Linearization versus bootstrap for variance estimation of the change between Gini indexes
Section 3. Two-sample case

3.1  Notation and composite estimation

Suppose now that two variables Y 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=Hr8znaaBaaaleaacaaIXaaabeaaaaa@3E48@ and Y 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=Hr8znaaBaaaleaacaaIYaaabeaaaaa@3E49@ are measured on the population U , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGvbGaaiilaaaa@337B@ and let y d 1 , , y d N MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWG5bWaaSbaaSqaaiaadsgacaaIXa aabeaakiaaiYcacaaMc8UaeSOjGSKaaGilaiaaykW7caWG5bWaaSba aSqaaiaadsgacaWGobaabeaaaaa@3D53@ denote the values taken by Y d , d = 1, 2 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=Hr8znaaBaaaleaacaWGKbaabeaakiaaiYca caaMc8Uaamizaiaai2dacaaIXaGaaGilaiaaykW7caaIYaGaaiilaa aa@46D9@ on the units in the population. The variables Y 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=Hr8znaaBaaaleaacaaIXaaabeaaaaa@3E48@ and Y 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=Hr8znaaBaaaleaacaaIYaaabeaaaaa@3E49@ may typically refer to some characteristic of interest collected at two different times τ 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHepaDdaWgaaWcbaGaaGymaaqaba aaaa@349D@ and τ 2 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHepaDdaWgaaWcbaGaaGOmaaqaba GccaGGUaaaaa@355A@ We consider the estimation of parameters Δ θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqqHuoarcqaH4oqCaaa@350D@ that can be written as a functional Δ θ = T ( M 1 , M 2 ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqqHuoarcqaH4oqCcaaI9aGaamivam aabmaabaGaamytamaaBaaaleaacaaIXaaabeaakiaaiYcacaaMc8Ua amytamaaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaiaacYcaaa a@3EAE@ where M d = k U δ { y d k } . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGnbWaaSbaaSqaaiaadsgaaeqaaO GaaGypamaaqababeWcbaGaam4AaiabgIGiolaadwfaaeqaniabggHi LdGccaaMi8UaeqiTdq2aaSbaaSqaamaacmaabaGaamyEamaaBaaame aacaWGKbGaam4AaaqabaaaliaawUhacaGL9baaaeqaaOGaaiOlaaaa @4343@ For instance, the linear case Δ t = t y 2 t y 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqqHuoarcaWG0bGaaGypaiaadshada WgaaWcbaGaamyEaiaaikdaaeqaaOGaeyOeI0IaamiDamaaBaaaleaa caWG5bGaaGymaaqabaaaaa@3BCB@ corresponds to the difference between the totals t y 2 = k U y 2 k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWG0bWaaSbaaSqaaiaadMhacaaIYa aabeaakiaai2dadaaeqaqabSqaaiaadUgacqGHiiIZcaWGvbaabeqd cqGHris5aOGaaGjcVlaadMhadaWgaaWcbaGaaGOmaiaadUgaaeqaaa aa@3F44@ and t y 1 = k U y 1 k . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWG0bWaaSbaaSqaaiaadMhacaaIXa aabeaakiaai2dadaaeqaqabSqaaiaadUgacqGHiiIZcaWGvbaabeqd cqGHris5aOGaaGjcVlaadMhadaWgaaWcbaGaaGymaiaadUgaaeqaaO GaaiOlaaaa@3FFE@

Let s 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGZbWaaSbaaSqaaiaaigdaaeqaaa aa@33D0@ and s 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGZbWaaSbaaSqaaiaaikdaaeqaaa aa@33D1@ be two samples of sizes n 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGUbWaaSbaaSqaaiaaigdaaeqaaa aa@33CB@ and n 2 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGUbWaaSbaaSqaaiaaikdaaeqaaO Gaaiilaaaa@3486@ respectively, selected from the same population U MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGvbaaaa@32CB@ according to some two-dimensional sampling design p ( , ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGWbWaaeWaaeaacqGHflY1caaISa GaeyyXICnacaGLOaGaayzkaaaaaa@39B9@ (see Goga, 2003). The variable Y 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=Hr8znaaBaaaleaacaaIXaaabeaaaaa@3E48@ is measured on s 1 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGZbWaaSbaaSqaaiaaigdaaeqaaO Gaaiilaaaa@348A@ while the variable Y 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=Hr8znaaBaaaleaacaaIYaaabeaaaaa@3E49@ is measured on s 2 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGZbWaaSbaaSqaaiaaikdaaeqaaO GaaiOlaaaa@348D@ Plugging sample-based estimators M ^ d MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaceWGnbGbaKaadaWgaaWcbaGaamizaa qabaaaaa@33E8@ in Δ θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqqHuoarcqaH4oqCaaa@350D@ yields the substitution estimator Δ θ ^ = T ( M ^ 1 , M ^ 2 ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaqiaaqaaiabfs5aejabeI7aXbGaay PadaGaaGypaiaadsfadaqadaqaaiqad2eagaqcamaaBaaaleaacaaI XaaabeaakiaaiYcacaaMc8UabmytayaajaWaaSbaaSqaaiaaikdaae qaaaGccaGLOaGaayzkaaGaaiOlaaaa@3F92@ Unlike the one-sample case, several estimators M ^ d MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaceWGnbGbaKaadaWgaaWcbaGaamizaa qabaaaaa@33E8@ are possible. In what follows, we focus on the general class of composite estimators introduced by Goga, Deville and Ruiz-Gazen (2009). We note s 1 = s 1 \ s 2 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGZbWaaSbaaSqaaiaaigdacqGHIa YTaeqaaOGaaGypaiaadohadaWgaaWcbaGaaGymaaqabaGccaGGCbGa am4CamaaBaaaleaacaaIYaaabeaakiaacYcaaaa@3B89@ s 3 = s 1 s 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGZbWaaSbaaSqaaiaaiodaaeqaaO GaaGypaiaadohadaWgaaWcbaGaaGymaaqabaGccqGHPiYXcaWGZbWa aSbaaSqaaiaaikdaaeqaaaaa@3A0A@ and s 2 = s 2 \ s 1 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGZbWaaSbaaSqaaiaaikdacqGHIa YTaeqaaOGaaGypaiaadohadaWgaaWcbaGaaGOmaaqabaGccaGGCbGa am4CamaaBaaaleaacaaIXaaabeaakiaac6caaaa@3B8C@ For { 1 , 3, 2 } , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqGHelc4cqGHiiIZdaGadaqaaiaaig dacqGHIaYTcaaISaGaaGPaVlaaiodacaaISaGaaGPaVlaaikdacqGH IaYTaiaawUhacaGL9baacaaMb8Uaaiilaaaa@43F2@ we note π , k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHapaCdaWgaaWcbaGaeyiXIaUaaG zaVlaaiYcacaaMc8Uaam4Aaaqabaaaaa@3AE7@ the expected number of draws for unit k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGRbaaaa@32E1@ in s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGZbWaaSbaaSqaaiabgsSiGdqaba aaaa@3567@ and M ^ d , = k s w , k δ y d k , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaceWGnbGbaKaadaWgaaWcbaGaamizai aaygW7caaISaGaaGPaVlabgsSiGdqabaGccaaI9aWaaabeaeqaleaa caWGRbGaeyicI4Saam4CamaaBaaameaacqGHelc4aeqaaaWcbeqdcq GHris5aOGaam4DamaaBaaaleaacqGHelc4caaMb8UaaGilaiaaykW7 caWGRbaabeaakiabes7aKnaaBaaaleaacaWG5bWaaSbaaWqaaiaads gacaWGRbaabeaaaSqabaGccaaMb8Uaaiilaaaa@521D@ where w , k = π , k 1 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWG3bWaaSbaaSqaaiabgsSiGlaayg W7caaISaGaaGPaVlaadUgaaeqaaOGaaGypaiabec8aWnaaDaaaleaa cqGHelc4caaMb8UaaGilaiaaykW7caWGRbaabaGaeyOeI0IaaGymaa aakiaac6caaaa@4652@ The composite estimators of M 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGnbWaaSbaaSqaaiaaigdaaeqaaa aa@33AA@ and M 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGnbWaaSbaaSqaaiaaikdaaeqaaa aa@33AB@ are

M ^ 1 co ( a ) = a M ^ 1,1 + ( 1 a ) M ^ 1,3 and M ^ 2 co ( b ) = b M ^ 2,2 + ( 1 b ) M ^ 2,3 , ( 3.1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaceWGnbGbaKaadaqhaaWcbaGaaGymaa qaaiaabogacaqGVbaaaOWaaeWaaeaacaWGHbaacaGLOaGaayzkaaGa aGjbVlaaykW7caaI9aGaaGjbVlaaykW7caWGHbGaaGiiaiqad2eaga qcamaaBaaaleaacaaIXaGaaGilaiaaigdacqGHIaYTaeqaaOGaey4k aSYaaeWaaeaacaaIXaGaeyOeI0IaamyyaaGaayjkaiaawMcaaiaaic caceWGnbGbaKaadaWgaaWcbaGaaGymaiaaiYcacaaIZaaabeaakiaa ysW7caaMc8UaaGPaVlaaykW7caaMc8Uaaeyyaiaab6gacaqGKbGaaG jbVlaaykW7caaMc8UaaGPaVlaaykW7ceWGnbGbaKaadaqhaaWcbaGa aGOmaaqaaiaabogacaqGVbaaaOWaaeWaaeaacaWGIbaacaGLOaGaay zkaaGaaGjbVlaaykW7caaI9aGaaGjbVlaaykW7caWGIbGaaGiiaiqa d2eagaqcamaaBaaaleaacaaIYaGaaGilaiaaikdacqGHIaYTaeqaaO Gaey4kaSYaaeWaaeaacaaIXaGaeyOeI0IaamOyaaGaayjkaiaawMca aiaaiccaceWGnbGbaKaadaWgaaWcbaGaaGOmaiaaiYcacaaIZaaabe aakiaaiYcacaaMf8UaaGzbVlaacIcacaaIZaGaaiOlaiaaigdacaGG Paaaaa@8422@

where a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGHbaaaa@32D7@ and b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGIbaaaa@32D8@ are some known constants. The choice a = b = 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGHbGaaGypaiaadkgacaaI9aGaaG imaaaa@3606@ leads to the intersection estimator with M ^ 1 int = M ^ 1,3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaceWGnbGbaKaadaqhaaWcbaGaaGymaa qaaiaabMgacaqGUbGaaeiDaaaakiaai2daceWGnbGbaKaadaWgaaWc baGaaGymaiaaiYcacaaIZaaabeaaaaa@3A9C@ and M ^ 2 int = M ^ 2,3 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaceWGnbGbaKaadaqhaaWcbaGaaGOmaa qaaiaabMgacaqGUbGaaeiDaaaakiaai2daceWGnbGbaKaadaWgaaWc baGaaGOmaiaaiYcacaaIZaaabeaakiaacYcaaaa@3B58@ where the overlapping sample s 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGZbWaaSbaaSqaaiaaiodaaeqaaa aa@33D2@ only is used.

When estimating the parameter Δ t = t y 2 t y 1 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqqHuoarcaWG0bGaaGypaiaadshada WgaaWcbaGaamyEaiaaikdaaeqaaOGaeyOeI0IaamiDamaaBaaaleaa caWG5bGaaGymaaqabaGccaGGSaaaaa@3C85@ the composite estimator is

Δ t ^ co ( a , b ) = t ^ y 2 co t ^ y 1 co , ( 3.2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaqiaaqaaiabfs5aejaadshaaiaawk WaamaaCaaaleqabaGaae4yaiaab+gaaaGccaaMi8+aaeWaaeaacaWG HbGaaGilaiaadkgaaiaawIcacaGLPaaacaaMe8UaaGPaVlaai2daca aMe8UaaGPaVlqadshagaqcamaaDaaaleaacaWG5bWaaSbaaWqaaiaa ikdaaeqaaaWcbaGaae4yaiaab+gaaaGccqGHsislceWG0bGbaKaada qhaaWcbaGaamyEamaaBaaameaacaaIXaaabeaaaSqaaiaabogacaqG VbaaaOGaaGilaiaaywW7caaMf8UaaGzbVlaaywW7caGGOaGaaG4mai aac6cacaaIYaGaaiykaaaa@5926@

where t ^ y 1 co = y d M ^ 1 co ( y ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaceWG0bGbaKaadaqhaaWcbaGaamyEam aaBaaameaacaaIXaaabeaaaSqaaiaabogacaqGVbaaaOGaaGypamaa peaabeWcbeqab0Gaey4kIipakiaadMhacaWGKbGabmytayaajaWaa0 baaSqaaiaaigdaaeaacaqGJbGaae4BaaaakiaayIW7daqadaqaaiaa dMhaaiaawIcacaGLPaaaaaa@4372@ and t ^ y 2 co = y d M ^ 2 co ( y ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaceWG0bGbaKaadaqhaaWcbaGaamyEam aaBaaameaacaaIYaaabeaaaSqaaiaabogacaqGVbaaaOGaaGypamaa peaabeWcbeqab0Gaey4kIipakiaadMhacaWGKbGabmytayaajaWaa0 baaSqaaiaaikdaaeaacaqGJbGaae4BaaaakiaayIW7daqadaqaaiaa dMhaaiaawIcacaGLPaaacaGGUaaaaa@4426@ It may be rewritten as

Δ t ^ co ( a , b ) = b ( t ^ y 2 , s 2 t ^ y 2 , s 3 ) a ( t ^ y 1 , s 1 t ^ y 1 , s 3 ) + ( t ^ y 2 , s 3 t ^ y 1 , s 3 ) , ( 3.3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaqiaaqaaiabfs5aejaadshaaiaawk WaamaaCaaaleqabaGaae4yaiaab+gaaaGccaaMi8+aaeWaaeaacaWG HbGaaGilaiaadkgaaiaawIcacaGLPaaacaaMe8UaaGPaVlaai2daca aMe8UaaGPaVlaadkgadaqadaqaaiqadshagaqcamaaBaaaleaacaWG 5bWaaSbaaWqaaiaaikdaaeqaaSGaaGzaVlaaiYcacaaMc8Uaam4Cam aaBaaameaacaaIYaGaeyOiGClabeaaaSqabaGccqGHsislceWG0bGb aKaadaWgaaWcbaGaamyEamaaBaaameaacaaIYaaabeaaliaaygW7ca aISaGaaGPaVlaadohadaWgaaadbaGaaG4maaqabaaaleqaaaGccaGL OaGaayzkaaGaeyOeI0IaamyyamaabmaabaGabmiDayaajaWaaSbaaS qaaiaadMhadaWgaaadbaGaaGymaaqabaWccaaMb8UaaGilaiaaykW7 caWGZbWaaSbaaWqaaiaaigdacqGHIaYTaeqaaaWcbeaakiabgkHiTi qadshagaqcamaaBaaaleaacaWG5bWaaSbaaWqaaiaaigdaaeqaaSGa aGzaVlaaiYcacaaMc8Uaam4CamaaBaaameaacaaIZaaabeaaaSqaba aakiaawIcacaGLPaaacqGHRaWkdaqadaqaaiqadshagaqcamaaBaaa leaacaWG5bWaaSbaaWqaaiaaikdaaeqaaSGaaGzaVlaaiYcacaaMc8 Uaam4CamaaBaaameaacaaIZaaabeaaaSqabaGccqGHsislceWG0bGb aKaadaWgaaWcbaGaamyEamaaBaaameaacaaIXaaabeaaliaaygW7ca aISaGaaGPaVlaadohadaWgaaadbaGaaG4maaqabaaaleqaaaGccaGL OaGaayzkaaGaaGilaiaaywW7caaMf8UaaGzbVlaacIcacaaIZaGaai OlaiaaiodacaGGPaaaaa@9011@

where t ^ y d , s = k s w , k y d k . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaceWG0bGbaKaadaWgaaWcbaGaamyEam aaBaaameaacaWGKbaabeaaliaaygW7caaISaGaaGPaVlaadohadaWg aaadbaGaeyiXIaoabeaaaSqabaGccaaI9aWaaabeaeqaleaacaWGRb GaeyicI4Saam4CamaaBaaameaacqGHelc4aeqaaaWcbeqdcqGHris5 aOGaam4DamaaBaaaleaacqGHelc4caaISaGaam4AaaqabaGccaWG5b WaaSbaaSqaaiaadsgacaWGRbaabeaakiaac6caaaa@4E30@ The variance of the composite estimator is

V{ Δt ^ co ( a,b ) } = ( b,a,1 )V{ ( t ^ y 2 , s 2 t ^ y 2 , s 3 , t ^ y 1 , s 1 t ^ y 1 , s 3 , t ^ y 2 , s 3 t ^ y 1 , s 3 ) } ( b,a,1 ) .(3.4) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaafaqabeqaeaaaaeaacaWGwbWaaiWaae aadaqiaaqaaiabfs5aejaadshaaiaawkWaamaaCaaaleqabaGaae4y aiaab+gaaaGccaaMi8+aaeWaaeaacaWGHbGaaGilaiaadkgaaiaawI cacaGLPaaaaiaawUhacaGL9baaaeaacqGH9aqpaeaadaqadaqaaiaa dkgacaaISaGaeyOeI0IaamyyaiaaiYcacaaIXaaacaGLOaGaayzkaa GaamOvamaaceaabaWaaeWaaeaaceWG0bGbaKaadaWgaaWcbaGaamyE amaaBaaameaacaaIYaaabeaaliaaygW7caaISaGaaGPaVlaadohada WgaaadbaGaaGOmaiabgkci3cqabaaaleqaaOGaeyOeI0IabmiDayaa jaWaaSbaaSqaaiaadMhadaWgaaadbaGaaGOmaaqabaWccaaMb8UaaG ilaiaaykW7caWGZbWaaSbaaWqaaiaaiodaaeqaaaWcbeaakiaaygW7 caaISaGabmiDayaajaWaaSbaaSqaaiaadMhadaWgaaadbaGaaGymaa qabaWccaaMb8UaaGilaiaaykW7caWGZbWaaSbaaWqaaiaaigdacqGH IaYTaeqaaaWcbeaakiabgkHiTiqadshagaqcamaaBaaaleaacaWG5b WaaSbaaWqaaiaaigdaaeqaaSGaaGzaVlaaiYcacaaMc8Uaam4Camaa BaaameaacaaIZaaabeaaaSqabaGccaaMb8UaaGilaiaaykW7ceWG0b GbaKaadaWgaaWcbaGaamyEamaaBaaameaacaaIYaaabeaaliaaygW7 caaISaGaaGPaVlaadohadaWgaaadbaGaaG4maaqabaaaleqaaOGaey OeI0IabmiDayaajaWaaSbaaSqaaiaadMhadaWgaaadbaGaaGymaaqa baWccaaMb8UaaGilaiaaykW7caWGZbWaaSbaaWqaaiaaiodaaeqaaa WcbeaaaOGaayjkaiaawMcaamaaciaabaWaaWbaaSqabeaatuuDJXwA K1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGabbiab=rQivcaaaOGaay zFaaGaaGjbVpaabmaabaGaamOyaiaaiYcacqGHsislcaWGHbGaaGil aiaaigdaaiaawIcacaGLPaaadaahaaWcbeqaaiab=rQivcaakiaayg W7caaIUaGaaGzbVlaacIcacaaIZaGaaiOlaiaaisdacaGGPaaacaGL 7baaaeaaaaaaaa@AA36@

Finding the vector ( a opt , b opt ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaqadaqaaiaadggadaWgaaWcbaGaae 4BaiaabchacaqG0baabeaakiaaygW7caaISaGaaGPaVlaadkgadaWg aaWcbaGaae4BaiaabchacaqG0baabeaaaOGaayjkaiaawMcaaaaa@3F35@ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaqhaaWcbaaabaWefv3ySLgznfgDOf daryqr1ngBPrginfgDObYtUvgaiqqacqWFKksLaaaaaa@3D87@ which minimizes the variance in (3.4) leads to the optimal composite estimator (Goga, Deville and Ruiz-Gazen, 2009, Section 3.6). Note that this is not an estimator per se, since it depends on unknown quantities which need to be estimated in practice. However, this is a useful benchmark which we will use for the appraisal of simpler composite estimators.

A variance estimator is obtained by substituting in (3.4) an estimator of the variance-covariance matrix. The derivation of variance estimators is detailed in Sections 3.1.1 and 3.1.2 for two examples of two-dimensional sampling designs.

3.1.1  Two-dimensional SI design

The two-dimensional SI design (SI2) of fixed size ( n 1 , n 3 , n 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaqadaqaaiaad6gadaWgaaWcbaGaaG ymaiabgkci3cqabaGccaaMb8UaaGilaiaaykW7caWGUbWaaSbaaSqa aiaaiodaaeqaaOGaaGilaiaaykW7caWGUbWaaSbaaSqaaiaaikdacq GHIaYTaeqaaaGccaGLOaGaayzkaaaaaa@423F@ assigns equal probabilities to all s = ( s 1 , s 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGZbGaaGypamaabmaabaGaam4Cam aaBaaaleaacaaIXaaabeaakiaaygW7caaISaGaaGPaVlaadohadaWg aaWcbaGaaGOmaaqabaaakiaawIcacaGLPaaaaaa@3CD7@ for which the associated subsamples s 1 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGZbWaaSbaaSqaaiaaigdacqGHIa YTaeqaaOGaaGzaVlaacYcaaaa@3799@ s 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGZbWaaSbaaSqaaiaaiodaaeqaaa aa@33D2@ and s 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGZbWaaSbaaSqaaiaaikdacqGHIa YTaeqaaaaa@3556@ have the required sizes n 1 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGUbWaaSbaaSqaaiaaigdacqGHIa YTaeqaaOGaaGzaVlaacYcaaaa@3794@ n 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGUbWaaSbaaSqaaiaaiodaaeqaaa aa@33CD@ and n 2 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGUbWaaSbaaSqaaiaaikdacqGHIa YTaeqaaOGaaGzaVlaacYcaaaa@3795@ see Goga (2003) and Qualité and Tillé (2008). The SI2 design has the attractive property that the marginal samples s 1 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGZbWaaSbaaSqaaiaaigdacqGHIa YTaeqaaOGaaGzaVlaacYcaaaa@3799@ s 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGZbWaaSbaaSqaaiaaiodaaeqaaa aa@33D2@ and s 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGZbWaaSbaaSqaaiaaikdacqGHIa YTaeqaaaaa@3556@ are SI samples from the population U . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGvbGaaiOlaaaa@337D@ Similarly, s 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGZbWaaSbaaSqaaiaaigdaaeqaaa aa@33D0@ is a SI sample of size n 1 = n 1 + n 3 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGUbWaaSbaaSqaaiaaigdaaeqaaO GaaGypaiaad6gadaWgaaWcbaGaaGymaiabgkci3cqabaGccqGHRaWk caWGUbWaaSbaaSqaaiaaiodaaeqaaOGaaiilaaaa@3B7D@ and s 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGZbWaaSbaaSqaaiaaikdaaeqaaa aa@33D1@ is a SI sample of size n 2 = n 2 + n 3 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGUbWaaSbaaSqaaiaaikdaaeqaaO GaaGypaiaad6gadaWgaaWcbaGaaGOmaiabgkci3cqabaGccqGHRaWk caWGUbWaaSbaaSqaaiaaiodaaeqaaOGaaiOlaaaa@3B81@ For the SI2 sampling design, the composite estimator in (3.3) yields

Δ t ^ co ( a , b ) = N b ( y ¯ 2, s 2 y ¯ 2, s 3 ) N a ( y ¯ 1, s 1 y ¯ 1, s 3 ) + N ( y ¯ 2, s 3 y ¯ 1, s 3 ) , ( 3.5 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaqiaaqaaiabfs5aejaadshaaiaawk WaamaaCaaaleqabaGaae4yaiaab+gaaaGccaaMi8+aaeWaaeaacaWG HbGaaGilaiaadkgaaiaawIcacaGLPaaacaaMe8UaaGPaVlaai2daca aMe8UaaGPaVlaad6eacaWGIbWaaeWaaeaaceWG5bGbaebadaWgaaWc baGaaGOmaiaaiYcacaaMc8Uaam4CamaaBaaameaacaaIYaGaeyOiGC labeaaaSqabaGccqGHsislceWG5bGbaebadaWgaaWcbaGaaGOmaiaa iYcacaaMc8Uaam4CamaaBaaameaacaaIZaaabeaaaSqabaaakiaawI cacaGLPaaacqGHsislcaWGobGaamyyamaabmaabaGabmyEayaaraWa aSbaaSqaaiaaigdacaaISaGaaGPaVlaadohadaWgaaadbaGaaGymai abgkci3cqabaaaleqaaOGaeyOeI0IabmyEayaaraWaaSbaaSqaaiaa igdacaaISaGaaGPaVlaadohadaWgaaadbaGaaG4maaqabaaaleqaaa GccaGLOaGaayzkaaGaey4kaSIaamOtamaabmaabaGabmyEayaaraWa aSbaaSqaaiaaikdacaaISaGaaGPaVlaadohadaWgaaadbaGaaG4maa qabaaaleqaaOGaeyOeI0IabmyEayaaraWaaSbaaSqaaiaaigdacaaI SaGaaGPaVlaadohadaWgaaadbaGaaG4maaqabaaaleqaaaGccaGLOa GaayzkaaGaaGilaiaaywW7caaMf8UaaiikaiaaiodacaGGUaGaaGyn aiaacMcaaaa@80CC@

and the variance of the composite estimator is

V { Δ t ^ co ( a , b ) } = N 2 { c 1 ( a ) S y 1 , U 2 2 c 12 ( a , b ) S y 1 y 2 , U + c 2 ( b ) S y 2 , U 2 } , ( 3.6 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGwbWaaiWabeaadaqiaaqaaiabfs 5aejaadshaaiaawkWaamaaCaaaleqabaGaae4yaiaab+gaaaGccaaM i8+aaeWaaeaacaWGHbGaaGilaiaadkgaaiaawIcacaGLPaaaaiaawU hacaGL9baacaaMe8UaaGPaVlaai2dacaaMe8UaaGPaVlaad6eadaah aaWcbeqaaiaaikdaaaGcdaGadeqaaiaadogadaWgaaWcbaGaaGymaa qabaGcdaqadaqaaiaadggaaiaawIcacaGLPaaacaWGtbWaa0baaSqa aiaadMhadaWgaaadbaGaaGymaaqabaWccaaMb8UaaGilaiaaykW7ca WGvbaabaGaaGOmaaaakiabgkHiTiaaikdacaWGJbWaaSbaaSqaaiaa igdacaaIYaaabeaakmaabmaabaGaamyyaiaaiYcacaWGIbaacaGLOa GaayzkaaGaam4uamaaBaaaleaacaWG5bWaaSbaaWqaaiaaigdaaeqa aSGaamyEamaaBaaameaacaaIYaaabeaaliaaygW7caaISaGaaGPaVl aadwfaaeqaaOGaey4kaSIaam4yamaaBaaaleaacaaIYaaabeaakmaa bmaabaGaamOyaaGaayjkaiaawMcaaiaadofadaqhaaWcbaGaamyEam aaBaaameaacaaIYaaabeaaliaaygW7caaISaGaaGPaVlaadwfaaeaa caaIYaaaaaGccaGL7bGaayzFaaGaaGilaiaaywW7caaMf8Uaaiikai aaiodacaGGUaGaaGOnaiaacMcaaaa@7E2A@

with

c 1 ( a ) = ( 1 a ) 2 n 3 + a 2 n 1 n 3 1 N , c 2 ( b ) = ( 1 b ) 2 n 3 + b 2 n 2 n 3 1 N , c 12 ( a , b ) = ( 1 a ) ( 1 b ) n 3 1 N , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaafaqaaeWacaaabaGaaGPaVlaaykW7ca aMc8UaaGPaVlaadogadaWgaaWcbaGaaGymaaqabaGcdaqadaqaaiaa dggaaiaawIcacaGLPaaaaeaacaaI9aGaaGjbVlaaykW7daWcaaqaam aabmaabaGaaGymaiabgkHiTiaadggaaiaawIcacaGLPaaadaahaaWc beqaaiaaikdaaaaakeaacaWGUbWaaSbaaSqaaiaaiodaaeqaaaaaki abgUcaRmaalaaabaGaamyyamaaCaaaleqabaGaaGOmaaaaaOqaaiaa d6gadaWgaaWcbaGaaGymaaqabaGccqGHsislcaWGUbWaaSbaaSqaai aaiodaaeqaaaaakiabgkHiTmaalaaabaGaaGymaaqaaiaad6eaaaGa aGilaaqaaiaaykW7caaMc8UaaGPaVlaaykW7caWGJbWaaSbaaSqaai aaikdaaeqaaOWaaeWaaeaacaWGIbaacaGLOaGaayzkaaaabaGaaGyp aiaaysW7caaMc8+aaSaaaeaadaqadaqaaiaaigdacqGHsislcaWGIb aacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaaGcbaGaamOBamaa BaaaleaacaaIZaaabeaaaaGccqGHRaWkdaWcaaqaaiaadkgadaahaa WcbeqaaiaaikdaaaaakeaacaWGUbWaaSbaaSqaaiaaikdaaeqaaOGa eyOeI0IaamOBamaaBaaaleaacaaIZaaabeaaaaGccqGHsisldaWcaa qaaiaaigdaaeaacaWGobaaaiaaiYcaaeaacaWGJbWaaSbaaSqaaiaa igdacaaIYaaabeaakmaabmaabaGaamyyaiaaiYcacaWGIbaacaGLOa GaayzkaaaabaGaaGypaiaaysW7caaMc8+aaSaaaeaadaqadaqaaiaa igdacqGHsislcaWGHbaacaGLOaGaayzkaaWaaeWaaeaacaaIXaGaey OeI0IaamOyaaGaayjkaiaawMcaaaqaaiaad6gadaWgaaWcbaGaaG4m aaqabaaaaOGaeyOeI0YaaSaaaeaacaaIXaaabaGaamOtaaaacaaISa aaaaaa@8A19@

see Appendix for a proof.

We consider two examples. The choice a = b = 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGHbGaaGypaiaadkgacaaI9aGaaG imaaaa@3606@ leads to the intersection estimator

Δ t ^ int = Δ t ^ co ( 0,0 ) = N n 3 k s 3 ( y 2 k y 1 k ) , ( 3.7 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaqiaaqaaiabfs5aejaadshaaiaawk WaamaaCaaaleqabaGaaeyAaiaab6gacaqG0baaaOGaaGjbVlaaykW7 caaI9aGaaGjbVlaaykW7daqiaaqaaiabfs5aejaadshaaiaawkWaam aaCaaaleqabaGaae4yaiaab+gaaaGccaaMi8+aaeWaaeaacaaIWaGa aGilaiaaicdaaiaawIcacaGLPaaacaaMe8UaaGypaiaaysW7daWcaa qaaiaad6eaaeaacaWGUbWaaSbaaSqaaiaaiodaaeqaaaaakmaaqafa beWcbaGaam4AaiabgIGiolaadohadaWgaaadbaGaaG4maaqabaaale qaniabggHiLdGcdaqadaqaaiaadMhadaWgaaWcbaGaaGOmaiaadUga aeqaaOGaeyOeI0IaamyEamaaBaaaleaacaaIXaGaam4Aaaqabaaaki aawIcacaGLPaaacaaISaGaaGzbVlaaywW7caaMf8UaaGzbVlaacIca caaIZaGaaiOlaiaaiEdacaGGPaaaaa@696C@

and the variance simplifies as

V { Δ t ^ int } = N 2 ( 1 n 3 1 N ) S y 2 y 1 , U 2 . ( 3.8 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGwbWaaiWaaeaadaqiaaqaaiabfs 5aejaadshaaiaawkWaamaaCaaaleqabaGaaeyAaiaab6gacaqG0baa aaGccaGL7bGaayzFaaGaaGjbVlaaykW7caaI9aGaaGjbVlaaykW7ca WGobWaaWbaaSqabeaacaaIYaaaaOWaaeWaaeaadaWcaaqaaiaaigda aeaacaWGUbWaaSbaaSqaaiaaiodaaeqaaaaakiabgkHiTmaalaaaba GaaGymaaqaaiaad6eaaaaacaGLOaGaayzkaaGaam4uamaaDaaaleaa caWG5bWaaSbaaWqaaiaaikdaaeqaaSGaeyOeI0IaamyEamaaBaaame aacaaIXaaabeaaliaaygW7caaISaGaaGPaVlaadwfaaeaacaaIYaaa aOGaaGOlaiaaywW7caaMf8UaaGzbVlaaywW7caaMf8Uaaiikaiaaio dacaGGUaGaaGioaiaacMcaaaa@61F2@

The choice a = n 1 1 n 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGHbGaaGypaiaad6gadaqhaaWcba GaaGymaaqaaiabgkHiTiaaigdaaaGccaWGUbWaaSbaaSqaaiaaigda cqGHIaYTaeqaaaaa@3A8A@ and b = n 2 1 n 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGIbGaaGypaiaad6gadaqhaaWcba GaaGOmaaqaaiabgkHiTiaaigdaaaGccaWGUbWaaSbaaSqaaiaaikda cqGHIaYTaeqaaaaa@3A8D@ leads to the union estimator

Δ t ^ uni = Δ t ^ co ( n 1 1 n 1 , n 2 1 n 2 ) = N n 2 k s 2 y 2 k N n 1 k s 1 y 1 k ( 3.9 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaqiaaqaaiabfs5aejaadshaaiaawk WaamaaCaaaleqabaGaaeyDaiaab6gacaqGPbaaaOGaaGjbVlaaykW7 caaI9aGaaGjbVlaaykW7daqiaaqaaiabfs5aejaadshaaiaawkWaam aaCaaaleqabaGaae4yaiaab+gaaaGcdaqadaqaaiaad6gadaqhaaWc baGaaGymaaqaaiabgkHiTiaaigdaaaGccaWGUbWaaSbaaSqaaiaaig dacqGHIaYTaeqaaOGaaGzaVlaaiYcacaaMc8UaamOBamaaDaaaleaa caaIYaaabaGaeyOeI0IaaGymaaaakiaad6gadaWgaaWcbaGaaGOmai abgkci3cqabaaakiaawIcacaGLPaaacaaMe8UaaGypaiaaysW7daWc aaqaaiaad6eaaeaacaWGUbWaaSbaaSqaaiaaikdaaeqaaaaakmaaqa fabeWcbaGaam4AaiabgIGiolaadohadaWgaaadbaGaaGOmaaqabaaa leqaniabggHiLdGccaaMc8UaamyEamaaBaaaleaacaaIYaGaam4Aaa qabaGccqGHsisldaWcaaqaaiaad6eaaeaacaWGUbWaaSbaaSqaaiaa igdaaeqaaaaakmaaqafabeWcbaGaam4AaiabgIGiolaadohadaWgaa adbaGaaGymaaqabaaaleqaniabggHiLdGccaaMc8UaamyEamaaBaaa leaacaaIXaGaam4AaaqabaGccaaMf8UaaGzbVlaaywW7caaMf8UaaG zbVlaacIcacaaIZaGaaiOlaiaaiMdacaGGPaaaaa@8324@

where the complete samples are used, and the variance may be written as

V { Δ t ^ uni } = N 2 { ( 1 n 1 1 N ) S y 1 , U 2 2 ( n 3 n 1 n 2 1 N ) S y 1 y 2 , U + ( 1 n 2 1 N ) S y 2 , U 2 } . ( 3.10 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGwbWaaiWaaeaadaqiaaqaaiabfs 5aejaadshaaiaawkWaamaaCaaaleqabaGaaeyDaiaab6gacaqGPbaa aaGccaGL7bGaayzFaaGaaGjbVlaaykW7caaI9aGaaGjbVlaaykW7ca WGobWaaWbaaSqabeaacaaIYaaaaOWaaiWaaeaadaqadaqaamaalaaa baGaaGymaaqaaiaad6gadaWgaaWcbaGaaGymaaqabaaaaOGaeyOeI0 YaaSaaaeaacaaIXaaabaGaamOtaaaaaiaawIcacaGLPaaacaWGtbWa a0baaSqaaiaadMhadaWgaaadbaGaaGymaaqabaWccaaMb8UaaGilai aaykW7caWGvbaabaGaaGOmaaaakiabgkHiTiaaikdadaqadaqaamaa laaabaGaamOBamaaBaaaleaacaaIZaaabeaaaOqaaiaad6gadaWgaa WcbaGaaGymaaqabaGccaaIGaGaamOBamaaBaaaleaacaaIYaaabeaa aaGccqGHsisldaWcaaqaaiaaigdaaeaacaWGobaaaaGaayjkaiaawM caaiaadofadaWgaaWcbaGaamyEamaaBaaameaacaaIXaaabeaaliaa dMhadaWgaaadbaGaaGOmaaqabaWccaaMb8UaaGilaiaaykW7caWGvb aabeaakiabgUcaRmaabmaabaWaaSaaaeaacaaIXaaabaGaamOBamaa BaaaleaacaaIYaaabeaaaaGccqGHsisldaWcaaqaaiaaigdaaeaaca WGobaaaaGaayjkaiaawMcaaiaadofadaqhaaWcbaGaamyEamaaBaaa meaacaaIYaaabeaaliaaygW7caaISaGaaGPaVlaadwfaaeaacaaIYa aaaaGccaGL7bGaayzFaaGaaGOlaiaaywW7caaMf8Uaaiikaiaaioda caGGUaGaaGymaiaaicdacaGGPaaaaa@8310@

The variances of the union estimator and of the intersection estimator were derived by Qualité and Tillé (2008), see also Tam (1984).

The choice of a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGHbaaaa@32D7@ and b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGIbaaaa@32D8@ is of practical importance to obtain an efficient composite estimator. After some algebra, the vector ( a opt , b opt ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaqadaqaaiaadggadaWgaaWcbaGaae 4BaiaabchacaqG0baabeaakiaaygW7caaISaGaaGPaVlaadkgadaWg aaWcbaGaae4BaiaabchacaqG0baabeaaaOGaayjkaiaawMcaaaaa@3F36@ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaqhaaWcbaaabaWefv3ySLgznfgDOf daryqr1ngBPrginfgDObYtUvgaiqqacqWFKksLaaaaaa@3D88@ which minimizes the variance of Δ t ^ co ( a , b ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaqiaaqaaiabfs5aejaadshaaiaawk WaamaaCaaaleqabaGaae4yaiaab+gaaaGccaaMi8+aaeWaaeaacaWG HbGaaGilaiaaykW7caWGIbaacaGLOaGaayzkaaaaaa@3E49@ is given by

( a opt , b opt ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaqadaqaaiaadggadaWgaaWcbaGaae 4BaiaabchacaqG0baabeaakiaaygW7caaISaGaaGPaVlaadkgadaWg aaWcbaGaae4BaiaabchacaqG0baabeaaaOGaayjkaiaawMcaaaaa@3F35@ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaqhaaWcbaaabaWefv3ySLgznfgDOf daryqr1ngBPrginfgDObYtUvgaiqqacqWFKksLaaaaaa@3D87@ = A 1 X(3.11) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaafaqabeqacaaabaGaaGjbVlaaykW7ca aI9aaabaGaaGjbVlaaykW7caWGbbWaaWbaaSqabeaacqGHsislcaaI XaaaaOGaamiwaiaaywW7caaMf8UaaGzbVlaaywW7caGGOaGaaG4mai aac6cacaaIXaGaaGymaiaacMcaaaaaaa@46EC@

with

A = ( n 1 n 1 n 3 S y 1 y 2 , U S y 1 , U 2 S y 1 y 2 , U S y 2 , U 2 n 2 n 2 n 3 ) and X = ( 1 S y 1 y 2 , U S y 1 , U 2 , 1 S y 1 y 2 , U S y 2 , U 2 ) . ( 3.12 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGbbGaaGjbVlaaykW7caaI9aGaaG jbVlaaykW7daqadaqaauaabaqaciaaaeaadaWcaaqaaiaad6gadaWg aaWcbaGaaGymaaqabaaakeaacaWGUbWaaSbaaSqaaiaaigdaaeqaaO GaeyOeI0IaamOBamaaBaaaleaacaaIZaaabeaaaaaakeaacqGHsisl daWcaaqaaiaadofadaWgaaWcbaGaamyEamaaBaaameaacaaIXaaabe aaliaadMhadaWgaaadbaGaaGOmaaqabaWccaaMb8UaaGilaiaaykW7 caWGvbaabeaaaOqaaiaadofadaqhaaWcbaGaamyEamaaBaaameaaca aIXaaabeaaliaaygW7caaISaGaaGPaVlaadwfaaeaacaaIYaaaaaaa aOqaaiabgkHiTmaalaaabaGaam4uamaaBaaaleaacaWG5bWaaSbaaW qaaiaaigdaaeqaaSGaamyEamaaBaaameaacaaIYaaabeaaliaaygW7 caaISaGaaGPaVlaadwfaaeqaaaGcbaGaam4uamaaDaaaleaacaWG5b WaaSbaaWqaaiaaikdaaeqaaSGaaGzaVlaaiYcacaaMc8Uaamyvaaqa aiaaikdaaaaaaaGcbaWaaSaaaeaacaWGUbWaaSbaaSqaaiaaikdaae qaaaGcbaGaamOBamaaBaaaleaacaaIYaaabeaakiabgkHiTiaad6ga daWgaaWcbaGaaG4maaqabaaaaaaaaOGaayjkaiaawMcaaiaaysW7ca aMc8UaaGPaVlaaykW7caaMc8Uaaeyyaiaab6gacaqGKbGaaGjbVlaa ykW7caaMc8UaaGPaVlaaykW7caWGybGaaGjbVlaaykW7caaI9aGaaG jbVlaaykW7daqadaqaaiaaigdacqGHsisldaWcaaqaaiaadofadaWg aaWcbaGaamyEamaaBaaameaacaaIXaaabeaaliaadMhadaWgaaadba GaaGOmaaqabaWccaaMb8UaaGilaiaaykW7caWGvbaabeaaaOqaaiaa dofadaqhaaWcbaGaamyEamaaBaaameaacaaIXaaabeaaliaaygW7ca aISaGaaGPaVlaadwfaaeaacaaIYaaaaaaakiaaiYcacaaIXaGaeyOe I0YaaSaaaeaacaWGtbWaaSbaaSqaaiaadMhadaWgaaadbaGaaGymaa qabaWccaWG5bWaaSbaaWqaaiaaikdaaeqaaSGaaGzaVlaaiYcacaaM c8UaamyvaaqabaaakeaacaWGtbWaa0baaSqaaiaadMhadaWgaaadba GaaGOmaaqabaWccaaMb8UaaGilaiaaykW7caWGvbaabaGaaGOmaaaa aaaakiaawIcacaGLPaaadaahaaWcbeqaamrr1ngBPrwtHrhAXaqegu uDJXwAKbstHrhAG8KBLbaceeGae8hPIujaaOGaaGOlaiaaywW7caaM f8UaaGzbVlaacIcacaaIZaGaaiOlaiaaigdacaaIYaGaaiykaaaa@C768@

For two variables Y 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=Hr8znaaBaaaleaacaaIXaaabeaaaaa@3E48@ and Y 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=Hr8znaaBaaaleaacaaIYaaabeaaaaa@3E49@ related to a same characteristic collected at two different times, S y 1 y 2 , U MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGtbWaaSbaaSqaaiaadMhadaWgaa adbaGaaGymaaqabaWccaWG5bWaaSbaaWqaaiaaikdaaeqaaSGaaGza VlaaiYcacaaMc8Uaamyvaaqabaaaaa@3B7D@ is expected to be close to S y 1 , U 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGtbWaa0baaSqaaiaadMhadaWgaa adbaGaaGymaaqabaWccaaMb8UaaGilaiaaykW7caWGvbaabaGaaGOm aaaaaaa@3A48@ and S y 2 , U 2 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGtbWaa0baaSqaaiaadMhadaWgaa adbaGaaGOmaaqabaWccaaMb8UaaGilaiaaykW7caWGvbaabaGaaGOm aaaakiaac6caaaa@3B05@ The vector X MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGybaaaa@32CE@ in (3.12) is in turn close to the null vector, and if the size of the overlapping sample s 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGZbWaaSbaaSqaaiaaiodaaeqaaa aa@33D2@ is comparable to that of s 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGZbWaaSbaaSqaaiaaigdacqGHIa YTaeqaaaaa@3555@ and s 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGZbWaaSbaaSqaaiaaikdacqGHIa YTaeqaaaaa@3556@ we obtain a opt 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGHbWaaSbaaSqaaiaab+gacaqGWb GaaeiDaaqabaqeeuuDJXwAKbsr4rNCHbaceaGccqWFdjYocaaIWaaa aa@3C63@ and b opt 0. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGIbWaaSbaaSqaaiaab+gacaqGWb GaaeiDaaqabaqeeuuDJXwAKbsr4rNCHbaceaGccqWFdjYocaaIWaGa aiOlaaaa@3D16@ Therefore, using the intersection estimator where a = b = 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGHbGaaGypaiaadkgacaaI9aGaaG imaaaa@3606@ seems reasonable in practice. On the contrary, the union estimator can be very inefficient; see Section 4.2 for an illustration. These conclusions are consistent with that of Qualité and Tillé (2008), Section 2.2.2.

Several variance estimators may be used for the composite estimator. Estimating the dispersions on the overlapping sample only yields the unbiased variance estimator

v int HT { Δ t ^ co ( a , b ) } = N 2 { c 1 ( a ) S y 1 , s 3 2 2 c 12 ( a , b ) S y 1 y 2 , s 3 + c 2 ( b ) S y 2 , s 3 2 } , ( 3.13 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWG2bWaa0baaSqaaiaabMgacaqGUb GaaeiDaaqaaiaabIeacaqGubaaaOWaaiWaaeaadaqiaaqaaiabfs5a ejaadshaaiaawkWaamaaCaaaleqabaGaae4yaiaab+gaaaGccaaMi8 +aaeWaaeaacaWGHbGaaGilaiaadkgaaiaawIcacaGLPaaaaiaawUha caGL9baacaaMe8UaaGPaVlaai2dacaaMe8UaaGPaVlaad6eadaahaa WcbeqaaiaaikdaaaGcdaGadaqaaiaadogadaWgaaWcbaGaaGymaaqa baGcdaqadaqaaiaadggaaiaawIcacaGLPaaacaWGtbWaa0baaSqaai aadMhadaWgaaadbaGaaGymaaqabaWccaaMb8UaaGilaiaaykW7caWG ZbWaaSbaaWqaaiaaiodaaeqaaaWcbaGaaGOmaaaakiabgkHiTiaaik dacaWGJbWaaSbaaSqaaiaaigdacaaIYaaabeaakmaabmaabaGaamyy aiaaiYcacaWGIbaacaGLOaGaayzkaaGaam4uamaaBaaaleaacaWG5b WaaSbaaWqaaiaaigdaaeqaaSGaamyEamaaBaaameaacaaIYaaabeaa liaaygW7caaISaGaaGPaVlaadohadaWgaaadbaGaaG4maaqabaaale qaaOGaey4kaSIaam4yamaaBaaaleaacaaIYaaabeaakmaabmaabaGa amOyaaGaayjkaiaawMcaaiaadofadaqhaaWcbaGaamyEamaaBaaame aacaaIYaaabeaaliaaygW7caaISaGaaGPaVlaadohadaWgaaadbaGa aG4maaqabaaaleaacaaIYaaaaaGccaGL7bGaayzFaaGaaGilaiaayw W7caaMf8UaaiikaiaaiodacaGGUaGaaGymaiaaiodacaGGPaaaaa@86E6@

while an estimation on the whole samples yields

v uni HT { Δ t ^ co ( a , b ) } = N 2 { c 1 ( a ) S y 1 , s 1 2 2 c 12 ( a , b ) S y 1 y 2 , s 3 + c 2 ( b ) S y 2 , s 2 2 } . ( 3.14 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWG2bWaa0baaSqaaiaabwhacaqGUb GaaeyAaaqaaiaabIeacaqGubaaaOWaaiWaaeaadaqiaaqaaiabfs5a ejaadshaaiaawkWaamaaCaaaleqabaGaae4yaiaab+gaaaGccaaMi8 +aaeWaaeaacaWGHbGaaGilaiaadkgaaiaawIcacaGLPaaaaiaawUha caGL9baacaaMe8UaaGPaVlaai2dacaaMe8UaaGPaVlaad6eadaahaa WcbeqaaiaaikdaaaGcdaGadaqaaiaadogadaWgaaWcbaGaaGymaaqa baGcdaqadaqaaiaadggaaiaawIcacaGLPaaacaWGtbWaa0baaSqaai aadMhadaWgaaadbaGaaGymaaqabaWccaaMb8UaaGilaiaaykW7caWG ZbWaaSbaaWqaaiaaigdaaeqaaaWcbaGaaGOmaaaakiabgkHiTiaaik dacaWGJbWaaSbaaSqaaiaaigdacaaIYaaabeaakmaabmaabaGaamyy aiaaiYcacaWGIbaacaGLOaGaayzkaaGaam4uamaaBaaaleaacaWG5b WaaSbaaWqaaiaaigdaaeqaaSGaamyEamaaBaaameaacaaIYaaabeaa liaaygW7caaISaGaaGPaVlaadohadaWgaaadbaGaaG4maaqabaaale qaaOGaey4kaSIaam4yamaaBaaaleaacaaIYaaabeaakmaabmaabaGa amOyaaGaayjkaiaawMcaaiaadofadaqhaaWcbaGaamyEamaaBaaame aacaaIYaaabeaaliaaygW7caaISaGaaGPaVlaadohadaWgaaadbaGa aGOmaaqabaaaleaacaaIYaaaaaGccaGL7bGaayzFaaGaaGOlaiaayw W7caaMf8UaaiikaiaaiodacaGGUaGaaGymaiaaisdacaGGPaaaaa@86E7@

Berger (2004) considered variance estimation for the union estimator under a maximum entropy rotating sampling scheme, by estimating separately the three components in (3.6).

3.1.2  Two-dimensional multistage design

We now consider a two-dimensional two-stage sampling design (MULT2). We assume that a with-replacement first-stage sample s I MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGZbWaaSbaaSqaaiaadMeaaeqaaa aa@33E3@ of size m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGTbaaaa@32E3@ is first selected among the PSUs U 1 , , U N I . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGvbWaaSbaaSqaaiaaigdaaeqaaO GaaGzaVlaaiYcacaaMc8UaeSOjGSKaaGilaiaaykW7caWGvbWaaSba aSqaaiaad6eadaWgaaadbaGaamysaaqabaaaleqaaOGaaGzaVlaac6 caaaa@400F@ Inside each PSU i s I , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGPbGaeyicI4Saam4CamaaBaaale aacaWGjbaabeaakiaaygW7caGGSaaaaa@3899@ a SI2 sample of size ( n 1 i , n 3 i , n 2 i ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaqadaqaaiaad6gadaqhaaWcbaGaaG ymaiabgkci3cqaaiaadMgaaaGccaaMb8UaaGilaiaaykW7caWGUbWa a0baaSqaaiaaiodaaeaacaWGPbaaaOGaaGzaVlaaiYcacaaMc8Uaam OBamaaDaaaleaacaaIYaGaeyOiGClabaGaamyAaaaaaOGaayjkaiaa wMcaaaaa@4696@ is then selected. This type of sampling design emerges in particular in case of a self-weighted two-stage design in two waves, with a partial replacement at the second wave of the SSUs selected at the first wave. The composite estimator in (3.3) yields

Δ t ^ co ( a , b ) = i s I π I i 1 Δ t ^ i , co ( a , b ) ( 3.15 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaqiaaqaaiabfs5aejaadshaaiaawk WaamaaCaaaleqabaGaae4yaiaab+gaaaGccaaMi8+aaeWaaeaacaWG HbGaaGilaiaadkgaaiaawIcacaGLPaaacaaMe8UaaGPaVlaai2daca aMe8UaaGPaVpaaqafabaGaeqiWda3aa0baaSqaaiaadMeacaWGPbaa baGaeyOeI0IaaGymaaaakmaaHaaabaGaeuiLdqKaamiDaaGaayPada WaaWbaaSqabeaacaWGPbGaaGzaVlaaiYcacaaMc8Uaae4yaiaab+ga aaGccaaMi8+aaeWaaeaacaWGHbGaaGilaiaadkgaaiaawIcacaGLPa aaaSqaaiaadMgacqGHiiIZcaWGZbWaaSbaaWqaaiaadMeaaeqaaaWc beqdcqGHris5aOGaaGzbVlaaywW7caaMf8UaaGzbVlaacIcacaaIZa GaaiOlaiaaigdacaaI1aGaaiykaaaa@69A9@

where

Δ t ^ i , co ( a , b ) = N i b ( y ¯ 2, s 2 i y ¯ 2, s 3 i ) N i a ( y ¯ 1, s 1 i y ¯ 1, s 3 i ) + N i ( y ¯ 2, s 3 i y ¯ 1, s 3 i ) , ( 3.16 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaqiaaqaaiabfs5aejaadshaaiaawk WaamaaCaaaleqabaGaamyAaiaaygW7caaISaGaaGPaVlaabogacaqG VbaaaOGaaGjcVpaabmaabaGaamyyaiaaiYcacaWGIbaacaGLOaGaay zkaaGaaGypaiaad6eadaWgaaWcbaGaamyAaaqabaGccaWGIbWaaeWa aeaaceWG5bGbaebadaWgaaWcbaGaaGOmaiaaiYcacaaMc8Uaam4Cam aaDaaameaacaaIYaGaeyOiGClabaGaamyAaaaaaSqabaGccqGHsisl ceWG5bGbaebadaWgaaWcbaGaaGOmaiaaiYcacaaMc8Uaam4CamaaDa aameaacaaIZaaabaGaamyAaaaaaSqabaaakiaawIcacaGLPaaacqGH sislcaWGobWaaSbaaSqaaiaadMgaaeqaaOGaamyyamaabmaabaGabm yEayaaraWaaSbaaSqaaiaaigdacaaISaGaaGPaVlaadohadaqhaaad baGaaGymaiabgkci3cqaaiaadMgaaaaaleqaaOGaeyOeI0IabmyEay aaraWaaSbaaSqaaiaaigdacaaISaGaaGPaVlaadohadaqhaaadbaGa aG4maaqaaiaadMgaaaaaleqaaaGccaGLOaGaayzkaaGaey4kaSIaam OtamaaBaaaleaacaWGPbaabeaakmaabmaabaGabmyEayaaraWaaSba aSqaaiaaikdacaaISaGaaGPaVlaadohadaqhaaadbaGaaG4maaqaai aadMgaaaaaleqaaOGaeyOeI0IabmyEayaaraWaaSbaaSqaaiaaigda caaISaGaaGPaVlaadohadaqhaaadbaGaaG4maaqaaiaadMgaaaaale qaaaGccaGLOaGaayzkaaGaaGilaiaaywW7caaMf8UaaGzbVlaacIca caaIZaGaaiOlaiaaigdacaaI2aGaaiykaaaa@8AA5@

where y ¯ d , s i = ( n i ) 1 k s i y k , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaceWG5bGbaebadaWgaaWcbaGaamizai aaygW7caaISaGaaGPaVlaadohadaqhaaadbaGaeyiXIaoabaGaamyA aaaaaSqabaGccaaI9aWaaeWaaeaacaWGUbWaa0baaSqaaiabgsSiGd qaaiaadMgaaaaakiaawIcacaGLPaaadaahaaWcbeqaaiabgkHiTiaa igdaaaGcdaaeqaqabSqaaiaadUgacqGHiiIZcaWGZbWaa0baaWqaai abgsSiGdqaaiaadMgaaaaaleqaniabggHiLdGccaaMc8UaamyEamaa BaaaleaacqGHelc4caWGRbaabeaakiaaygW7caGGSaaaaa@5609@ where s i = s U i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGZbWaa0baaSqaaiabgsSiGdqaai aadMgaaaGccaaI9aGaam4CamaaBaaaleaacqGHelc4aeqaaOGaeyyk ICSaamyvamaaBaaaleaacaWGPbaabeaakiaaygW7caGGSaaaaa@407D@ and where N i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGobWaaSbaaSqaaiaadMgaaeqaaa aa@33DE@ denotes the number of SSUs inside the PSU u i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWG1bWaaSbaaSqaaiaadMgaaeqaaO GaaiOlaaaa@34C1@

For example, using the overlapping samples only inside the PSUs yields the intersection estimator

Δ t ^ int = i s I π I i 1 Δ t ^ i , int with Δ t ^ i , int = N i ( y ¯ 2, s 3 i y ¯ 1, s 3 i ) . ( 3.17 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaqiaaqaaiabfs5aejaadshaaiaawk WaamaaCaaaleqabaGaaeyAaiaab6gacaqG0baaaOGaaGjbVlaai2da caaMe8UaaGPaVpaaqafabeWcbaGaamyAaiabgIGiolaadohadaWgaa adbaGaamysaaqabaaaleqaniabggHiLdGccaaMc8UaeqiWda3aa0ba aSqaaiaadMeacaWGPbaabaGaeyOeI0IaaGymaaaakmaaHaaabaGaeu iLdqKaamiDaaGaayPadaWaaWbaaSqabeaacaWGPbGaaGzaVlaaiYca caaMc8UaaeyAaiaab6gacaqG0baaaOGaaGjbVlaaysW7caaMe8UaaG PaVlaaykW7caqG3bGaaeyAaiaabshacaqGObGaaGjbVlaaysW7caaM c8UaaGPaVlaaysW7daqiaaqaaiabfs5aejaadshaaiaawkWaamaaCa aaleqabaGaamyAaiaaygW7caaISaGaaGPaVlaabMgacaqGUbGaaeiD aaaakiaaysW7caaI9aGaaGjbVlaaykW7caWGobWaaSbaaSqaaiaadM gaaeqaaOWaaeWaaeaaceWG5bGbaebadaWgaaWcbaGaaGOmaiaaiYca caaMc8Uaam4CamaaDaaameaacaaIZaaabaGaamyAaaaaaSqabaGccq GHsislceWG5bGbaebadaWgaaWcbaGaaGymaiaaiYcacaaMc8Uaam4C amaaDaaameaacaaIZaaabaGaamyAaaaaaSqabaaakiaawIcacaGLPa aacaaIUaGaaGzbVlaaywW7caaMf8UaaiikaiaaiodacaGGUaGaaGym aiaaiEdacaGGPaaaaa@95DD@

Using the complete samples inside the PSUs yields the union estimator

Δ t ^ uni = i s I π I i 1 Δ t ^ i , uni with Δ t ^ i , uni = N i ( y ¯ 2, s 2 i y ¯ 1, s 1 i ) . ( 3.18 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaqiaaqaaiabfs5aejaadshaaiaawk WaamaaCaaaleqabaGaaeyDaiaab6gacaqGPbaaaOGaaGjbVlaai2da caaMe8UaaGPaVpaaqafabeWcbaGaamyAaiabgIGiolaadohadaWgaa adbaGaamysaaqabaaaleqaniabggHiLdGccaaMc8UaeqiWda3aa0ba aSqaaiaadMeacaWGPbaabaGaeyOeI0IaaGymaaaakmaaHaaabaGaeu iLdqKaamiDaaGaayPadaWaaWbaaSqabeaacaWGPbGaaGzaVlaaiYca caaMc8UaaeyDaiaab6gacaqGPbaaaOGaaGjbVlaaysW7caaMc8UaaG PaVlaaysW7caqG3bGaaeyAaiaabshacaqGObGaaGjbVlaaysW7caaM c8UaaGPaVlaaysW7daqiaaqaaiabfs5aejaadshaaiaawkWaamaaCa aaleqabaGaamyAaiaaygW7caaISaGaaGPaVlaabwhacaqGUbGaaeyA aaaakiaaysW7caaI9aGaaGjbVlaaykW7caWGobWaaSbaaSqaaiaadM gaaeqaaOWaaeWaaeaaceWG5bGbaebadaWgaaWcbaGaaGOmaiaaiYca caaMc8Uaam4CamaaDaaameaacaaIYaaabaGaamyAaaaaaSqabaGccq GHsislceWG5bGbaebadaWgaaWcbaGaaGymaiaaiYcacaaMc8Uaam4C amaaDaaameaacaaIXaaabaGaamyAaaaaaSqabaaakiaawIcacaGLPa aacaaIUaGaaGzbVlaaywW7caaMf8UaaiikaiaaiodacaGGUaGaaGym aiaaiIdacaGGPaaaaa@95DE@

We note that for any vector of values ( a , b ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaqadaqaaiaadggacaaISaGaamOyaa GaayjkaiaawMcaamaaCaaaleqabaWefv3ySLgznfgDOfdaryqr1ngB PrginfgDObYtUvgaiqqacqWFKksLaaGccaaMb8Uaaiilaaaa@43D8@ the variance due to the first-stage of sampling for Δ t ^ co ( a , b ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaqiaaqaaiabfs5aejaadshaaiaawk WaamaaCaaaleqabaGaae4yaiaab+gaaaGccaaMi8+aaeWaaeaacaWG HbGaaGilaiaadkgaaiaawIcacaGLPaaaaaa@3CBE@ is the same. The possible composite estimators thus differ with respect to the second-stage variance only. In view of the discussion in Section 3.1.1, we therefore expect the intersection estimator to be close to the optimal composite estimator; see Section 4.2 for an illustration. An unbiased variance estimator for Δ t ^ co ( a , b ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaqiaaqaaiabfs5aejaadshaaiaawk WaamaaCaaaleqabaGaae4yaiaab+gaaaGccaaMi8+aaeWaaeaacaWG HbGaaGilaiaadkgaaiaawIcacaGLPaaaaaa@3CBE@ is given by

v HH { Δ t ^ co ( a , b ) } = m m 1 i s I ( Δ t ^ i , co ( a , b ) π I i Δ t ^ co ( a , b ) m ) 2 . ( 3.19 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWG2bWaaWbaaSqabeaacaqGibGaae isaaaakmaacmaabaWaaecaaeaacqqHuoarcaWG0baacaGLcmaadaah aaWcbeqaaiaabogacaqGVbaaaOGaaGjcVpaabmaabaGaamyyaiaaiY cacaWGIbaacaGLOaGaayzkaaaacaGL7bGaayzFaaGaaGjbVlaaykW7 caaI9aGaaGjbVlaaykW7daWcaaqaaiaad2gaaeaacaWGTbGaeyOeI0 IaaGymaaaadaaeqbqabSqaaiaadMgacqGHiiIZcaWGZbWaaSbaaWqa aiaadMeaaeqaaaWcbeqdcqGHris5aOWaaeWaaeaadaWcaaqaamaaHa aabaGaeuiLdqKaamiDaaGaayPadaWaaWbaaSqabeaacaWGPbGaaGza VlaaiYcacaaMc8Uaae4yaiaab+gaaaGccaaMi8+aaeWaaeaacaWGHb GaaGilaiaadkgaaiaawIcacaGLPaaaaeaacqaHapaCdaWgaaWcbaGa amysaiaadMgaaeqaaaaakiabgkHiTmaalaaabaWaaecaaeaacqqHuo arcaWG0baacaGLcmaadaahaaWcbeqaaiaabogacaqGVbaaaOGaaGjc VpaabmaabaGaamyyaiaaiYcacaWGIbaacaGLOaGaayzkaaaabaGaam yBaaaaaiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaGccaaIUaGa aGzbVlaaywW7caaMf8UaaGzbVlaacIcacaaIZaGaaiOlaiaaigdaca aI5aGaaiykaaaa@809A@

3.2  Estimation of the change between Gini indexes

The change between Gini indexes Δ G = G 2 G 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqqHuoarcaWGhbGaaGypaiaadEeada WgaaWcbaGaaGOmaaqabaGccqGHsislcaWGhbWaaSbaaSqaaiaaigda aeqaaaaa@3948@ may be written as

Δ G = { 2 F 2 N ( y ) 1 } y d M 2 ( y ) y d M 2 ( y ) { 2 F 1 N ( y ) 1 } y d M 1 ( y ) y d M 1 ( y ) ( 3.20 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqqHuoarcaWGhbGaaGjbVlaaykW7ca aI9aGaaGjbVlaaykW7daWcaaqaamaapeaabeWcbeqab0Gaey4kIipa kmaacmaabaGaaGOmaiaadAeadaWgaaWcbaGaaGOmaiaad6eaaeqaaO GaaGjcVpaabmaabaGaamyEaaGaayjkaiaawMcaaiabgkHiTiaaigda aiaawUhacaGL9baacaWG5bGaamizaiaad2eadaWgaaWcbaGaaGOmaa qabaGccaaMi8+aaeWaaeaacaWG5baacaGLOaGaayzkaaaabaWaa8qa aeqaleqabeqdcqGHRiI8aOGaamyEaiaadsgacaWGnbWaaSbaaSqaai aaikdaaeqaaOGaaGjcVpaabmaabaGaamyEaaGaayjkaiaawMcaaaaa cqGHsisldaWcaaqaamaapeaabeWcbeqab0Gaey4kIipakmaacmaaba GaaGOmaiaadAeadaWgaaWcbaGaaGymaiaad6eaaeqaaOGaaGjcVpaa bmaabaGaamyEaaGaayjkaiaawMcaaiabgkHiTiaaigdaaiaawUhaca GL9baacaWG5bGaamizaiaad2eadaWgaaWcbaGaaGymaaqabaGccaaM i8+aaeWaaeaacaWG5baacaGLOaGaayzkaaaabaWaa8qaaeqaleqabe qdcqGHRiI8aOGaamyEaiaadsgacaWGnbWaaSbaaSqaaiaaigdaaeqa aOGaaGjcVpaabmaabaGaamyEaaGaayjkaiaawMcaaaaacaaMf8UaaG zbVlaaywW7caGGOaGaaG4maiaac6cacaaIYaGaaGimaiaacMcaaaa@82A9@

where F d N ( y ) = N 1 k U 1 { y d k y } , d = 1, 2. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGgbWaaSbaaSqaaiaadsgacaWGob aabeaakiaayIW7daqadaqaaiaadMhaaiaawIcacaGLPaaacaaI9aGa amOtamaaCaaaleqabaGaeyOeI0IaaGymaaaakmaaqababeWcbaGaam 4AaiabgIGiolaadwfaaeqaniabggHiLdGccaaIXaWaaSbaaSqaamaa cmaabaGaamyEamaaBaaameaacaWGKbGaam4AaaqabaWccaaMi8Uaey izImQaaGjcVlaadMhaaiaawUhacaGL9baaaeqaaOGaaGzaVlaaiYca caaMe8Uaamizaiaai2dacaaIXaGaaGilaiaaykW7caaIYaGaaiOlaa aa@5768@ Using composite estimation leads to

Δ G ^ co ( a , b ) = { 2 F ^ 2 N co ( y ) 1 } y d M ^ 2 co ( y ) y d M ^ 2 co ( y ) { 2 F ^ 1 N co ( y ) 1 } y d M ^ 1 co ( y ) y d M ^ 1 co ( y ) ( 3.21 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaqiaaqaaiabfs5aejaadEeaaiaawk WaamaaCaaaleqabaGaae4yaiaab+gaaaGccaaMi8+aaeWaaeaacaWG HbGaaGilaiaaykW7caWGIbaacaGLOaGaayzkaaGaaGjbVlaaykW7ca aI9aGaaGjbVlaaykW7daWcaaqaamaapeaabeWcbeqab0Gaey4kIipa kmaacmaabaGaaGOmaiqadAeagaqcamaaDaaaleaacaaIYaGaamOtaa qaaiaabogacaqGVbaaaOGaaGjcVpaabmaabaGaamyEaaGaayjkaiaa wMcaaiabgkHiTiaaigdaaiaawUhacaGL9baacaWG5bGaamizaiqad2 eagaqcamaaDaaaleaacaaIYaaabaGaae4yaiaab+gaaaGccaaMi8+a aeWaaeaacaWG5baacaGLOaGaayzkaaaabaWaa8qaaeqaleqabeqdcq GHRiI8aOGaamyEaiaadsgaceWGnbGbaKaadaqhaaWcbaGaaGOmaaqa aiaabogacaqGVbaaaOGaaGjcVpaabmaabaGaamyEaaGaayjkaiaawM caaaaacqGHsisldaWcaaqaamaapeaabeWcbeqab0Gaey4kIipakmaa cmaabaGaaGOmaiqadAeagaqcamaaDaaaleaacaaIXaGaamOtaaqaai aabogacaqGVbaaaOGaaGjcVpaabmaabaGaamyEaaGaayjkaiaawMca aiabgkHiTiaaigdaaiaawUhacaGL9baacaWG5bGaamizaiqad2eaga qcamaaDaaaleaacaaIXaaabaGaae4yaiaab+gaaaGccaaMi8+aaeWa aeaacaWG5baacaGLOaGaayzkaaaabaWaa8qaaeqaleqabeqdcqGHRi I8aOGaamyEaiaadsgaceWGnbGbaKaadaqhaaWcbaGaaGymaaqaaiaa bogacaqGVbaaaOGaaGjcVpaabmaabaGaamyEaaGaayjkaiaawMcaaa aacaaMf8UaaGzbVlaaywW7caGGOaGaaG4maiaac6cacaaIYaGaaGym aiaacMcaaaa@9819@

where F ^ d N co ( y ) = { d M ^ d co ( y ) } 1 1 { ξ y } d M ^ d co ( ξ ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaceWGgbGbaKaadaqhaaWcbaGaamizai aad6eaaeaacaqGJbGaae4BaaaakiaayIW7daqadaqaaiaadMhaaiaa wIcacaGLPaaacaaI9aWaaiWaaeaadaWdbaqabSqabeqaniabgUIiYd GccaWGKbGabmytayaajaWaa0baaSqaaiaadsgaaeaacaqGJbGaae4B aaaakiaayIW7daqadaqaaiaadMhaaiaawIcacaGLPaaaaiaawUhaca GL9baadaahaaWcbeqaaiabgkHiTiaaigdaaaGcdaWdbaqabSqabeqa niabgUIiYdGccaaIXaWaaSbaaSqaamaacmaabaGaeqOVdGNaeyizIm QaamyEaaGaay5Eaiaaw2haaaqabaGccaWGKbGabmytayaajaWaa0ba aSqaaiaadsgaaeaacaqGJbGaae4BaaaakiaayIW7daqadaqaaiabe6 7a4bGaayjkaiaawMcaaiaayIW7caGGUaaaaa@5FE8@

Usually, in a temporal sampling framework, the samples s 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGZbWaaSbaaSqaaiaaigdaaeqaaa aa@33D0@ and s 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGZbWaaSbaaSqaaiaaikdaaeqaaa aa@33D1@ are not independent. Consequently, our set-up differs from the usual estimation of functionals depending on distribution functions estimated with independent samples; see for example Pires and Branco (2002) and Reid (1981), who give the first-order expansion of a two-sample functional using the partial influence functions. Davison and Hinkley (1997, page 71) give bootstrap methods under a similar framework. Using a general two-dimensional sampling design p ( , ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGWbGaaGjcVlaayIW7daqadaqaai abgwSixlaaykW7caaISaGaaGPaVlabgwSixdGaayjkaiaawMcaaiaa yIW7caGGSaaaaa@4232@ Goga, Deville and Ruiz-Gazen (2009) give a two-sample linearization technique of bivariate functionals that will be used in what follows.

3.3  Linearization variance estimation

To obtain the asymptotic variance of Δ θ ^ co ( a , b ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaqiaaqaaiabfs5aejabeI7aXbGaay PadaWaaWbaaSqabeaacaqGJbGaae4BaaaakiaayIW7daqadaqaaiaa dggacaaISaGaamOyaaGaayjkaiaawMcaaiaacYcaaaa@3E2B@ we adopt the asymptotic framework introduced by Goga, Deville and Ruiz-Gazen (2009), which is an extension to the two-sample case of the asymptotic framework of Isaki and Fuller (1982). Define, when they exist, the partial influence functions of a functional T ( M 1 , M 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGubGaaGjcVpaabmaabaGaamytam aaBaaaleaacaaIXaaabeaakiaayIW7caaISaGaaGPaVlaad2eadaWg aaWcbaGaaGOmaaqabaaakiaawIcacaGLPaaaaaa@3D3D@ at point y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWG5baaaa@32EF@ as

I 1 T ( M 1 , M 2 ; y ) = lim h 0 T ( M 1 + h δ y , M 2 ) T ( M 1 , M 2 ) h , I 2 T ( M 1 , M 2 ; y ) = lim h 0 T ( M 1 , M 2 + h δ y ) T ( M 1 , M 2 ) h . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaafaqaaeGacaaabaGaamysamaaBaaale aacaaIXaaabeaakiaadsfacaaMi8+aaeWaaeaacaWGnbWaaSbaaSqa aiaaigdaaeqaaOGaaGzaVlaaiYcacaaMc8UaamytamaaBaaaleaaca aIYaaabeaakiaaygW7caaI7aGaaGPaVlaadMhaaiaawIcacaGLPaaa aeaacaaI9aGaaGjbVlaaykW7daGfqbqabSqaaiaadIgacqGHsgIRca aIWaaabeGcbaGaciiBaiaacMgacaGGTbaaamaalaaabaGaamivaiaa yIW7daqadaqaaiaad2eadaWgaaWcbaGaaGymaaqabaGccqGHRaWkca WGObGaeqiTdq2aaSbaaSqaaiaadMhaaeqaaOGaaGzaVlaaiYcacaaM c8UaamytamaaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaiabgk HiTiaadsfacaaMi8+aaeWaaeaacaWGnbWaaSbaaSqaaiaaigdaaeqa aOGaaGzaVlaaiYcacaaMc8UaamytamaaBaaaleaacaaIYaaabeaaaO GaayjkaiaawMcaaaqaaiaadIgaaaGaaGilaaqaaiaadMeadaWgaaWc baGaaGOmaaqabaGccaWGubGaaGjcVpaabmaabaGaamytamaaBaaale aacaaIXaaabeaakiaaygW7caaISaGaaGPaVlaad2eadaWgaaWcbaGa aGOmaaqabaGccaaMb8UaaG4oaiaaykW7caWG5baacaGLOaGaayzkaa aabaGaaGypaiaaysW7caaMc8+aaybuaeqaleaacaWGObGaeyOKH4Qa aGimaaqabOqaaiGacYgacaGGPbGaaiyBaaaadaWcaaqaaiaadsfaca aMi8+aaeWaaeaacaWGnbWaaSbaaSqaaiaaigdaaeqaaOGaaGzaVlaa iYcacaaMc8UaamytamaaBaaaleaacaaIYaaabeaakiabgUcaRiaadI gacqaH0oazdaWgaaWcbaGaamyEaaqabaaakiaawIcacaGLPaaacqGH sislcaWGubGaaGjcVpaabmaabaGaamytamaaBaaaleaacaaIXaaabe aakiaaygW7caaISaGaaGPaVlaad2eadaWgaaWcbaGaaGOmaaqabaaa kiaawIcacaGLPaaaaeaacaWGObaaaiaai6caaaaaaa@A6EC@

We define the linearized variables u d k = I d T ( M 1 , M 2 ; y d k ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWG1bWaaSbaaSqaaiaadsgacaWGRb aabeaakiaai2dacaWGjbWaaSbaaSqaaiaadsgaaeqaaOGaamivaiaa yIW7daqadaqaaiaad2eadaWgaaWcbaGaaGymaaqabaGccaaMb8UaaG ilaiaaykW7caWGnbWaaSbaaSqaaiaaikdaaeqaaOGaaGzaVlaaiUda caaMc8UaamyEamaaBaaaleaacaWGKbGaam4AaaqabaaakiaawIcaca GLPaaaaaa@49DA@ for d = 1, 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGKbGaaGypaiaaigdacaaISaGaaG PaVlaaikdaaaa@3759@ as the partial influence functions of T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGubaaaa@32CA@ at ( M 1 , M 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaqadaqaaiaad2eadaWgaaWcbaGaaG ymaaqabaGccaaMb8UaaGilaiaaykW7caWGnbWaaSbaaSqaaiaaikda aeqaaaGccaGLOaGaayzkaaaaaa@3ACC@ and y = y d k . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWG5bGaaGypaiaadMhadaWgaaWcba GaamizaiaadUgaaeqaaOGaaiOlaaaa@3775@ For the change between Gini indexes Δ G , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqqHuoarcaWGhbGaaiilaaaa@34D3@ the linearized variables u d k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWG1bWaaSbaaSqaaiaadsgacaWGRb aabeaaaaa@34F0@ may be computed using (2.10), namely

u d k = 2 F d N ( y d k ) y d k y ¯ d k , U < t y d y d k G d + 1 t y d + 1 G d N , ( 3.22 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWG1bWaaSbaaSqaaiaadsgacaWGRb aabeaakiaaysW7caaI9aGaaGjbVlaaykW7caaIYaGaamOramaaBaaa leaacaWGKbGaamOtaaqabaGccaaMi8+aaeWaaeaacaWG5bWaaSbaaS qaaiaadsgacaWGRbaabeaaaOGaayjkaiaawMcaamaalaaabaGaamyE amaaBaaaleaacaWGKbGaam4AaaqabaGccqGHsislceWG5bGbaebada WgaaWcbaGaamizaiaadUgacaaMb8UaaGilaiaaykW7caWGvbGaaGip aaqabaaakeaacaWG0bWaaSbaaSqaaiaadMhadaWgaaadbaGaamizaa qabaaaleqaaaaakiabgkHiTiaadMhadaWgaaWcbaGaamizaiaadUga aeqaaOWaaSaaaeaacaWGhbWaaSbaaSqaaiaadsgaaeqaaOGaey4kaS IaaGymaaqaaiaadshadaWgaaWcbaGaamyEamaaBaaameaacaWGKbaa beaaaSqabaaaaOGaey4kaSYaaSaaaeaacaaIXaGaeyOeI0Iaam4ram aaBaaaleaacaWGKbaabeaaaOqaaiaad6eaaaGaaGilaiaaywW7caaM f8UaaGzbVlaaywW7caGGOaGaaG4maiaac6cacaaIYaGaaGOmaiaacM caaaa@6F53@

where y ¯ d k , U < = ( l U 1 { y d l < y d k } ) 1 j U y d j 1 { y d j < y d k } . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaceWG5bGbaebadaWgaaWcbaGaamizai aadUgacaaMb8UaaGilaiaaykW7caWGvbGaaGipaaqabaGccaaI9aWa aeWaaeaadaaeqaqabSqaaiaadYgacqGHiiIZcaWGvbaabeqdcqGHri s5aOGaaGjcVlaaigdadaWgaaWcbaWaaiWaaeaacaWG5bWaaSbaaWqa aiaadsgacaWGSbaabeaaliaayIW7caaI8aGaaGjcVlaadMhadaWgaa adbaGaamizaiaadUgaaeqaaaWccaGL7bGaayzFaaaabeaaaOGaayjk aiaawMcaamaaCaaaleqabaGaeyOeI0IaaGymaaaakmaaqababeWcba GaamOAaiabgIGiolaadwfaaeqaniabggHiLdGccaaMi8UaamyEamaa BaaaleaacaWGKbGaamOAaaqabaGccaaIXaWaaSbaaSqaamaacmaaba GaamyEamaaBaaameaacaWGKbGaamOAaaqabaWccaaMi8UaaGipaiaa yIW7caWG5bWaaSbaaWqaaiaadsgacaWGRbaabeaaaSGaay5Eaiaaw2 haaaqabaGccaGGUaaaaa@6A58@ The estimated linearized variable is

u ^ d k = 2 F ^ d N co ( y d k ) y d k y ¯ d k , s < co t ^ y 1 co y d k G ^ d co + 1 t ^ y 1 co + 1 G ^ d co N ^ . ( 3.23 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaceWG1bGbaKaadaWgaaWcbaGaamizai aadUgaaeqaaOGaaGjbVlaai2dacaaMe8UaaGPaVlaaikdaceWGgbGb aKaadaqhaaWcbaGaamizaiaad6eaaeaacaqGJbGaae4BaaaakiaayI W7daqadaqaaiaadMhadaWgaaWcbaGaamizaiaadUgaaeqaaaGccaGL OaGaayzkaaWaaSaaaeaacaWG5bWaaSbaaSqaaiaadsgacaWGRbaabe aakiabgkHiTiqadMhagaqeamaaDaaaleaacaWGKbGaam4AaiaaygW7 caaISaGaaGPaVlaadohacaaI8aaabaGaae4yaiaab+gaaaaakeaace WG0bGbaKaadaqhaaWcbaGaamyEaiaaigdaaeaacaqGJbGaae4Baaaa aaGccqGHsislcaWG5bWaaSbaaSqaaiaadsgacaWGRbaabeaakmaala aabaGabm4rayaajaWaa0baaSqaaiaadsgaaeaacaqGJbGaae4Baaaa kiabgUcaRiaaigdaaeaaceWG0bGbaKaadaqhaaWcbaGaamyEaiaaig daaeaacaqGJbGaae4BaaaaaaGccqGHRaWkdaWcaaqaaiaaigdacqGH sislceWGhbGbaKaadaqhaaWcbaGaamizaaqaaiaabogacaqGVbaaaa GcbaGabmOtayaajaaaaiaai6cacaaMf8UaaGzbVlaaywW7caaMf8Ua aiikaiaaiodacaGGUaGaaGOmaiaaiodacaGGPaaaaa@7A2E@

3.3.1  Two-dimensional SI design

In case of the SI2 design presented in Section 3.1.1, plugging the variables u d k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWG1bWaaSbaaSqaaiaadsgacaWGRb aabeaaaaa@34F0@ derived in (3.22) into the variance formula in (3.6) yields the variance approximation

V { Δ G ^ co ( a , b ) } N 2 { c 1 ( a ) S u 1 , U 2 2 c 12 ( a , b ) S u 1 u 2 , U + c 2 ( b ) S u 2 , U 2 } , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGwbWaaiWaaeaadaqiaaqaaiabfs 5aejaadEeaaiaawkWaamaaCaaaleqabaGaae4yaiaab+gaaaGccaaM i8+aaeWaaeaacaWGHbGaaGilaiaaykW7caWGIbaacaGLOaGaayzkaa aacaGL7bGaayzFaaGaaGjbVlaaykW7rqqr1ngBPrgifHhDYfgaiqaa cqWFdjYocaaMe8UaaGPaVlaad6eadaahaaWcbeqaaiaaikdaaaGcda GadaqaaiaadogadaWgaaWcbaGaaGymaaqabaGccaaMi8+aaeWaaeaa caWGHbaacaGLOaGaayzkaaGaam4uamaaDaaaleaacaWG1bWaaSbaaW qaaiaaigdaaeqaaSGaaGzaVlaaiYcacaaMc8Uaamyvaaqaaiaaikda aaGccqGHsislcaaIYaGaam4yamaaBaaaleaacaaIXaGaaGOmaaqaba GccaaMi8+aaeWaaeaacaWGHbGaaGilaiaadkgaaiaawIcacaGLPaaa caWGtbWaaSbaaSqaaiaadwhadaWgaaadbaGaaGymaaqabaWccaWG1b WaaSbaaWqaaiaaikdaaeqaaSGaaGzaVlaaiYcacaaMc8Uaamyvaaqa baGccqGHRaWkcaWGJbWaaSbaaSqaaiaaikdaaeqaaOGaaGjcVpaabm aabaGaamOyaaGaayjkaiaawMcaaiaadofadaqhaaWcbaGaamyDamaa BaaameaacaaIYaaabeaaliaaygW7caaISaGaaGPaVlaadwfaaeaaca aIYaaaaaGccaGL7bGaayzFaaGaaGilaaaa@827E@

see Theorem 1 in Goga, Deville and Ruiz-Gazen (2009). To obtain a variance estimator, the linearized variables may be estimated in several ways. If the overlapping sample s 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGZbWaaSbaaSqaaiaaiodaaeqaaa aa@33D2@ only is used, the estimated linearized variables u ^ d MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaceWG1bGbaKaadaWgaaWcbaGaamizaa qabaaaaa@3410@ are obtained from (3.23) by taking M ^ 1 co = M ^ 1, 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaceWGnbGbaKaadaqhaaWcbaGaaGymaa qaaiaabogacaqGVbaaaOGaaGypaiqad2eagaqcamaaBaaaleaacaaI XaGaaGilaiaaykW7caaIZaaabeaaaaa@3B2B@ and M ^ 2 co = M ^ 2, 3 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaceWGnbGbaKaadaqhaaWcbaGaaGOmaa qaaiaabogacaqGVbaaaOGaaGypaiqad2eagaqcamaaBaaaleaacaaI YaGaaGilaiaaykW7caaIZaaabeaakiaac6caaaa@3BE9@ A variance estimator is then obtained by plugging these linearized variables into (3.13). This leads to

v int HT { Δ G ^ co ( a , b ) } = N 2 { c 1 ( a ) S u ^ 1 , s 3 2 2 c 12 ( a , b ) S u ^ 1 u ^ 2 , s 3 + c 2 ( b ) S u ^ 2 , s 3 2 } . ( 3.24 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWG2bWaa0baaSqaaiaabMgacaqGUb GaaeiDaaqaaiaabIeacaqGubaaaOWaaiWaaeaadaqiaaqaaiabfs5a ejaadEeaaiaawkWaamaaCaaaleqabaGaae4yaiaab+gaaaGccaaMi8 +aaeWaaeaacaWGHbGaaGilaiaaykW7caWGIbaacaGLOaGaayzkaaaa caGL7bGaayzFaaGaaGjbVlaaykW7caaI9aGaaGjbVlaaykW7caWGob WaaWbaaSqabeaacaaIYaaaaOWaaiWaaeaacaWGJbWaaSbaaSqaaiaa igdaaeqaaOGaaGjcVpaabmaabaGaamyyaaGaayjkaiaawMcaaiaado fadaqhaaWcbaGabmyDayaajaWaaSbaaWqaaiaaigdaaeqaaSGaaGza VlaaiYcacaaMc8Uaam4CamaaBaaameaacaaIZaaabeaaaSqaaiaaik daaaGccqGHsislcaaIYaGaam4yamaaBaaaleaacaaIXaGaaGOmaaqa baGccaaMi8+aaeWaaeaacaWGHbGaaGilaiaaykW7caWGIbaacaGLOa GaayzkaaGaam4uamaaBaaaleaaceWG1bGbaKaadaWgaaadbaGaaGym aaqabaWcceWG1bGbaKaadaWgaaadbaGaaGOmaaqabaWccaaMb8UaaG ilaiaaykW7caWGZbWaaSbaaWqaaiaaiodaaeqaaaWcbeaakiabgUca RiaadogadaWgaaWcbaGaaGOmaaqabaGccaaMi8+aaeWaaeaacaWGIb aacaGLOaGaayzkaaGaam4uamaaDaaaleaaceWG1bGbaKaadaWgaaad baGaaGOmaaqabaWccaaMb8UaaGilaiaaykW7caWGZbWaaSbaaWqaai aaiodaaeqaaaWcbaGaaGOmaaaaaOGaay5Eaiaaw2haaiaai6cacaaM f8UaaGzbVlaaywW7caGGOaGaaG4maiaac6cacaaIYaGaaGinaiaacM caaaa@9044@

If the whole samples s 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGZbWaaSbaaSqaaiaaigdaaeqaaa aa@33D0@ and s 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGZbWaaSbaaSqaaiaaikdaaeqaaa aa@33D1@ are used, the estimated linearized variable u ^ d MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaceWG1bGbaKaadaWgaaWcbaGaamizaa qabaaaaa@3410@ are obtained from (3.23) by taking M ^ 1 co = M ^ 1,1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaceWGnbGbaKaadaqhaaWcbaGaaGymaa qaaiaabogacaqGVbaaaOGaaGypaiqad2eagaqcamaaBaaaleaacaaI XaGaaGilaiaaigdaaeqaaaaa@399E@ and M ^ 2 co = M ^ 2,2 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaceWGnbGbaKaadaqhaaWcbaGaaGOmaa qaaiaabogacaqGVbaaaOGaaGypaiqad2eagaqcamaaBaaaleaacaaI YaGaaGilaiaaikdaaeqaaOGaaiOlaaaa@3A5D@ A variance estimator is then obtained by plugging these linearized variables into (3.14). This leads to

v uni HT { Δ G ^ co ( a , b ) } = N 2 { c 1 ( a ) S u ^ 1 , s 1 2 2 c 12 ( a , b ) S u ^ 1 u ^ 2 , s 3 + c 2 ( b ) S u ^ 2 , s 2 2 } . ( 3.25 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWG2bWaa0baaSqaaiaabwhacaqGUb GaaeyAaaqaaiaabIeacaqGubaaaOWaaiWaaeaadaqiaaqaaiabfs5a ejaadEeaaiaawkWaamaaCaaaleqabaGaae4yaiaab+gaaaGccaaMi8 +aaeWaaeaacaWGHbGaaGilaiaaykW7caWGIbaacaGLOaGaayzkaaaa caGL7bGaayzFaaGaaGjbVlaaykW7caaI9aGaaGjbVlaaykW7caWGob WaaWbaaSqabeaacaaIYaaaaOWaaiWaaeaacaWGJbWaaSbaaSqaaiaa igdaaeqaaOGaaGjcVpaabmaabaGaamyyaaGaayjkaiaawMcaaiaado fadaqhaaWcbaGabmyDayaajaWaaSbaaWqaaiaaigdaaeqaaSGaaGza VlaaiYcacaaMc8Uaam4CamaaBaaameaacaaIXaaabeaaaSqaaiaaik daaaGccqGHsislcaaIYaGaam4yamaaBaaaleaacaaIXaGaaGOmaaqa baGccaaMi8+aaeWaaeaacaWGHbGaaGilaiaaykW7caWGIbaacaGLOa GaayzkaaGaam4uamaaBaaaleaaceWG1bGbaKaadaWgaaadbaGaaGym aaqabaWcceWG1bGbaKaadaWgaaadbaGaaGOmaaqabaWccaaMb8UaaG ilaiaaykW7caWGZbWaaSbaaWqaaiaaiodaaeqaaaWcbeaakiabgUca RiaadogadaWgaaWcbaGaaGOmaaqabaGccaaMi8+aaeWaaeaacaWGIb aacaGLOaGaayzkaaGaam4uamaaDaaaleaaceWG1bGbaKaadaWgaaad baGaaGOmaaqabaWccaaMb8UaaGilaiaaykW7caWGZbWaaSbaaWqaai aaikdaaeqaaaWcbaGaaGOmaaaaaOGaay5Eaiaaw2haaiaayIW7caaI UaGaaGzbVlaaywW7caaMf8UaaiikaiaaiodacaGGUaGaaGOmaiaaiw dacaGGPaaaaa@91D4@

3.3.2  Two-dimensional multistage design

In case of the MULT2 design presented in Section 3.1.2, the linearized variables may also be estimated in several ways. For the sake of simplicity, we consider using the overlapping sample s 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGZbWaaSbaaSqaaiaaiodaaeqaaa aa@33D2@ only so that the estimated linearized variables u ^ d MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaceWG1bGbaKaadaWgaaWcbaGaamizaa qabaaaaa@3410@ are obtained from (3.23) by taking M ^ 1 co = M ^ 1,3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaceWGnbGbaKaadaqhaaWcbaGaaGymaa qaaiaabogacaqGVbaaaOGaaGypaiqad2eagaqcamaaBaaaleaacaaI XaGaaGilaiaaiodaaeqaaaaa@39A0@ and M ^ 2 co = M ^ 2,3 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaceWGnbGbaKaadaqhaaWcbaGaaGOmaa qaaiaabogacaqGVbaaaOGaaGypaiqad2eagaqcamaaBaaaleaacaaI YaGaaGilaiaaiodaaeqaaOGaaiOlaaaa@3A5E@ A variance estimator is then obtained by plugging these linearized variables into (3.19). This leads to

v HH { Δ G ^ co ( a , b ) } = m m 1 i s I ( Δ u ^ i , co ( a , b ) π I i Δ u ^ co ( a , b ) m ) 2 , ( 3.26 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWG2bWaaWbaaSqabeaacaqGibGaae isaaaakmaacmaabaWaaecaaeaacqqHuoarcaWGhbaacaGLcmaadaah aaWcbeqaaiaabogacaqGVbaaaOGaaGjcVpaabmaabaGaamyyaiaaiY cacaaMc8UaamOyaaGaayjkaiaawMcaaaGaay5Eaiaaw2haaiaaysW7 caaMc8UaaGypaiaaysW7caaMc8+aaSaaaeaacaWGTbaabaGaamyBai abgkHiTiaaigdaaaWaaabuaeqaleaacaWGPbGaeyicI4Saam4Camaa BaaameaacaWGjbaabeaaaSqab0GaeyyeIuoakmaabmaabaWaaSaaae aadaqiaaqaaiabfs5aejaadwhaaiaawkWaamaaCaaaleqabaGaamyA aiaaygW7caaISaGaaGPaVlaabogacaqGVbaaaOGaaGjcVpaabmaaba GaamyyaiaaiYcacaaMc8UaamOyaaGaayjkaiaawMcaaaqaaiabec8a WnaaBaaaleaacaWGjbGaamyAaaqabaaaaOGaeyOeI0YaaSaaaeaada qiaaqaaiabfs5aejaadwhaaiaawkWaamaaCaaaleqabaGaae4yaiaa b+gaaaGccaaMi8+aaeWaaeaacaWGHbGaaGilaiaaykW7caWGIbaaca GLOaGaayzkaaaabaGaamyBaaaaaiaawIcacaGLPaaadaahaaWcbeqa aiaaikdaaaGccaaISaGaaGzbVlaaywW7caaMf8UaaGzbVlaacIcaca aIZaGaaiOlaiaaikdacaaI2aGaaiykaaaa@850C@

where Δ u ^ co ( a , b ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaqiaaqaaiabfs5aejaadwhaaiaawk WaamaaCaaaleqabaGaae4yaiaab+gaaaGccaaMi8+aaeWaaeaacaWG HbGaaGilaiaaykW7caWGIbaacaGLOaGaayzkaaaaaa@3E4A@ and Δ u ^ i , co ( a , b ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaqiaaqaaiabfs5aejaadwhaaiaawk WaamaaCaaaleqabaGaamyAaiaaygW7caaISaGaaGPaVlaabogacaqG VbaaaOGaaGjcVpaabmaabaGaamyyaiaaiYcacaaMc8UaamOyaaGaay jkaiaawMcaaaaa@4303@ are obtained from (3.15) and (3.16), respectively, by replacing y d k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWG5bWaaSbaaSqaaiaadsgacaWGRb aabeaaaaa@34F4@ with u ^ d k . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaceWG1bGbaKaadaWgaaWcbaGaamizai aadUgaaeqaaOGaaiOlaaaa@35BC@

3.4  Bootstrap variance estimation

Bootstrap methods have not yet been studied for the change between Gini indexes. The principles of the weighted bootstrap technique can be extended to the two-sample context, i.e. each measure M ^ d , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaceWGnbGbaKaadaWgaaWcbaGaamizai aaygW7caaISaGaaGPaVlabgsSiGdqabaaaaa@3A05@ with d = 1, 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGKbGaaGypaiaaigdacaaISaGaaG PaVlaaikdaaaa@3759@ and { 1 , 3, 2 } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqGHelc4cqGHiiIZdaGadaqaaiaaig dacqGHIaYTcaaISaGaaGPaVlaaiodacaaISaGaaGPaVlaaikdacqGH IaYTaiaawUhacaGL9baaaaa@41B8@ is estimated, conditionally on the samples originally selected, by some weighted bootstrap measure M ^ d , * MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaceWGnbGbaKaadaqhaaWcbaGaamizai aaygW7caaISaGaaGPaVlabgsSiGdqaaiaacQcaaaaaaa@3AB4@ which enables to match, at least approximately, the two first moments of an unbiased estimator in the linear case. In Section 3.4.1, we consider a generalization of the BWO to the SI2 design. In Section 3.4.2, we propose a generalisation of the BWR to the MULT2 design.

3.4.1  A generalization of the BWO to the SI2 design

We first consider the SI2 design. Building a pseudo-population U * MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGvbWaaWbaaSqabeaacaGGQaaaaa aa@33A6@ is more intricate in the two-sample case, since the variables of interest measured at waves τ 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHepaDdaWgaaWcbaGaaGymaaqaba aaaa@349D@ and τ 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHepaDdaWgaaWcbaGaaGOmaaqaba aaaa@349E@ need to be available for each unit in U * . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGvbWaaWbaaSqabeaacaGGQaaaaO GaaGzaVlaac6caaaa@35EC@ We therefore describe a bootstrap algorithm where the overlapping sample s 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGZbWaaSbaaSqaaiaaiodaaeqaaa aa@33D2@ only is used to build the pseudo-population U * , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGvbWaaWbaaSqabeaacaGGQaaaaO GaaGzaVlaacYcaaaa@35EA@ in the spirit of the intersection variance estimator in (3.24).

Suppose that N / n 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaWcgaqaaiaad6eaaeaacaWGUbWaaS baaSqaaiaaiodaaeqaaaaaaaa@34B6@ is an integer. The vectors D MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGebWaaSbaaSqaaiabgsSiGdqaba aaaa@3538@ are obtained by, first creating a pseudo-population U * MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGvbWaaWbaaSqabeaacaGGQaaaaa aa@33A6@ of size N MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGobaaaa@32C4@ by duplicating N / n 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaWcgaqaaiaad6eaaeaacaWGUbWaaS baaSqaaiaaiodaaeqaaaaaaaa@34B6@ times each unit k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGRbaaaa@32E1@ in the original sample s 3 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGZbWaaSbaaSqaaiaaiodaaeqaaO GaaGjcVlaac6caaaa@361F@ A SI2 resample s * = ( s 1 * , s 3 * , s 2 * ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGZbWaaWbaaSqabeaacaGGQaaaaO GaaGypamaabmaabaGaam4CamaaDaaaleaacaaIXaGaeyOiGClabaGa aiOkaaaakiaaygW7caaISaGaaGPaVlaadohadaqhaaWcbaGaaG4maa qaaiaacQcaaaGccaaMb8UaaGilaiaaykW7caWGZbWaa0baaSqaaiab gkci3kaaikdaaeaacaGGQaaaaaGccaGLOaGaayzkaaaaaa@4889@ of size ( n 1 , n 3 , n 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaqadaqaaiaad6gadaWgaaWcbaGaaG ymaiabgkci3cqabaGccaaMb8UaaGilaiaaykW7caWGUbWaaSbaaSqa aiaaiodaaeqaaOGaaGzaVlaaiYcacaaMc8UaamOBamaaBaaaleaaca aIYaGaeyOiGClabeaaaOGaayjkaiaawMcaaaaa@43C9@ is then selected in U * . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGvbWaaWbaaSqabeaacaGGQaaaaO GaaGzaVlaac6caaaa@35EC@ The bootstrap measures are then

M ^ d , * = k s 3 w , k D , k δ y d k , ( 3.27 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaceWGnbGbaKaadaqhaaWcbaGaamizai aaygW7caaISaGaaGPaVlabgsSiGdqaaiaacQcaaaGccaaMe8UaaGPa Vlaai2dacaaMe8UaaGPaVpaaqafabeWcbaGaam4AaiabgIGiolaado hadaWgaaadbaGaaG4maaqabaaaleqaniabggHiLdGccaaMc8Uaam4D amaaBaaaleaacqGHelc4caaMb8UaaGilaiaaykW7caWGRbaabeaaki aadseadaWgaaWcbaGaeyiXIaUaaGzaVlaaiYcacaaMc8Uaam4Aaaqa baGccqaH0oazdaWgaaWcbaGaamyEamaaBaaabaGaamizaiaadUgaae qaaaqabaGccaaMb8UaaGilaiaaywW7caaMf8UaaGzbVlaaywW7caGG OaGaaG4maiaac6cacaaIYaGaaG4naiaacMcaaaa@6BA9@

with D , k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGebWaaSbaaSqaaiabgsSiGlaayg W7caaISaGaaGPaVlaadUgaaeqaaaaa@39F3@ the number of times that unit k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGRbaaaa@32E1@ is selected in the resample s * . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGZbWaa0baaSqaaiabgsSiGdqaai aacQcaaaGccaaMb8UaaiOlaaaa@385C@ In the linear case, the bootstrap estimator of the parameter Δ t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqqHuoarcaWG0baaaa@3450@ is then

Δ t ^ co* ( a , b ) = b ( t ^ y 2 , s 2 * t ^ y 2 , s 3 * ) a ( t ^ y 1 , s 1 * t ^ y 1 , s 3 * ) + ( t ^ y 2 , s 3 * t ^ y 1 , s 3 * ) , ( 3.28 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaqiaaqaaiabfs5aejaadshaaiaawk WaamaaCaaaleqabaGaae4yaiaab+gacaqGQaaaaOGaaGjcVpaabmaa baGaamyyaiaaiYcacaaMc8UaamOyaaGaayjkaiaawMcaaiaaysW7ca aMc8UaaGypaiaaysW7caaMc8UaamOyaiaayIW7caaMi8+aaeWaaeaa ceWG0bGbaKaadaWgaaWcbaGaamyEamaaBaaameaacaaIYaaabeaali aaygW7caaISaGaaGPaVlaadohadaqhaaadbaGaaGOmaiabgkci3cqa aiaacQcaaaaaleqaaOGaeyOeI0IabmiDayaajaWaaSbaaSqaaiaadM hadaWgaaadbaGaaGOmaaqabaWccaaMb8UaaGilaiaaykW7caWGZbWa a0baaWqaaiaaiodaaeaacaGGQaaaaaWcbeaaaOGaayjkaiaawMcaai abgkHiTiaadggacaaMi8UaaGjcVpaabmaabaGabmiDayaajaWaaSba aSqaaiaadMhadaWgaaadbaGaaGymaaqabaWccaaMb8UaaGilaiaayk W7caWGZbWaa0baaWqaaiaaigdacqGHIaYTaeaacaGGQaaaaaWcbeaa kiabgkHiTiqadshagaqcamaaBaaaleaacaWG5bWaaSbaaWqaaiaaig daaeqaaSGaaGzaVlaaiYcacaaMc8Uaam4CamaaDaaameaacaaIZaaa baGaaiOkaaaaaSqabaaakiaawIcacaGLPaaacqGHRaWkdaqadaqaai qadshagaqcamaaBaaaleaacaWG5bWaaSbaaWqaaiaaikdaaeqaaSGa aGzaVlaaiYcacaaMc8Uaam4CamaaDaaameaacaaIZaaabaGaaiOkaa aaaSqabaGccqGHsislceWG0bGbaKaadaWgaaWcbaGaamyEamaaBaaa meaacaaIXaaabeaaliaaygW7caaISaGaaGPaVlaadohadaqhaaadba GaaG4maaqaaiaacQcaaaaaleqaaaGccaGLOaGaayzkaaGaaGilaiaa ywW7caaMf8UaaGzbVlaaywW7caGGOaGaaG4maiaac6cacaaIYaGaaG ioaiaacMcaaaa@9EF6@

where t ^ y d , s * = k s 3 w , k D , k y d k . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaceWG0bGbaKaadaWgaaWcbaGaamyEam aaBaaameaacaWGKbaabeaaliaaygW7caaISaGaaGPaVlaadohadaqh aaadbaGaeyiXIaoabaGaaiOkaaaaaSqabaGccaaI9aWaaabeaeqale aacaWGRbGaeyicI4Saam4CamaaBaaameaacaaIZaaabeaaaSqab0Ga eyyeIuoakiaayIW7caWG3bWaaSbaaSqaaiabgsSiGlaaygW7caaISa GaaGPaVlaadUgaaeqaaOGaamiramaaBaaaleaacqGHelc4caaMb8Ua aGilaiaaykW7caWGRbaabeaakiaadMhadaWgaaWcbaGaamizaiaadU gaaeqaaOGaaiOlaaaa@59FC@ After some algebra, we obtain

E * { Δ t ^ co* ( a , b ) } = Δ t ^ int and V * { Δ t ^ co * ( a , b ) } = 1 n 3 1 1 N 1 v int HT { Δ t ^ co ( a , b ) } , ( 3.29 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGfbWaaSbaaSqaaiaacQcaaeqaaO WaaiWaaeaadaqiaaqaaiabfs5aejaadshaaiaawkWaamaaCaaaleqa baGaae4yaiaab+gacaqGQaaaaOGaaGjcVpaabmaabaGaamyyaiaaiY cacaaMc8UaamOyaaGaayjkaiaawMcaaaGaay5Eaiaaw2haaiaaysW7 caaMc8UaaGypaiaaysW7caaMc8+aaecaaeaacqqHuoarcaWG0baaca GLcmaadaahaaWcbeqaaiaabMgacaqGUbGaaeiDaaaakiaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaabggacaqGUbGaaeizaiaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaadAfadaWgaaWcbaGa aiOkaaqabaGcdaGadaqaamaaHaaabaGaeuiLdqKaamiDaaGaayPada WaaWbaaSqabeaacaqGJbGaae4BaiaacQcaaaGccaaMi8+aaeWaaeaa caWGHbGaaGilaiaaykW7caWGIbaacaGLOaGaayzkaaaacaGL7bGaay zFaaGaaGjbVlaaykW7caaI9aGaaGjbVlaaykW7daWcaaqaaiaaigda cqGHsislcaWGUbWaa0baaSqaaiaaiodaaeaacqGHsislcaaIXaaaaa GcbaGaaGymaiabgkHiTiaad6eadaahaaWcbeqaaiabgkHiTiaaigda aaaaaOGaamODamaaDaaaleaacaqGPbGaaeOBaiaabshaaeaacaqGib GaaeivaaaakmaacmaabaWaaecaaeaacqqHuoarcaWG0baacaGLcmaa daahaaWcbeqaaiaabogacaqGVbaaaOGaaGjcVpaabmaabaGaamyyai aaiYcacaaMc8UaamOyaaGaayjkaiaawMcaaaGaay5Eaiaaw2haaiaa iYcacaaMf8UaaGzbVlaacIcacaaIZaGaaiOlaiaaikdacaaI5aGaai ykaaaa@A30F@

where Δ t ^ int MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaqiaaqaaiabfs5aejaadshaaiaawk WaamaaCaaaleqabaGaaeyAaiaab6gacaqG0baaaaaa@3813@ is given in (3.7), and v int HT ( t ^ y 1 HT ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWG2bWaa0baaSqaaiaabMgacaqGUb GaaeiDaaqaaiaabIeacaqGubaaaOWaaeWaaeaaceWG0bGbaKaadaqh aaWcbaGaamyEaiaaigdaaeaacaqGibGaaeivaaaaaOGaayjkaiaawM caaaaa@3DBD@ is given in (3.13). The proposed generalization of the BWO therefore enables to exactly match the intersection estimator of the first moment, and to approximately match the intersection estimator of the second moment for a large n 3 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGUbWaaSbaaSqaaiaaiodaaeqaaO GaaiOlaaaa@3489@

The building of U * MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGvbWaaWbaaSqabeaacaGGQaaaaa aa@33A6@ may be avoided by noting that under the BWO procedure, each vector D MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGebWaaSbaaSqaaiabgsSiGdqaba aaaa@3538@ follows a multivariate hypergeometric distribution. Therefore, the resampling weights may be directly generated. The algorithm may be adapted to the general case when N / n 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaWcgaqaaiaad6eaaeaacaWGUbWaaS baaSqaaiaaiodaaeqaaaaaaaa@34B6@ is not an integer by means of any of the techniques mentioned in Section 2.4.

3.4.2  A generalization of the BWR for the two-dimensional multistage design

We now consider the two-dimensional two-stage sampling design with a common first-stage sample s I MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGZbWaaSbaaSqaaiaadMeaaeqaaa aa@33E3@ presented in Section 3.1.2. The proposed bootstrap procedure is similar to that described in Rao and Wu (1988). A with-replacement resample s I * MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGZbWaa0baaSqaaiaadMeaaeaaca GGQaaaaaaa@3492@ of size m 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGTbGaeyOeI0IaaGymaaaa@348B@ is selected by means of simple random sampling with replacement (SIR) in the original first-stage sample s I . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGZbWaaSbaaSqaaiaadMeaaeqaaO GaaiOlaaaa@349F@ The bootstrap measures are then

M ^ d , * = m m 1 i s I * k s i π I i 1 π k | i 1 δ y d k where π k | i = n i N i . ( 3.30 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaceWGnbGbaKaadaqhaaWcbaGaamizai aaygW7caaISaGaaGPaVlabgsSiGdqaaiaacQcaaaGccaaMe8UaaGPa Vlaai2dacaaMe8UaaGPaVpaalaaabaGaamyBaaqaaiaad2gacqGHsi slcaaIXaaaamaaqafabeWcbaGaamyAaiabgIGiolaadohadaqhaaad baGaamysaaqaaiaacQcaaaaaleqaniabggHiLdGcdaaeqbqabSqaai aadUgacqGHiiIZcaWGZbWaa0baaWqaaiabgsSiGdqaaiaadMgaaaaa leqaniabggHiLdGccaaMi8UaeqiWda3aa0baaSqaaiaadMeacaWGPb aabaGaeyOeI0IaaGymaaaakiabec8aWnaaDaaaleaadaabcaqaaiab gsSiGlaadUgacaaMi8oacaGLiWoacaaMi8UaamyAaaqaaiabgkHiTi aaigdaaaGccqaH0oazdaWgaaWcbaGaamyEamaaBaaabaGaamizaiaa dUgaaeqaaaqabaGccaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaabE hacaqGObGaaeyzaiaabkhacaqGLbGaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7cqaHapaCdaWgaaWcbaWaaqGaaeaacqGHelc4caWGRbGaaG jcVdGaayjcSdGaaGjcVlaadMgaaeqaaOGaaGypamaalaaabaGaamOB amaaDaaaleaacqGHelc4aeaacaWGPbaaaaGcbaGaamOtamaaBaaale aacaWGPbaabeaaaaGccaaIUaGaaGzbVlaaywW7caaMf8UaaGzbVlaa cIcacaaIZaGaaiOlaiaaiodacaaIWaGaaiykaaaa@9F4A@

It may be rewritten as

M ^ d , * = k s w , k D , k δ y d k , ( 3.31 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaceWGnbGbaKaadaqhaaWcbaGaamizai aaygW7caaISaGaaGPaVlabgsSiGdqaaiaacQcaaaGccaaMe8UaaGPa Vlaai2dacaaMe8UaaGPaVpaaqafabeWcbaGaam4AaiabgIGiolaado hadaWgaaadbaGaeyiXIaoabeaaaSqab0GaeyyeIuoakiaayIW7caWG 3bWaaSbaaSqaaiabgsSiGlaaygW7caaISaGaaGPaVlaadUgaaeqaaO GaamiramaaBaaaleaacqGHelc4caaMb8UaaGilaiaaykW7caWGRbaa beaakiabes7aKnaaBaaaleaacaWG5bWaaSbaaeaacaWGKbGaam4Aaa qabaaabeaakiaaygW7caaISaGaaGzbVlaaywW7caaMf8UaaGzbVlaa cIcacaaIZaGaaiOlaiaaiodacaaIXaGaaiykaaaa@6D3F@

with s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGZbWaaSbaaSqaaiabgsSiGdqaba aaaa@3567@ the union of the samples s i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGZbWaa0baaSqaaiabgsSiGdqaai aadMgaaaaaaa@3656@ for i s I , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGPbGaeyicI4Saam4CamaaBaaale aacaWGjbaabeaakiaaygW7caGGSaaaaa@3899@ and where the resampling weight D , k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGebWaaSbaaSqaaiabgsSiGlaayg W7caaISaGaaGPaVlaadUgaaeqaaaaa@39F3@ equals m ( m 1 ) 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGTbGaaGjcVlaayIW7daqadaqaai aad2gacqGHsislcaaIXaaacaGLOaGaayzkaaWaaWbaaSqabeaacqGH sislcaaIXaaaaaaa@3BFD@ multiplied by the number of times the PSU containing k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGRbaaaa@32E1@ is selected in s I * . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGZbWaa0baaSqaaiaadMeaaeaaca GGQaaaaOGaaGzaVlaac6caaaa@36D8@

In the linear case, the bootstrap estimator of the parameter Δ t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqqHuoarcaWG0baaaa@3450@ is then

Δ t ^ co* ( a , b ) = m m 1 i s I * π I i 1 Δ t ^ i , co ( a , b ) ( 3.32 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaqiaaqaaiabfs5aejaadshaaiaawk WaamaaCaaaleqabaGaae4yaiaab+gacaqGQaaaaOGaaGjcVpaabmaa baGaamyyaiaaiYcacaaMc8UaamOyaaGaayjkaiaawMcaaiaaysW7ca aMc8UaaGypaiaaysW7caaMc8+aaSaaaeaacaWGTbaabaGaamyBaiab gkHiTiaaigdaaaWaaabuaeqaleaacaWGPbGaeyicI4Saam4CamaaDa aameaacaWGjbaabaGaaiOkaaaaaSqab0GaeyyeIuoakiaaykW7cqaH apaCdaqhaaWcbaGaamysaiaadMgaaeaacqGHsislcaaIXaaaaOWaae caaeaacqqHuoarcaWG0baacaGLcmaadaahaaWcbeqaaiaadMgacaaM b8UaaGilaiaaykW7caqGJbGaae4BaaaakiaayIW7daqadaqaaiaadg gacaaISaGaaGPaVlaadkgaaiaawIcacaGLPaaacaaMf8UaaGzbVlaa ywW7caaMf8UaaiikaiaaiodacaGGUaGaaG4maiaaikdacaGGPaaaaa@7342@

where Δ t ^ i , co ( a , b ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaqiaaqaaiabfs5aejaadshaaiaawk WaamaaCaaaleqabaGaamyAaiaaygW7caaISaGaaGPaVlaabogacaqG VbaaaOGaaGjcVpaabmaabaGaamyyaiaaiYcacaaMc8UaamOyaaGaay jkaiaawMcaaaaa@4302@ is defined in (3.16). After some algebra, we obtain

E * { Δ t ^ co * ( a , b ) } = Δ t ^ co ( a , b ) and V * { Δ t ^ co* ( a , b ) } = v HH { Δ t ^ co ( a , b ) } , ( 3.33 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGfbWaaSbaaSqaaiaacQcaaeqaaO WaaiWaaeaadaqiaaqaaiabfs5aejaadshaaiaawkWaamaaCaaaleqa baGaae4yaiaab+gacaGGQaaaaOGaaGjcVpaabmaabaGaamyyaiaaiY cacaaMc8UaamOyaaGaayjkaiaawMcaaaGaay5Eaiaaw2haaiaaysW7 caaMc8UaaGypaiaaysW7caaMc8+aaecaaeaacqqHuoarcaWG0baaca GLcmaadaahaaWcbeqaaiaabogacaqGVbaaaOGaaGjcVpaabmaabaGa amyyaiaaiYcacaaMc8UaamOyaaGaayjkaiaawMcaaiaaykW7caaMc8 UaaGPaVlaaykW7caaMc8Uaaeyyaiaab6gacaqGKbGaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caWGwbWaaSbaaSqaaiaacQcaaeqaaOWaai Waaeaadaqiaaqaaiabfs5aejaadshaaiaawkWaamaaCaaaleqabaGa ae4yaiaab+gacaqGQaaaaOGaaGjcVpaabmaabaGaamyyaiaaiYcaca aMc8UaamOyaaGaayjkaiaawMcaaaGaay5Eaiaaw2haaiaaysW7caaM c8UaaGypaiaaysW7caaMc8UaamODamaaCaaaleqabaGaaeisaiaabI eaaaGcdaGadaqaamaaHaaabaGaeuiLdqKaamiDaaGaayPadaWaaWba aSqabeaacaqGJbGaae4BaaaakiaayIW7daqadaqaaiaadggacaaISa GaaGPaVlaadkgaaiaawIcacaGLPaaaaiaawUhacaGL9baacaaMi8Ua aGilaiaaywW7caaMf8UaaiikaiaaiodacaGGUaGaaG4maiaaiodaca GGPaaaaa@9B30@

where Δ t ^ co ( a , b ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaqiaaqaaiabfs5aejaadshaaiaawk WaamaaCaaaleqabaGaae4yaiaab+gaaaGccaaMi8+aaeWaaeaacaWG HbGaaiilaiaaykW7caWGIbaacaGLOaGaayzkaaaaaa@3E43@ is given in (3.15), and v HH { Δ t ^ co ( a , b ) } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWG2bWaaWbaaSqabeaacaqGibGaae isaaaakmaacmaabaWaaecaaeaacqqHuoarcaWG0baacaGLcmaadaah aaWcbeqaaiaabogacaqGVbaaaOGaaGjcVpaabmaabaGaamyyaiaaiY cacaaMc8UaamOyaaGaayjkaiaawMcaaaGaay5Eaiaaw2haaaaa@4342@ is given in (3.19). The proposed generalization of the BWR therefore enables to exactly match the composite estimator of the first moment, and the associated estimator of the second moment.


Date modified: