Growth Rates Preservation (GRP) temporal benchmarking: Drawbacks and alternative solutions
Section 4. Alternative benchmarking techniques

In Section 3 we identified two problems with GRP methods. In this section we consider two alternative benchmarking techniques that solve the time irreversibility property.

4.1  Simultaneous growth rate preservation

Here, we propose two alternative objective functions for GRP. The first is a “time symmetric” variant of GRP, defined by

f S GRP ( x ) = 1 2 t = 2 n ( x t x t 1 p t p t 1 ) 2 + 1 2 t = 2 n ( x t 1 x t p t 1 p t ) 2 , ( 4.1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peea0dXdcrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaqaaaaaaaaaWdbiaadAgapaWaa0baaS qaa8qacaqGtbaapaqaa8qacaqGhbGaaeOuaiaabcfaaaGcdaqadaWd aeaapeGaaCiEaaGaayjkaiaawMcaaiaaysW7caaMe8Uaeyypa0JaaG jbVlaaysW7daWcaaWdaeaapeGaaGymaaWdaeaapeGaaGOmaaaacaaM e8+aaybCaeqal8aabaWdbiaadshacqGH9aqpcaaIYaaapaqaa8qaca WGUbaan8aabaWdbiabggHiLdaakiaaysW7daqadaWdaeaapeWaaSaa a8aabaWdbiaadIhapaWaaSbaaSqaa8qacaWG0baapaqabaaakeaape GaamiEa8aadaWgaaWcbaWdbiaadshacqGHsislcaaIXaaapaqabaaa aOWdbiaaysW7caaMe8UaeyOeI0IaaGjbVlaaysW7daWcaaWdaeaape GaamiCa8aadaWgaaWcbaWdbiaadshaa8aabeaaaOqaa8qacaWGWbWd amaaBaaaleaapeGaamiDaiabgkHiTiaaigdaa8aabeaaaaaak8qaca GLOaGaayzkaaWdamaaCaaaleqabaWdbiaaikdaaaGcpaGaaGjbV=qa cqGHRaWkcaaMe8UaaGjbVpaalaaapaqaa8qacaaIXaaapaqaa8qaca aIYaaaaiaaysW7daGfWbqabSWdaeaapeGaamiDaiabg2da9iaaikda a8aabaWdbiaad6gaa0WdaeaapeGaeyyeIuoaaOGaaGjbVpaabmaapa qaa8qadaWcaaWdaeaapeGaamiEa8aadaWgaaWcbaWdbiaadshacqGH sislcaaIXaaapaqabaaakeaapeGaamiEa8aadaWgaaWcbaWdbiaads haa8aabeaaaaGcpeGaaGjbVlaaysW7cqGHsislcaaMe8UaaGjbVpaa laaapaqaa8qacaWGWbWdamaaBaaaleaapeGaamiDaiabgkHiTiaaig daa8aabeaaaOqaa8qacaWGWbWdamaaBaaaleaapeGaamiDaaWdaeqa aaaaaOWdbiaawIcacaGLPaaapaWaaWbaaSqabeaapeGaaGOmaaaaki aacYcacaaMf8UaaGzbVlaaywW7caaMf8UaaGzbVlaacIcacaaI0aGa aiOlaiaaigdacaGGPaaaaa@9681@

where subscript “S” stands for “simultaneous”. The method will be called GRPS in the remainder of this paper. The GRPS objective function both preserves forward and backward growth rates. As far as the authors know this method has not been mentioned elsewhere in the literature. It can be easily seen that GRPS satisfies time reversibility: interchanging t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peea0dXdcrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWG0baaaa@3270@ and t 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peea0dXdcrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWG0bGaeyOeI0IaaGymaaaa@3418@ does not alter the objective function.

However, the second problem in Section 3 (singularity of objective function) is not considered. One of the consequences, negative benchmarked values, can be avoided by imposing lower bounds of zero on the benchmarked values. This can be done by including inequality constraints to an optimization problem, which is a well-established technique (e.g., Nocedal and Wright, 2006). The other problems related with singularity can however still occur.

4.2  Logarithmic growth rate preservation

Another “time symmetric” variant of GRP is given by the logarithmic form:

f L GRP ( x ) = t = 2 n [ log ( x t x t 1   ) log ( p t p t 1 ) ] 2 . ( 4.2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peea0dXdcrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaqaaaaaaaaaWdbiaadAgapaWaa0baaS qaa8qacaqGmbaapaqaa8qaciGGhbGaaiOuaiaaccfaaaGcdaqadaWd aeaapeGaaCiEaaGaayjkaiaawMcaaiaaysW7caaMe8Uaeyypa0JaaG jbVlaaysW7daGfWbqabSWdaeaapeGaamiDaiabg2da9iaaikdaa8aa baWdbiaad6gaa0WdaeaapeGaeyyeIuoaaOGaaGjbVpaadmaapaqaa8 qacaqGSbGaae4BaiaabEgadaqadaWdaeaapeWaaSaaa8aabaWdbiaa dIhapaWaaSbaaSqaa8qacaWG0baapaqabaaakeaapeGaamiEa8aada WgaaWcbaWdbiaadshacqGHsislcaaIXaaapaqabaGcpeGaaiiOaaaa aiaawIcacaGLPaaacaaMe8UaaGjbVlabgkHiTiaaysW7caaMe8Uaae iBaiaab+gacaqGNbWaaeWaa8aabaWdbmaalaaapaqaa8qacaWGWbWd amaaBaaaleaapeGaamiDaaWdaeqaaaGcbaWdbiaadchapaWaaSbaaS qaa8qacaWG0bGaeyOeI0IaaGymaaWdaeqaaaaaaOWdbiaawIcacaGL PaaaaiaawUfacaGLDbaapaWaaWbaaSqabeaapeGaaGOmaaaakiaac6 cacaaMf8UaaGzbVlaaywW7caaMf8UaaGzbVlaacIcacaaI0aGaaiOl aiaaikdacaGGPaaaaa@759C@

This function was firstly considered by Helfand, Monsour and Trager (1977). It is immediately verified that function (4.2) satisfies the time reversal property as well. The objective function can be considered the logarithmic version of GRP and equally well as the logarithmic version of Denton PFD. It will be denoted GRPL in the remainder of this paper, where “L” stands for “logarithmic”.

Note that (4.2) can be used for strictly positive preliminary values only, and that it produces benchmarked values that are larger than zero as well. This does not seem an important limitation, as Section 3 already mentioned that growth rate preservation can be considered inappropriate for problems with positive and negative values. Nevertheless, a potential solution for time series with negative values is to add a sufficiently large constant to the series prior to benchmarking and subtract that constant from the benchmarked series. A potential drawback of this solution is that adding a constant distorts initial growth-rates. Thus, it is unclear whether preliminary growth rates are actually preserved. Further research is necessary to better understand the implications of this solution.

Although GRPL necessarily produces positive values, other problems in Section 3.2, related to a singular objective function can still occur.

4.3  Comparison

When comparing GRPS and GRPL, it can be expected that GRPL behaves more like Denton PFD. Below we will give two reasons for this.

Firstly, because of the asymptotic properties of the log function, the problem that close-to-zero values are avoided is less severe for GRPL than for GRPS. Close-to-zero values are associated with large adjustments of growth rates. Very large adjustments of growth rates are penalised less in GRPL than in GRPS, since GRPS’s objective function grows faster when corrections are large.

Secondly, the first-order Taylor linearization of GRPL’s objective function corresponds to Denton PFD’s function, whereas the approximation of GRPS leads to a different result. The linearization of the squared terms of the objective function in the preliminary values are given by ( x t p t   ) ( x t 1 p t 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peea0dXdcrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaqaaaaaaaaaWdbmaabmaapaqaa8qada WcbaWcbaGaamiEa8aadaWgaaadbaWdbiaadshaa8aabeaaaSWdbeaa caWGWbWdamaaBaaameaapeGaamiDaaWdaeqaaSWdbiaacckaaaaaki aawIcacaGLPaaacqGHsisldaqadaWdaeaapeWaaSqaaSqaaiaadIha paWaaSbaaWqaa8qacaWG0bGaeyOeI0IaaGymaaWdaeqaaaWcpeqaai aadchapaWaaSbaaWqaa8qacaWG0bGaeyOeI0IaaGymaaWdaeqaaaaa aOWdbiaawIcacaGLPaaaaaa@4429@ and ( p t P t 1 + p t 1 p t ) { ( x t p t   ) ( x t 1 p t 1 )   } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peea0dXdcrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaqaaaaaaaaaWdbmaabmaapaqaa8qada WcbaWcbaGaamiCa8aadaWgaaadbaWdbiaadshaa8aabeaaaSWdbeaa caWGqbWdamaaBaaameaapeGaamiDaiabgkHiTiaaigdaa8aabeaaaa GcpeGaey4kaSYaaSqaaSqaaiaadchapaWaaSbaaWqaa8qacaWG0bGa eyOeI0IaaGymaaWdaeqaaaWcpeqaaiaadchapaWaaSbaaWqaa8qaca WG0baapaqabaaaaaGcpeGaayjkaiaawMcaamaacmaapaqaa8qadaqa daWdaeaapeWaaSqaaSqaaiaadIhapaWaaSbaaWqaa8qacaWG0baapa qabaaal8qabaGaamiCa8aadaWgaaadbaWdbiaadshaa8aabeaal8qa caGGGcaaaaGccaGLOaGaayzkaaGaeyOeI0YaaeWaa8aabaWdbmaale aaleaacaWG4bWdamaaBaaameaapeGaamiDaiabgkHiTiaaigdaa8aa beaaaSWdbeaacaWGWbWdamaaBaaameaapeGaamiDaiabgkHiTiaaig daa8aabeaaaaaak8qacaGLOaGaayzkaaGaaeiOaaGaay5Eaiaaw2ha aaaa@571C@ for GRPL and GRPS respectively.

4.4  Example

In order to explore the properties of GRPL and GRPS, we will consider the example of Subsection 3.3 again. Figure 4.1 compares results of the symmetric f S GRP , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peea0dXdcrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaqaaaaaaaaaWdbiaadAgapaWaa0baaS qaa8qacaqGtbaapaqaa8qacaqGhbGaaeOuaiaabcfaaaGcpaGaaGza VlaacYcaaaa@3888@   f L GRP MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peea0dXdcrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaqaaaaaaaaaWdbiaacckacaWGMbWdam aaDaaaleaapeGaaeitaaWdaeaapeGaae4raiaabkfacaqGqbaaaaaa @3752@ and f PFD ( x ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peea0dXdcrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaqaaaaaaaaaWdbiaadAgapaWaaWbaaS qabeaapeGaaeiuaiaabAeacaqGebaaaOWaaeWaa8aabaWdbiaahIha aiaawIcacaGLPaaaaaa@37E4@ methods.

Figure 4.1 Example: results of three symmetric benchmarking methods. “Avg. Benchmark” stands for the average level of the monthly values that complies with the quarterly benchmarks and that is computed as one-third of its quarterly counterpart

Description for Figure 4.1

Figure presenting four lines, one for each symmetric benchmarking method (Denton, GRPL and GRPS) and one for the initial monthly series (source). There is also a line for each average benchmark (quarterly value divided by three). Benchmarked values are on the y-axis, going from 0 to 200. Months are on the x-axis, going from 1 to 15. The peaks and troughs occur at the same months, month 5 and 11 for the peaks and 8 for the trough. Peaks are larger and more irregular for GRPL and GRPS methods.

Firstly, it can be seen that the peaks and troughs occur at the same periods for all time symmetric methods.

Secondly, some of the drawbacks related to the singularity of the objective function still occur. When compared to Denton PFD, GRP methods tend to avoid close-to zero values, move away relatively slowly from low values (in both directions) and lead to irregular large peaks.

Thirdly, in accordance to Subsection 3.3, GRPL resembles Denton PFD more than GRPS, which follows from the slightly lower peaks of GRPL.


Date modified: