Growth Rates Preservation (GRP) temporal benchmarking: Drawbacks and alternative solutions
Section 5. Empirical test

In this section an illustration exercise is conducted on real-life data, in order to find out whether or not the problems mentioned in Section 3 do occur in a realistic, practical application.

5.1  Data sets

The data set used for the illustration is obtained from quarterly and annual trade as published on the website of United Nations (UN).

The United Nations Commodity Trade Statistics Database (UN Comtrade) contains data from statistical authorities of reporting countries, or are received via partner organizations like the Organisation for Economic Co-operation and Development (OECD). The United Nations Totaltrade (UN Tottrade) data are mostly taken from the International Financial Statistics (IFS), published monthly by the International Monetary Fund (IMF). Differences between both sources emerge because of differences in data collection methods and purposes (United Nations, 2017). All data are publicly available at http://comtrade.un.org/.

We use UN Tottrade as data source for quarterly data and both UN Tottrade and UN Comtrade as sources for annual data. Both data sources include imports and exports for approximately 200 UN member states.

For our application all series were selected that include three annual totals and twelve quarterly values for 2002-2004. The variables of interest are total imports and exports. Series with quarterly or annual values smaller than 0.1 million dollars were deleted, as multiplicative benchmarking methods cannot be considered appropriate for zero or near zero values (see Subsection 3.2). Since the series are in million dollars, the cutoff value only excludes “extreme” cases and still leaves some real-life cases of singularity issues.

We end up with 238 time series for Comtrade and 253 series for Tottrade. The average year to year growth rates discrepancy between the annualized quarterly series and their benchmarks are 5.9%-point and 2.7%-point for Comtrade and Tottrade benchmarks, respectively. For the majority of series the discrepancy can be considered small. The percentage of series with a maximum discrepancy below 5%-point are 79% and 87%, respectively.

5.2  Results

Our first aim is to assess overall performance. We will compare the degree of preservation of the preliminary values and their growth rates for the various methods that are discussed in this paper.

Table 5.1 shows for the five methods the median values over all series, for the functions f GRP , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peea0dXdcrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaqaaaaaaaaaWdbiaadAgapaWaa0baaS qaa8qacaqGgbGaaeiOaaWdaeaapeGaae4raiaabkfacaqGqbaaaOWd aiaaygW7caGGSaaaaa@399E@ f B GRP , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peea0dXdcrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaqaaaaaaaaaWdbiaadAgapaWaa0baaS qaa8qacaqGcbaapaqaa8qacaqGhbGaaeOuaiaabcfaaaGcpaGaaGza VlaacYcaaaa@3877@ f S GRP MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peea0dXdcrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaqaaaaaaaaaWdbiaadAgapaWaa0baaS qaa8qacaqGtbaapaqaa8qacaqGhbGaaeOuaiaabcfaaaaaaa@3635@ for forward, backward and simultaneous movement preservation and f     Level MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peea0dXdcrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaqaaaaaaaaaWdbiaadAgapaWaa0baaS qaa8qacaGGGcGaaiiOaaWdaeaapeGaaeitaiaabwgacaqG2bGaaeyz aiaabYgaaaaaaa@39BC@ for preliminary value preservation. The latter function measures total squared relative adjustment, defined by

f     Level ( x ) : = t = 1 n ( x t p t   1 ) 2 . ( 5.1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peea0dXdcrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaqaaaaaaaaaWdbiaadAgapaWaa0baaS qaa8qacaGGGcGaaiiOaaWdaeaapeGaaeitaiaabwgacaqG2bGaaeyz aiaabYgaaaGcdaqadaWdaeaapeGaaCiEaaGaayjkaiaawMcaaiaays W7caaMe8UaaiOoaiabg2da9iaaysW7caaMe8+aaybCaeqal8aabaWd biaadshacqGH9aqpcaaIXaaapaqaa8qacaWGUbaan8aabaWdbiabgg HiLdaakiaaysW7daqadaWdaeaapeWaaSaaa8aabaWdbiaadIhapaWa aSbaaSqaa8qacaWG0baapaqabaaakeaapeGaamiCa8aadaWgaaWcba Wdbiaadshaa8aabeaak8qacaGGGcaaaiaaysW7caaMe8UaeyOeI0Ia aGjbVlaaysW7caaIXaaacaGLOaGaayzkaaWdamaaCaaaleqabaWdbi aaikdaaaGccaGGUaGaaGzbVlaaywW7caaMf8UaaGzbVlaaywW7caGG OaGaaGynaiaac6cacaaIXaGaaiykaaaa@6904@

Table 5.1
Median values of criteria in (2.1), (3.1), (4.1) and (5.1)
Table summary
This table displays the results of Median values of criteria in (2.1) COM data set and TOT data set (appearing as column headers).
COM data set TOT data set
f F GRP MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9y8WrFj0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuD0dXdcrpe0db9Wqpepic9qr=xfr=xfr=tmeqabeqadiWa ceGabeqabeqabeqadeaakeaaqaaaaaaaaaWdbiaadAgapaWaa0baaS qaa8qacaqGgbaapaqaa8qaciGGhbGaaiOuaiaaccfaaaaaaa@38CF@ f B GRP MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9y8WrFj0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuD0dXdcrpe0db9Wqpepic9qr=xfr=xfr=tmeqabeqadiWa ceGabeqabeqabeqadeaakeaaqaaaaaaaaaWdbiaadAgapaWaa0baaS qaa8qacaqGcbaapaqaa8qacaqGhbGaaeOuaiaabcfaaaaaaa@38C6@ f S GRP MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9y8WrFj0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuD0dXdcrpe0db9Wqpepic9qr=xfr=xfr=tmeqabeqadiWa ceGabeqabeqabeqadeaakeaaqaaaaaaaaaWdbiaadAgapaWaa0baaS qaa8qacaqGtbaapaqaa8qacaqGhbGaaeOuaiaabcfaaaaaaa@38D7@ f    Level MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9y8WrFj0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuD0dXdcrpe0db9Wqpepic9qr=xfr=xfr=tmeqabeqadiWa ceGabeqabeqabeqadeaakeaaqaaaaaaaaaWdbiaadAgapaWaa0baaS qaa8qacaGGGcGaaiiOaaWdaeaapeGaaeitaiaabwgacaqG2bGaaeyz aiaabYgaaaaaaa@3C5E@ f F GRP MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9y8WrFj0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuD0dXdcrpe0db9Wqpepic9qr=xfr=xfr=tmeqabeqadiWa ceGabeqabeqabeqadeaakeaaqaaaaaaaaaWdbiaadAgapaWaa0baaS qaa8qacaqGgbaapaqaa8qaciGGhbGaaiOuaiaaccfaaaaaaa@38CF@ f B GRP MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9y8WrFj0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuD0dXdcrpe0db9Wqpepic9qr=xfr=xfr=tmeqabeqadiWa ceGabeqabeqabeqadeaakeaaqaaaaaaaaaWdbiaadAgapaWaa0baaS qaa8qacaqGcbaapaqaa8qacaqGhbGaaeOuaiaabcfaaaaaaa@38C6@ f S GRP MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9y8WrFj0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuD0dXdcrpe0db9Wqpepic9qr=xfr=xfr=tmeqabeqadiWa ceGabeqabeqabeqadeaakeaaqaaaaaaaaaWdbiaadAgapaWaa0baaS qaa8qacaqGtbaapaqaa8qacaqGhbGaaeOuaiaabcfaaaaaaa@38D7@ f    Level MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9y8WrFj0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuD0dXdcrpe0db9Wqpepic9qr=xfr=xfr=tmeqabeqadiWa ceGabeqabeqabeqadeaakeaaqaaaaaaaaaWdbiaadAgapaWaa0baaS qaa8qacaGGGcGaaiiOaaWdaeaapeGaaeitaiaabwgacaqG2bGaaeyz aiaabYgaaaaaaa@3C5E@
Denton PFD 0.87 0.88 0.88 26.42 0.33 0.41 0.37 2.07
GRPF 0.84 0.98 0.93 26.43 0.27 0.48 0.45 2.06
GRPB 1.00 0.82 0.91 26.47 0.48 0.28 0.45 2.07
GRPS 0.87 0.89 0.88 26.41 0.34 0.38 0.36 2.07
GRPL 0.87 0.88 0.88 26.42 0.33 0.41 0.37 2.07

It can be seen from Table 5.1 that the GRPF method, that is designed to preserve forward growth rates, results in relatively poor backward movement preservation. The opposite is also true: GRPB does not preserve forward movements very well. From these results, we can conclude that time reversibility actually matters. Table 5.1 also demonstrates that the time symmetric methods, Denton PFD, GRPS and GRPL, perform well on all measures and that difference between those methods are only marginal.

To assess forward, backward and simultaneous growth rate preservation, a relative criterion is used that compares the values of the objective functions f F GRP ( x ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peea0dXdcrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaqaaaaaaaaaWdbiaadAgapaWaa0baaS qaa8qacaqGgbaapaqaa8qacaqGhbGaaeOuaiaabcfaaaGcdaqadaWd aeaapeGaaCiEaaGaayjkaiaawMcaaiaacYcaaaa@398B@ f B GRP ( x ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peea0dXdcrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaqaaaaaaaaaWdbiaadAgapaWaa0baaS qaa8qacaqGcbaapaqaa8qacaqGhbGaaeOuaiaabcfaaaGcdaqadaWd aeaapeGaaCiEaaGaayjkaiaawMcaaaaa@38D7@ and f S GRP ( x ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peea0dXdcrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaqaaaaaaaaaWdbiaadAgapaWaa0baaS qaa8qacaqGtbaapaqaa8qacaqGhbGaaeOuaiaabcfaaaGcdaqadaWd aeaapeGaaCiEaaGaayjkaiaawMcaaaaa@38E8@ with their optimum values, which are obtained from GRPF, GRPB and GRPS, respectively. Analogous to the standards in Di Fonzo and Marini (2012), movement preservation is consided acceptable if it lies within 10% of the optimum value. That is, if f method ( x ) / f optimum ( x ) 1 .1 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuD0dXdcrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaqaaaaaaaaaWdbmaalyaabaGaamOzam aaCaaaleqabaGaaeyBaiaabwgacaqG0bGaaeiAaiaab+gacaqGKbaa aOWaaeWaaeaacaWH4baacaGLOaGaayzkaaaabaGaamOzamaaCaaale qabaGaae4BaiaabchacaqG0bGaaeyAaiaab2gacaqG1bGaaeyBaaaa kmaabmaabaGaaCiEaaGaayjkaiaawMcaaaaacqGHKjYOcaqGXaGaae OlaiaabgdacaGGSaaaaa@4A2B@ where f MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuD0dXdcrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGMbaaaa@32D7@ is one of the previously mentioned objective functions.

For the five methods considered, Table 5.2 shows the percentage of time series with acceptable forward, backward and simultaneous movement preservation.

Table 5.2
Percentage of time series with acceptable movement preservation
Table summary
This table displays the results of Percentage of time series with acceptable movement preservation COM data set and TOT data set (appearing as column headers).
COM data set TOT data set
Forward Backward Simult. Forward Backward Simult.
Denton PFD 79.4 78.6 95.8 79.4 79.4 96.0
GRPF 100.0 48.7 81.5 100.0 47.8 82.6
GRPB 47.1 100.0 76.9 44.3 100.0 75.1
GRPS 82.4 77.3 100.0 80.6 79.4 100.0
GRPL 79.8 79.0 96.6 79.4 79.4 96.0

For Denton PFD an acceptable degree of simultaneous movement preservation is found for more than 95% of all cases. Thus, one can conclude that Denton PFD can be considered as a very good approximation for the optimal GRPS method; the approximation is even better than the GRPF and GRPB methods, for which acceptable performance is found for around 80% of all cases.

So far, we focused on performance for entire time series. Below we will consider the occurrence of large and extreme reconciliation adjustments made to single values and growth rates.

To measure the adjustments made to growth rates, the absolute difference | g i t ( x ) g i t ( p ) | * 100 % MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peea0dXdcrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaqaaaaaaaaaWdbmaaemaabaGaaGjbVl aadEgapaWaaSbaaSqaa8qacaWGPbGaamiDaaWdaeqaaOWdbmaabmaa paqaa8qacaWH4baacaGLOaGaayzkaaGaeyOeI0Iaam4za8aadaWgaa WcbaWdbiaadMgacaWG0baapaqabaGcpeWaaeWaa8aabaWdbiaahcha aiaawIcacaGLPaaacaaMe8oacaGLhWUaayjcSdGaaGjbVlaaysW7ca GGQaGaaGjbVlaaysW7caaIXaGaaGimaiaaicdacaGGLaaaaa@4E52@ is used, where g i t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peea0dXdcrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaqaaaaaaaaaWdbiaadEgapaWaaSbaaS qaa8qacaWGPbGaamiDaaWdaeqaaaaa@34C4@ is a growth rate for series i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuD0dXdcrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGPbaaaa@32DA@ and period t . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuD0dXdcrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWG0bGaaiOlaaaa@3397@ Tables 5.3 and 5.4 compare the occurrence of large and extremely large adjustments to forward, backward and simultaneous growth rates.

Table 5.3
Percentage of large growth rate adjustments (> 10%-point difference)
Table summary
This table displays the results of Percentage of large growth rate adjustments (> 10%-point difference) COM data set and TOT data set (appearing as column headers).
COM data set TOT data set
Forward Backward Simult. Forward Backward Simult.
Denton PFD 2.0 2.1 1.9 0.8 0.6 0.6
GRPF 1.9 2.4 2.3 0.6 0.9 0.7
GRPB 2.3 1.5 2.0 1.1 0.3 0.8
GRPS 1.9 1.9 1.8 0.8 0.6 0.6
GRPL 2.0 1.9 1.9 0.8 0.6 0.5
Table 5.4
Percentage of extreme growth rate adjustments (> 50%-point difference)
Table summary
This table displays the results of Percentage of extreme growth rate adjustments (> 50%-point difference) COM data set and TOT data set (appearing as column headers).
COM data set TOT data set
Forward Backward Simult. Forward Backward Simult.
Denton PFD 0.3 0.2 0.4 0.1 0.1 0.1
GRPF 0.2 0.2 0.2 0.0 0.1 0.1
GRPB 0.3 0.0 0.2 0.2 0.0 0.1
GRPS 0.2 0.1 0.2 0.1 0.0 0.1
GRPL 0.2 0.1 0.2 0.1 0.0 0.1

These tables show minor differences between methods.

Small differences between methods are also in observed in Table 5.5, which shows large and extreme corrections to preliminary values, as measured by the relative criterion ( x it / p i t ) * 100 % . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peea0dXdcrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaqaaaaaaaaaWdbmaabmaapaqaa8qada WcgaqaaiaadIhapaWaaSbaaSqaa8qacaqGPbGaaeiDaaWdaeqaaaGc peqaaiaadchapaWaaSbaaSqaa8qacaWGPbGaamiDaaWdaeqaaaaaaO WdbiaawIcacaGLPaaacaaMe8UaaGjbVlaacQcacaaMe8UaaGjbVlaa igdacaaIWaGaaGimaiaacwcacaGGUaaaaa@4465@

Hence, one can conclude that the problems caused by singularity do not translate into more often occurring large corrections.

Table 5.5
Percentage of large adjustments to preliminary values
Table summary
This table displays the results of Percentage of large adjustments to preliminary values. The information is grouped by (appearing as row headers), COM data set and TOT data set (appearing as column headers).
COM data set TOT data set
Large
(>10%)
Extreme
(>100%)
Negative
(<0%)
Large
(>10%)
Extreme
(>100%)
Negative
(<0%)
Denton PFD 13.2 1.0 0.0 5.8 0.4 0.0
GRPF 13.0 1.0 0.0 5.8 0.3 0.1
GRPB 13.1 0.9 0.0 5.6 0.3 0.0
GRPS 13.1 0.9 0.0 5.8 0.4 0.0
GRPL 13.0 0.9 0.0 5.8 0.4 0.0

Most remarkable in Table 5.5 are the negative benchmarked values obtained for GRPF in the TOT data. An example of this is illustrated in Figure 5.3.

Despite the similar results of the five benchmarking methods in Tables 5.3-5.5, there are clear differences in smoothness of reconciliation adjustments. To demonstrate this, we will use the smoothness indicator (Temurshoev, 2012).

Smoothness = t = 2 n 2 [ BI t BI t ¯ ] 2 , ( 5.2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuD0dXdcrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaqaaaaaaaaaWdbiaabofacaqGTbGaae 4Baiaab+gacaqG0bGaaeiAaiaab6gacaqGLbGaae4CaiaabohacaaM e8UaaGjbVlaaysW7cqGH9aqpcaaMe8UaaGjbVlaaysW7daGfWbqabS WdaeaapeGaamiDaiabg2da9iaaikdaa8aabaWdbiaad6gacqGHsisl caaIYaaan8aabaWdbiabggHiLdaakiaaysW7daWadaWdaeaapeGaae OqaiaabMeapaWaaSbaaSqaa8qacaWG0baapaqabaGcpeGaeyOeI0Ia aGjbVlaaysW7paWaa0aaaeaapeGaaeOqaiaabMeapaWaaSbaaSqaa8 qacaWG0baapaqabaaaaOGaaGjbVdWdbiaawUfacaGLDbaapaWaaWba aSqabeaapeGaaGOmaaaakiaaygW7caGGSaGaaGzbVlaaywW7caaMf8 UaaGzbVlaaywW7caGGOaGaaGynaiaac6cacaaIYaGaaiykaaaa@6BAE@

where BI t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peea0dXdcrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaqaaaaaaaaaWdbiaabkeacaqGjbWdam aaBaaaleaapeGaamiDaaWdaeqaaaaa@347B@ is the so-called benchmark-to-indicator ratio, i.e., x t / p t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peea0dXdcrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaqaaaaaaaaaWdbmaalyaabaGaamiEa8 aadaWgaaWcbaWdbiaadshaa8aabeaaaOWdbeaacaWGWbWdamaaBaaa leaapeGaamiDaaWdaeqaaaaaaaa@365F@ and BI t   ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peea0dXdcrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaqdaaqaaabaaaaaaaaapeGaciOqai aacMeapaWaaSbaaSqaa8qacaWG0bGaaiiOaaWdaeqaaaaaaaa@35B4@ is the 5-terms moving average 1 5 k = t 2 k = t + 2 BI k . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peea0dXdcrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaqaaaaaaaaaWdbmaaleaaleaacaaIXa aabaGaaGynaaaakmaaqadabaGaaeOqaiaabMeapaWaaSbaaSqaa8qa caWGRbaapaqabaaapeqaaiaadUgacqGH9aqpcaWG0bGaeyOeI0IaaG OmaaqaaiaadUgacqGH9aqpcaWG0bGaey4kaSIaaGOmaaqdcqGHris5 aOGaaiOlaaaa@41FA@

According to this indicator, we find in Table 5.6 that the smoothest results are obtained for Denton PFD and GRPL. Conversely, the asymmetric GRPF and GRPB methods yield the most irregular adjustments. It follows that the time-symmetric method GRPS, but most so GRPL, suffers less from singularity than the asymmetric methods GRPF and GRPB do. These results most clearly illustrate the problems with the singularity of GRP’s objective function that were described in Subsection 3.2.

Table 5.6
Smoothness indicator values (5.2), summed over all series
Table summary
This table displays the results of Smoothness indicator values (5.2) COM data set and TOT data set (appearing as column headers).
COM data set TOT data set
Denton PFD 3.4 0.3
GRPF 9.8 39.0
GRPB 8.2 2.9
GRPS 4.3 1.1
GRPL 3.3 0.5

5.3  Examples

Below we show two examples to demonstrate that the problems in Section 3 do occur in a real-life application.

The first example, in Figures 5.1 and 5.2, illustrates that non-symmetric GRP methods may change the timing of the most important economic events. When considering the first nine quarters, the two highest values occur at different time periods. GRPF’s peak periods are at quarters 6 and 7 and those of GRPB are at quarters 5 and 6. Closely related to this, is that GRPF moves away relatively slowly from the close-to-zero values at quarters 1-4.

Figure 5.1 Exports Burundi, Comdata, 2002-2004, millions of US dollar. “Avg. Benchmark” stands for the average level of the quarterly data that complies with the annual benchmarks and that is
  computed as one-fourth of its annual counterpart

Description for Figure 5.1

Figure presenting four lines, one for each benchmarking method (GRPF, GRPB and GRPL) and one for the initial quarterly series of Burundi exports, Comdata, from 2002 to 2004 (source). There is also a line for each average benchmark (annual value divided by four). Benchmarked values are on the y-axis, in millions of US dollar, going from 0 to 35. Quarters are on the x-axis, going from 1 to 12. The second year peaks occur, for GRPB and GRPL methods, at the same quarters (5 and 6), whereas they occur at quarters 6 and 7 for GRPF method.

Figure 5.2 Benchmark to Indicator ratios, Exports Burundi, 2002-2004. “Avg. Discrepancy” stands for the annual BI-ratio, i.e., the ratio of an annual benchmark and the sum of the underlying quarterly indicators

Description for Figure 5.2

Figure presenting three lines, one for each benchmark to indicator ratio for three benchmarking methods (GRPF, GRPB and GRPL) for the quarterly Burundi exports of 2002 to 2004. There is also a line for each average discrepancy (ratio of an annual benchmark and the sum of the underlying quarterly indicators). Ratios are on the y-axis, going from 0.5 to 2.5. Quarters are on the x-axis, going from 1 to 12. Ratios of GRPB and GRPL methods are smoother than those of GRPF method.

The second example illustrates the complications of a singular objective function. As shown in Figure 5.4, GRPF closely preserves growth rates of the quarters 6-10. This comes however at the expense of an irregular peak in quarter 5 and negative benchmarked values in the quarters 11 and 12.

Figure 5.3 Exports Gambia, Totdata, 2002-2004, millions of US dollar. “Avg. Benchmark” stands for the average level of the quarterly data that complies with the annual benchmarks and that is
  computed as one-fourth of its annual counterpart

Description for Figure 5.3

Figure presenting five lines, one for each benchmarking method (Denton, GRPF, GRPB and GRPL) and one for the initial quarterly series of Gambia exports, Totdata, from 2002 to 2004 (source). There is also a line for each average benchmark (annual value divided by four). Benchmarked values are on the y-axis, in millions of US dollar, going from -1.5 to 6.5. Quarters are on the x-axis, going from 1 to 12. The behavior of GRPF method differs from the other methods: it shows irregular large peaks ending with negative benchmarked values for quarters 11 and 12.

Figure 5.4 Exports Gambia, Totdata, 2002-2004, benchmark to indicator ratio. “Avg. Discrepancy” stands for the annual BI-ratio, i.e., the ratio of an annual benchmark and the sum of the underlying quarterly indicators

Description for Figure 5.4

Figure presenting four lines, one for each benchmark to indicator ratio for four benchmarking methods (Denton, GRPF, GRPB and GRPL) for the quarterly Gambia exports, Totdata, from 2002 to 2004. There is also a line for each average discrepancy (ratio of an annual benchmark and the sum of the underlying quarterly indicators). Ratios are on the y-axis, going from -3 to 11. Quarters are on the x-axis, going from 1 to 12. Ratios of Denton and GRPL methods are the smoothest. There are more pronounced peaks for GRPB method. For GRPF method, there is an irregular peak at quarter 5 and negative ratios at quarters 11 and 12.


Date modified: