci GGTbGaaiyyaiaacIhaaSqaaiaaigdacqGHKjYOcaWGPbGaeyizImQa amOBaaqabaGcdaabdaqaaiaaykW7cqaH7oaBdaqhaaWcbaGaeqiUde 3aaSbaaWqaaiaaicdaaeqaaaWcbaqefqvyO9wBHbacfaGaa8hPdaaa kiaadEgadaqadaqaaiaahQfadaWgaaWcbaGaamyAaaqabaGccaGG7a GaaGjbVlaahI7adaWgaaWcbaGaaGimaaqabaaakiaawIcacaGLPaaa caaMc8oacaGLhWUaayjcSdGaeyypa0Jaam4tamaaBaaaleaacaWGWb aabeaakmaabmaabaWaaSaaaeaacaaIXaaabaWaaOaaaeaacaWGUbaa leqaaaaaaOGaayjkaiaawMcaaiaad+gadaWgaaWcbaGaamiCaaqaba GcdaqadaqaamaakaaabaGaamOBaaWcbeaaaOGaayjkaiaawMcaaiab g2da9iaad+gadaWgaaWcbaGaamiCaaqabaGcdaqadaqaaiaaigdaai aawIcacaGLPaaacaGGUaGaaGzbVlaaywW7caaMf8UaaGzbVlaaywW7 caGGOaGaaG4maiaac6cacaaI0aGaaiykaaaa@7317@

Under the condition R.4; Qin and Jing (2001) proved max 1 i n | λ θ 0 g ( Z i ; θ 0 ) | = o p ( 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaCbeaeaaci GGTbGaaiyyaiaacIhaaSqaaiaaigdacqGHKjYOcaWGPbGaeyizImQa amOBaaqabaGcdaabdaqaaiaaykW7cqaH7oaBdaqhaaWcbaGaeqiUde 3aaSbaaWqaaiaaicdaaeqaaaWcbaqefqvyO9wBHbacfaGaa8hPdaaa kiaadEgadaqadaqaaiaahQfadaWgaaWcbaGaamyAaaqabaGccaGG7a GaaGjbVlaahI7adaWgaaWcbaGaaGimaaqabaaakiaawIcacaGLPaaa caaMc8oacaGLhWUaayjcSdGaeyypa0Jaam4BamaaBaaaleaacaWGWb aabeaakmaabmaabaGaaGymaaGaayjkaiaawMcaaaaa@5BE9@ for the g ( ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zamaabm aabaGaeyyXICnacaGLOaGaayzkaaaaaa@3AB6@ with censored observations.

Now following Owen (2001), using Taylor’s series expansion of the weights, P i s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGPbaabeaaieaakiaa=LbicaWFZbaaaa@39A7@ defined in (2.2) can be rewritten as,

P i ( θ 0 ) = 1 n { 1 + λ θ 0 g ( Z i ; θ 0 ) } = 1 n [ 1 λ θ 0 g ( Z i ; θ 0 ) { 1 + o p ( 1 ) } ] = 1 n [ 1 λ θ 0 g ( Z i ; θ 0 ) ] + o p ( 1 n ) ; i = 1 , 2 , , n . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrViFD0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabmGaaa qaaiaadcfadaWgaaWcbaGaamyAaaqabaGcdaqadaqaaiaahI7adaWg aaWcbaGaaGimaaqabaaakiaawIcacaGLPaaaaeaacqGH9aqpdaWcaa qaaiaaigdaaeaacaWGUbWaaiWaaeaacaaMc8UaaGymaiabgUcaRiab eU7aSnaaDaaaleaacqaH4oqCdaWgaaadbaGaaGimaaqabaaaleaaru avHH2BTfgaiuaacaWFKoaaaOGaam4zamaabmaabaGaaCOwamaaBaaa leaacaWGPbaabeaakiaacUdacaaMe8UaaCiUdmaaBaaaleaacaaIWa aabeaaaOGaayjkaiaawMcaaaGaay5Eaiaaw2haaaaaaeaaaeaacqGH 9aqpdaWcaaqaaiaaigdaaeaacaWGUbaaamaadmaabaGaaGymaiabgk HiTiabeU7aSnaaDaaaleaacqaH4oqCdaWgaaadbaGaaGimaaqabaaa leaacaWFKoaaaOGaam4zamaabmaabaGaaCOwamaaBaaaleaacaWGPb aabeaakiaacUdacaaMe8UaaCiUdmaaBaaaleaacaaIWaaabeaaaOGa ayjkaiaawMcaamaacmaabaGaaGjcVlaaigdacqGHRaWkcaWGVbWaaS baaSqaaiaadchaaeqaaOWaaeWaaeaacaaIXaaacaGLOaGaayzkaaaa caGL7bGaayzFaaaacaGLBbGaayzxaaaabaaabaGaeyypa0ZaaSaaae aacaaIXaaabaGaamOBaaaadaWadaqaaiaaigdacqGHsislcqaH7oaB daqhaaWcbaGaeqiUde3aaSbaaWqaaiaaicdaaeqaaaWcbaGaa8hPda aakiaadEgadaqadaqaaiaahQfadaWgaaWcbaGaamyAaaqabaGccaGG 7aGaaGjbVlaahI7adaWgaaWcbaGaaGimaaqabaaakiaawIcacaGLPa aaaiaawUfacaGLDbaacqGHRaWkcaWGVbWaaSbaaSqaaiaadchaaeqa aOWaaeWaaeaadaWcaaqaaiaaigdaaeaacaWGUbaaaaGaayjkaiaawM caaiaacUdacaaMf8UaamyAaiabg2da9iaaigdacaGGSaGaaGjbVlaa ikdacaGGSaGaaGjbVlablAciljaacYcacaaMe8UaamOBaiaac6caaa aaaa@9ED3@

Now we rewrite the S n ( β , τ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaBa aaleaacaWGUbaabeaakmaabmaabaGaaCOSdiaacYcacaaMe8UaeqiX dqhacaGLOaGaayzkaaaaaa@3EC1@ as

S n ( β , τ ) = 1 n i = 1 n [ 1 λ θ 0 g ( Z i ; θ 0 ) ] X i { i ( e X i β ( τ ) ) 0 τ I [ Y i e X i β ( u ) ] d H ( u ) } + o p ( 1 n ) = 1 n i = 1 n X i { i ( e X i β ( τ ) ) 0 τ I [ Y i e X i β ( u ) ] d H ( u ) } 1 n i = 1 n λ θ 0 g ( Z i ; θ 0 ) X i { i ( e X i β ( τ ) ) 0 τ I [ Y i e X i β ( u ) ] d H ( u ) } + o p ( 1 n ) = 1 n i = 1 n X i { i ( e X i β ( τ ) ) 0 τ I [ Y i e X i β ( u ) ] d H ( u ) } 1 n i = 1 n W i { i ( e X i β ( τ ) ) 0 τ I [ Y i e X i β ( u ) ] d H ( u ) } + o p ( 1 n ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrViFD0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabuGaaa aabaGaam4uamaaBaaaleaacaWGUbaabeaakmaabmaabaGaaCOSdiaa cYcacaaMe8UaeqiXdqhacaGLOaGaayzkaaaabaGaeyypa0ZaaSaaae aacaaIXaaabaGaamOBaaaadaaeWbqaamaadmaabaGaaGymaiabgkHi TiabeU7aSnaaDaaaleaacqaH4oqCdaWgaaadbaGaaGimaaqabaaale aaruavHH2BTfgaiuaacaWFKoaaaOGaam4zamaabmaabaGaaCOwamaa BaaaleaacaWGPbaabeaakiaacUdacaaMe8UaaCiUdmaaBaaaleaaca aIWaaabeaaaOGaayjkaiaawMcaaaGaay5waiaaw2faaiaahIfadaWg aaWcbaGaamyAaaqabaGcdaGadaqaaiaayIW7tuuDJXwAK1uy0HMmae Hbfv3ySLgzG0uy0HgiuD3BaGGbbiab+vrionaaBaaaleaacaWGPbaa beaakmaabmaabaGaamyzamaaCaaaleqabaGaaCiwamaaDaaameaaca WGPbaabaGaa8hPdaaaliaahk7adaqadaqaaiabes8a0bGaayjkaiaa wMcaaaaaaOGaayjkaiaawMcaaiabgkHiTmaapedabaacgaGae0hIWN ealeaacaaIWaaabaGaeqiXdqhaniabgUIiYdGcdaWadaqaaiaadMfa daWgaaWcbaGaamyAaaqabaGccqGHLjYScaWGLbWaaWbaaSqabeaaca WHybWaa0baaWqaaiaadMgaaeaacaWFKoaaaSGaaCOSdmaabmaabaGa amyDaaGaayjkaiaawMcaaaaaaOGaay5waiaaw2faaiaadsgacaWGib WaaeWaaeaacaWG1baacaGLOaGaayzkaaaacaGL7bGaayzFaaGaey4k aSIaam4BamaaBaaaleaacaWGWbaabeaakmaabmaabaWaaSaaaeaaca aIXaaabaGaamOBaaaaaiaawIcacaGLPaaaaSqaaiaadMgacqGH9aqp caaIXaaabaGaamOBaaqdcqGHris5aaGcbaaabaGaeyypa0ZaaSaaae aacaaIXaaabaGaamOBaaaadaaeWbqaaiaahIfadaWgaaWcbaGaamyA aaqabaGcdaGadaqaaiaayIW7cqGFveItdaWgaaWcbaGaamyAaaqaba GcdaqadaqaaiaadwgadaahaaWcbeqaaiaahIfadaqhaaadbaGaamyA aaqaaiaa=r6aaaWccaWHYoWaaeWaaeaacqaHepaDaiaawIcacaGLPa aaaaaakiaawIcacaGLPaaacqGHsisldaWdXaqaaiab9Hi8jbWcbaGa aGimaaqaaiabes8a0bqdcqGHRiI8aOWaamWaaeaacaWGzbWaaSbaaS qaaiaadMgaaeqaaOGaeyyzImRaamyzamaaCaaaleqabaGaaCiwamaa DaaameaacaWGPbaabaGaa8hPdaaaliaahk7adaqadaqaaiaadwhaai aawIcacaGLPaaaaaaakiaawUfacaGLDbaacaWGKbGaamisamaabmaa baGaamyDaaGaayjkaiaawMcaaaGaay5Eaiaaw2haaaWcbaGaamyAai abg2da9iaaigdaaeaacaWGUbaaniabggHiLdaakeaaaeaacaaMe8Ua aGjbVlabgkHiTmaalaaabaGaaGymaaqaaiaad6gaaaWaaabCaeaacq aH7oaBdaqhaaWcbaGaeqiUde3aaSbaaWqaaiaaicdaaeqaaaWcbaGa a8hPdaaakiaadEgadaqadaqaaiaahQfadaWgaaWcbaGaamyAaaqaba GccaGG7aGaaGjbVlaahI7adaWgaaWcbaGaaGimaaqabaaakiaawIca caGLPaaacaWHybWaaSbaaSqaaiaadMgaaeqaaOWaaiWaaeaacaaMi8 Uae4xfH40aaSbaaSqaaiaadMgaaeqaaOWaaeWaaeaacaWGLbWaaWba aSqabeaacaWHybWaa0baaWqaaiaadMgaaeaacaWFKoaaaSGaaCOSdm aabmaabaGaeqiXdqhacaGLOaGaayzkaaaaaaGccaGLOaGaayzkaaGa eyOeI0Yaa8qmaeaacqqFicFsaSqaaiaaicdaaeaacqaHepaDa0Gaey 4kIipakmaadmaabaGaamywamaaBaaaleaacaWGPbaabeaakiabgwMi ZkaadwgadaahaaWcbeqaaiaahIfadaqhaaadbaGaamyAaaqaaiaa=r 6aaaWccaWHYoWaaeWaaeaacaWG1baacaGLOaGaayzkaaaaaaGccaGL BbGaayzxaaGaamizaiaadIeadaqadaqaaiaadwhaaiaawIcacaGLPa aaaiaawUhacaGL9baacqGHRaWkcaWGVbWaaSbaaSqaaiaadchaaeqa aOWaaeWaaeaadaWcaaqaaiaaigdaaeaacaWGUbaaaaGaayjkaiaawM caaaWcbaGaamyAaiabg2da9iaaigdaaeaacaWGUbaaniabggHiLdaa keaaaeaacqGH9aqpdaWcaaqaaiaaigdaaeaacaWGUbaaamaaqahaba GaaCiwamaaBaaaleaacaWGPbaabeaakmaacmaabaGaaGjcVlab+vri onaaBaaaleaacaWGPbaabeaakmaabmaabaGaamyzamaaCaaaleqaba GaaCiwamaaDaaameaacaWGPbaabaGaa8hPdaaaliaahk7adaqadaqa aiabes8a0bGaayjkaiaawMcaaaaaaOGaayjkaiaawMcaaiabgkHiTm aapedabaGae0hIWNealeaacaaIWaaabaGaeqiXdqhaniabgUIiYdGc daWadaqaaiaadMfadaWgaaWcbaGaamyAaaqabaGccqGHLjYScaWGLb WaaWbaaSqabeaacaWHybWaa0baaWqaaiaadMgaaeaacaWFKoaaaSGa aCOSdmaabmaabaGaamyDaaGaayjkaiaawMcaaaaaaOGaay5waiaaw2 faaiaadsgacaWGibWaaeWaaeaacaWG1baacaGLOaGaayzkaaaacaGL 7bGaayzFaaaaleaacaWGPbGaeyypa0JaaGymaaqaaiaad6gaa0Gaey yeIuoaaOqaaaqaaiaaysW7caaMe8UaeyOeI0YaaSaaaeaacaaIXaaa baGaamOBaaaadaaeWbqaaiaahEfadaWgaaWcbaGaamyAaaqabaGcda GadaqaaiaayIW7cqGFveItdaWgaaWcbaGaamyAaaqabaGcdaqadaqa aiaadwgadaahaaWcbeqaaiaahIfadaqhaaadbaGaamyAaaqaaiaa=r 6aaaWccaWHYoWaaeWaaeaacqaHepaDaiaawIcacaGLPaaaaaaakiaa wIcacaGLPaaacqGHsisldaWdXaqaaiab9Hi8jbWcbaGaaGimaaqaai abes8a0bqdcqGHRiI8aOWaamWaaeaacaWGzbWaaSbaaSqaaiaadMga aeqaaOGaeyyzImRaamyzamaaCaaaleqabaGaaCiwamaaDaaameaaca WGPbaabaGaa8hPdaaaliaahk7adaqadaqaaiaadwhaaiaawIcacaGL PaaaaaaakiaawUfacaGLDbaacaWGKbGaamisamaabmaabaGaamyDaa GaayjkaiaawMcaaaGaay5Eaiaaw2haaiabgUcaRiaad+gadaWgaaWc baGaamiCaaqabaGcdaqadaqaamaalaaabaGaaGymaaqaaiaad6gaaa aacaGLOaGaayzkaaGaaiOlaaWcbaGaamyAaiabg2da9iaaigdaaeaa caWGUbaaniabggHiLdaaaaaa@8EAA@

Asymptotically, by (3.4) we have W i = o p ( 1 ) ; i = 1 , 2 , , n . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaauWaaeaaca aMc8UaaC4vamaaBaaaleaacaWGPbaabeaakiaaykW7aiaawMa7caGL kWoacqGH9aqpcaWGVbWaaSbaaSqaaiaadchaaeqaaOWaaeWaaeaaca aIXaaacaGLOaGaayzkaaGaai4oaiaaysW7caWGPbGaeyypa0JaaGym aiaacYcacaaMe8UaaGOmaiaacYcacaaMe8UaeSOjGSKaaiilaiaays W7caWGUbGaaiOlaaaa@52D6@ So,

S n ( β , τ ) = 1 n i = 1 n X i { i ( e X i β ( τ ) ) 0 τ I [ Y i e X i β ( u ) ] d H ( u ) } + o p ( 1 n ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaBa aaleaacaWGUbaabeaakmaabmaabaGaaCOSdiaacYcacaaMe8UaeqiX dqhacaGLOaGaayzkaaGaeyypa0ZaaSaaaeaacaaIXaaabaGaamOBaa aadaaeWbqaaiaahIfadaWgaaWcbaGaamyAaaqabaGcdaGadaqaaiaa yIW7tuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbbiab=v rionaaBaaaleaacaWGPbaabeaakmaabmaabaGaamyzamaaCaaaleqa baGaaCiwamaaDaaameaacaWGPbaabaqefqvyO9wBHbacgaGaa4hPda aaliaahk7adaqadaqaaiabes8a0bGaayjkaiaawMcaaaaaaOGaayjk aiaawMcaaiabgkHiTmaapedabaacfaGae0hIWNealeaacaaIWaaaba GaeqiXdqhaniabgUIiYdGcdaWadaqaaiaadMfadaWgaaWcbaGaamyA aaqabaGccqGHLjYScaWGLbWaaWbaaSqabeaacaWHybWaa0baaWqaai aadMgaaeaacaGFKoaaaSGaaCOSdmaabmaabaGaamyDaaGaayjkaiaa wMcaaaaaaOGaay5waiaaw2faaiaadsgacaWGibWaaeWaaeaacaWG1b aacaGLOaGaayzkaaaacaGL7bGaayzFaaGaey4kaSIaam4BamaaBaaa leaacaWGWbaabeaakmaabmaabaWaaSaaaeaacaaIXaaabaGaamOBaa aaaiaawIcacaGLPaaacaGGUaaaleaacaWGPbGaeyypa0JaaGymaaqa aiaad6gaa0GaeyyeIuoaaaa@86D1@

Asymptotically this estimating function, S n ( β , τ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaBa aaleaacaWGUbaabeaakmaabmaabaGaaCOSdiaacYcacaaMe8UaeqiX dqhacaGLOaGaayzkaaaaaa@3EC1@ is equivalent to that in Peng and Huang (2008). Following the similar arguments of Peng and Huang (2008), we complete the proofs of Theorems 1 and 2.

As indicated in Peng and Huang (2008), the estimation of asymptotic variance of the quantile regression estimates is not easy since the covariance matrix of the limiting process of n { β ^ ( τ ) β 0 ( τ ) } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOaaaeaaca WGUbaaleqaaOWaaiWaaeaacuaHYoGygaqcamaabmaabaGaeqiXdqha caGLOaGaayzkaaGaeyOeI0IaeqOSdi2aaSbaaSqaaiaaicdaaeqaaO WaaeWaaeaacqaHepaDaiaawIcacaGLPaaaaiaawUhacaGL9baaaaa@450B@ involves unknown density function f ( y | X ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaabm aabaGaamyEaiaaykW7daabbaqaaiaaykW7caWHybaacaGLhWoaaiaa wIcacaGLPaaaaaa@3EF4@ and f ˜ ( y | X ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaaia WaaeWaaeaacaWG5bGaaGPaVpaaeeaabaGaaGPaVlaahIfaaiaawEa7 aaGaayjkaiaawMcaaiaac6caaaa@3FB5@ Instead of using a smoothing or other numerical approximations, we suggest a simple bootstrap approach to estimate the standard errors of the regression estimates. This approach is used in our performance analysis discussed in next section.


Date modified: