Linearization versus bootstrap for variance estimation of the change between Gini indexes
Section 2. One sample case

2.1  Notation

Let U MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGvbaaaa@32CB@ denote some finite population of size N MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGobaaaa@32C4@ whose units may be identified by the labels k = 1, , N . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGRbGaaGypaiaaigdacaaISaGaaG PaVlablAciljaaiYcacaaMc8UaamOtaiaac6caaaa@3B8C@ Suppose that the variable Y 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=Hr8znaaBaaaleaacaaIXaaabeaaaaa@3E48@ is measured on the population U , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGvbGaaiilaaaa@337B@ and let y 11 , , y 1 N MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWG5bWaaSbaaSqaaiaaigdacaaIXa aabeaakiaaiYcacaaMc8UaeSOjGSKaaGilaiaaykW7caWG5bWaaSba aSqaaiaaigdacaWGobaabeaaaaa@3CF7@ denote the values taken by Y 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=Hr8znaaBaaaleaacaaIXaaabeaaaaa@3E48@ on the units in the population. Let M 1 = k U δ y 1 k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGnbWaaSbaaSqaaiaaigdaaeqaaO GaaGypamaaqababeWcbaGaam4AaiabgIGiolaadwfaaeqaniabggHi LdGccaaMc8UaeqiTdq2aaSbaaSqaaiaadMhadaWgaaadbaGaaGymai aadUgaaeqaaaWcbeaaaaa@3FF4@ denote the discrete measure taking unit mass on any point y 1 k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWG5bWaaSbaaSqaaiaaigdacaWGRb aabeaaaaa@34C6@ in the population and 0 elsewhere, with δ y 1 k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaH0oazdaWgaaWcbaGaamyEamaaBa aameaacaaIXaGaam4Aaaqabaaaleqaaaaa@36A3@ the Dirac mass at y 1 k . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWG5bWaaSbaaSqaaiaaigdacaWGRb aabeaakiaac6caaaa@3582@ Most of the parameters of interest θ 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaH4oqCdaWgaaWcbaGaaGymaaqaba aaaa@348E@ studied in surveys can be written as a functional T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGubaaaa@32CA@ of M 1 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGnbWaaSbaaSqaaiaaigdaaeqaaO Gaaiilaaaa@3464@ namely θ 1 = T ( M 1 ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaH4oqCdaWgaaWcbaGaaGymaaqaba GccaaI9aGaamivamaabmaabaGaamytamaaBaaaleaacaaIXaaabeaa aOGaayjkaiaawMcaaiaac6caaaa@3A36@ For instance, the total t y 1 = k U y 1 k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWG0bWaaSbaaSqaaiaadMhacaaIXa aabeaakiaai2dadaaeqaqabSqaaiaadUgacqGHiiIZcaWGvbaabeqd cqGHris5aOGaaGPaVlaadMhadaWgaaWcbaGaaGymaiaadUgaaeqaaa aa@3F3C@ equals Y 1 d M 1 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaWdbaqabSqabeqaniabgUIiYdWefv 3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiqaakiab=Hr8znaa BaaaleaacaaIXaaabeaakiaadsgacaWGnbWaaSbaaSqaaiaaigdaae qaaOGaaiOlaaaa@43B6@ In practice, a sample s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGZbaaaa@32E9@ (with or without repetitions) is selected by means of a sampling design p ( ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGWbGaaGjcVlaayIW7daqadaqaai abgwSixdGaayjkaiaawMcaaiaacYcaaaa@3A8B@ and we observe the values y 1 k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWG5bWaaSbaaSqaaiaaigdacaWGRb aabeaaaaa@34C6@ for k s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGRbGaeyicI4Saam4Caaaa@355D@ only. A substitution principle is used for estimation (see Deville, 1999, and Goga, Deville and Ruiz-Gazen, 2009). Let π k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHapaCdaWgaaWcbaGaam4Aaaqaba aaaa@34CA@ denote the expected number of draws for unit k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGRbaaaa@32E1@ in the sample; in case of without-replacement sampling, this is the probability that unit k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGRbaaaa@32E1@ is selected in the sample. Let M ^ 1 = k s w k δ y 1 k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaceWGnbGbaKaadaWgaaWcbaGaaGymaa qabaGccaaI9aWaaabeaeqaleaacaWGRbGaeyicI4Saam4Caaqab0Ga eyyeIuoakiaayIW7caWG3bWaaSbaaSqaaiaadUgaaeqaaOGaeqiTdq 2aaSbaaSqaaiaadMhadaWgaaadbaGaaGymaiaadUgaaeqaaaWcbeaa aaa@424A@ denote the discrete measure taking mass w k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWG3bWaaSbaaSqaaiaadUgaaeqaaa aa@3409@ on any point in the sample and 0 elsewhere, where w k = π k 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWG3bWaaSbaaSqaaiaadUgaaeqaaO GaaGypaiabec8aWnaaDaaaleaacaWGRbaabaGaeyOeI0IaaGymaaaa aaa@395C@ is the sampling weight. Substituting M ^ 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaceWGnbGbaKaadaWgaaWcbaGaaGymaa qabaaaaa@33BA@ into θ 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaH4oqCdaWgaaWcbaGaaGymaaqaba aaaa@348E@ yields the estimator θ ^ 1 = T ( M ^ 1 ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacuaH4oqCgaqcamaaBaaaleaacaaIXa aabeaakiaai2dacaWGubGaaGjcVpaabmaabaGabmytayaajaWaaSba aSqaaiaaigdaaeqaaaGccaGLOaGaayzkaaGaaiOlaaaa@3BE7@

For a without-replacement sampling design, the substitution estimator for a total is the so-called Horvitz-Thompson (HT) estimator t ^ y 1 HT = k s w k y 1 k . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaceWG0bGbaKaadaqhaaWcbaGaamyEai aaigdaaeaacaqGibGaaeivaaaakiaai2dadaaeqaqabSqaaiaadUga cqGHiiIZcaWGZbaabeqdcqGHris5aOGaaGjcVlaadEhadaWgaaWcba Gaam4AaaqabaGccaWG5bWaaSbaaSqaaiaaigdacaWGRbaabeaakiaa c6caaaa@43F1@ The HT variance estimator is

v HT ( t ^ y 1 HT ) = k s l s Δ k l π k l y 1 k π k y 1 l π l , ( 2.1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWG2bWaaWbaaSqabeaacaqGibGaae ivaaaakmaabmaabaGabmiDayaajaWaa0baaSqaaiaadMhacaaIXaaa baGaaeisaiaabsfaaaaakiaawIcacaGLPaaacaaMe8UaaGPaVlaai2 dacaaMe8UaaGPaVpaaqafabeWcbaGaam4AaiabgIGiolaadohaaeqa niabggHiLdGcdaaeqbqabSqaaiaadYgacqGHiiIZcaWGZbaabeqdcq GHris5aOWaaSaaaeaacqqHuoardaWgaaWcbaGaam4AaiaadYgaaeqa aaGcbaGaeqiWda3aaSbaaSqaaiaadUgacaWGSbaabeaaaaGcdaWcaa qaaiaadMhadaWgaaWcbaGaaGymaiaadUgaaeqaaaGcbaGaeqiWda3a aSbaaSqaaiaadUgaaeqaaaaakmaalaaabaGaamyEamaaBaaaleaaca aIXaGaamiBaaqabaaakeaacqaHapaCdaWgaaWcbaGaamiBaaqabaaa aOGaaGilaiaaywW7caaMf8UaaGzbVlaaywW7caaMf8Uaaiikaiaaik dacaGGUaGaaGymaiaacMcaaaa@6C19@

where π k l = Pr ( k , l s ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHapaCdaWgaaWcbaGaam4AaiaadY gaaeqaaOGaaGypaiaabcfacaqGYbGaaGjcVpaabmaabaGaam4Aaiaa iYcacaaMc8UaamiBaiabgIGiolaadohaaiaawIcacaGLPaaaaaa@420C@ denotes the probability that units k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGRbaaaa@32E1@ and l MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGSbaaaa@32E2@ are selected jointly in the sample, and Δ k l = π k l π k π l . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqqHuoardaWgaaWcbaGaam4AaiaadY gaaeqaaOGaaGypaiabec8aWnaaBaaaleaacaWGRbGaamiBaaqabaGc cqGHsislcqaHapaCdaWgaaWcbaGaam4AaaqabaGccqaHapaCdaWgaa WcbaGaamiBaaqabaGccaGGUaaaaa@416F@ In the particular case of simple random sampling without replacement (SI) of size n , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGUbGaaiilaaaa@3394@ we have t ^ y 1 HT = N y ¯ 1, s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaceWG0bGbaKaadaqhaaWcbaGaamyEai aaigdaaeaacaqGibGaaeivaaaakiaai2dacaWGobGaaGjcVlqadMha gaqeamaaBaaaleaacaaIXaGaaGilaiaadohaaeqaaaaa@3D62@ with y ¯ 1, s = n 1 k s y 1 k , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaceWG5bGbaebadaWgaaWcbaGaaGymai aaiYcacaWGZbaabeaakiaai2dacaWGUbWaaWbaaSqabeaacqGHsisl caaIXaaaaOWaaabeaeqaleaacaWGRbGaeyicI4Saam4Caaqab0Gaey yeIuoakiaayIW7caWG5bWaaSbaaSqaaiaaigdacaWGRbaabeaakiaa cYcaaaa@43B9@ and formula (2.1) yields

v HT ( t ^ y 1 HT ) = N 2 ( 1 n 1 N ) S y 1 , s 2 where S y 1 , s 2 = 1 n 1 k s ( y 1 k y ¯ 1, s ) 2 . ( 2.2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWG2bWaaWbaaSqabeaacaqGibGaae ivaaaakmaabmaabaGabmiDayaajaWaa0baaSqaaiaadMhacaaIXaaa baGaaeisaiaabsfaaaaakiaawIcacaGLPaaacaaMe8UaaGPaVlaai2 dacaaMe8UaaGPaVlaad6eadaahaaWcbeqaaiaaikdaaaGcdaqadaqa amaalaaabaGaaGymaaqaaiaad6gaaaGaeyOeI0YaaSaaaeaacaaIXa aabaGaamOtaaaaaiaawIcacaGLPaaacaWGtbWaa0baaSqaaiaadMha daWgaaadbaGaaGymaaqabaWccaaMb8UaaGilaiaaykW7caWGZbaaba GaaGOmaaaakiaaysW7caaMc8UaaGPaVlaaykW7caqG3bGaaeiAaiaa bwgacaqGYbGaaeyzaiaaysW7caaMc8UaaGPaVlaaykW7caWGtbWaa0 baaSqaaiaadMhadaWgaaadbaGaaGymaaqabaWccaaMb8UaaGilaiaa ykW7caWGZbaabaGaaGOmaaaakiaaysW7caaMc8UaaGypaiaaysW7ca aMc8+aaSaaaeaacaaIXaaabaGaamOBaiabgkHiTiaaigdaaaWaaabu aeqaleaacaWGRbGaeyicI4Saam4Caaqab0GaeyyeIuoakmaabmaaba GaamyEamaaBaaaleaacaaIXaGaam4AaaqabaGccqGHsislceWG5bGb aebadaWgaaWcbaGaaGymaiaaiYcacaWGZbaabeaaaOGaayjkaiaawM caamaaCaaaleqabaGaaGOmaaaakiaaygW7caaIUaGaaGzbVlaaywW7 caaMf8UaaiikaiaaikdacaGGUaGaaGOmaiaacMcaaaa@8FDE@

For a with-replacement sampling design, the substitution estimator for a total is the so-called Hansen-Hurwitz (HH) estimator t ^ y 1 HH = k s w k y 1 k . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaceWG0bGbaKaadaqhaaWcbaGaamyEai aaigdaaeaacaqGibGaaeisaaaakiaai2dadaaeqaqabSqaaiaadUga cqGHiiIZcaWGZbaabeqdcqGHris5aOGaaGjcVlaadEhadaWgaaWcba Gaam4AaaqabaGccaWG5bWaaSbaaSqaaiaaigdacaWGRbaabeaakiaa c6caaaa@43E5@ We consider the important case of multistage sampling, where the N MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGobaaaa@32C4@ units are grouped inside N I MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGobWaaSbaaSqaaiaadMeaaeqaaa aa@33BE@ non-overlapping Primary Sampling Units (PSU) U 1 , , U N I , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGvbWaaSbaaSqaaiaaigdaaeqaaO GaaGilaiaaykW7cqWIMaYscaaISaGaaGPaVlaadwfadaWgaaWcbaGa amOtamaaBaaameaacaWGjbaabeaaaSqabaGccaaMb8Uaaiilaaaa@3E83@ and where a with-replacement first-stage sample s I MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGZbWaaSbaaSqaaiaadMeaaeqaaa aa@33E3@ of size m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGTbaaaa@32E3@ is selected. Let π I i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHapaCdaWgaaWcbaGaamysaiaadM gaaeqaaaaa@3596@ denote the expected number of draws for the PSU U i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGvbWaaSbaaSqaaiaadMgaaeqaaa aa@33E5@ in s I . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGZbWaaSbaaSqaaiaadMeaaeqaaO GaaGzaVlaac6caaaa@3629@ A second-stage sample s i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGZbWaaSbaaSqaaiaadMgaaeqaaa aa@3403@ is then selected inside any i s I MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGPbGaeyicI4Saam4CamaaBaaale aacaWGjbaabeaaaaa@3655@ by means of some sampling design p i ( ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGWbWaaSbaaSqaaiaadMgaaeqaaO GaaGjcVpaabmaabaGaeyyXICnacaGLOaGaayzkaaGaaiOlaaaa@3A20@ Let π k | i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHapaCdaWgaaWcbaWaaqGaaeaaca WGRbGaaGjcVdGaayjcSdGaaGjcVlaadMgaaeqaaaaa@3A70@ denote the expected number of draws for unit k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGRbaaaa@32E1@ in s i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGZbWaaSbaaSqaaiaadMgaaeqaaO GaaGzaVlaac6caaaa@3649@ The estimated measure is then M ^ 1 = i s I k s i π I i 1 π k | i 1 δ y 1 k . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaceWGnbGbaKaadaWgaaWcbaGaaGymaa qabaGccaaI9aWaaabeaeqaleaacaWGPbGaeyicI4Saam4CamaaBaaa meaacaWGjbaabeaaaSqab0GaeyyeIuoakmaaqababeWcbaGaam4Aai abgIGiolaadohadaWgaaadbaGaamyAaaqabaaaleqaniabggHiLdGc caaMc8UaeqiWda3aa0baaSqaaiaadMeacaWGPbaabaGaeyOeI0IaaG ymaaaakiabec8aWnaaDaaaleaadaabcaqaaiaadUgacaaMi8oacaGL iWoacaaMi8UaamyAaaqaaiabgkHiTiaaigdaaaGccqaH0oazdaWgaa WcbaGaamyEamaaBaaameaacaaIXaGaam4AaaqabaaaleqaaOGaaGza Vlaac6caaaa@5976@ We have t ^ y 1 HH = i s I π I i 1 Y ^ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaceWG0bGbaKaadaqhaaWcbaGaamyEai aaigdaaeaacaqGibGaaeisaaaakiaai2dadaaeqaqabSqaaiaadMga cqGHiiIZcaWGZbWaaSbaaWqaaiaadMeaaeqaaaWcbeqdcqGHris5aO GaaGjcVlabec8aWnaaDaaaleaacaWGjbGaamyAaaqaaiabgkHiTiaa igdaaaGcceWGzbGbaKaadaWgaaWcbaGaamyAaaqabaaaaa@4696@ where Y ^ i = k s i π k | i 1 y 1 k , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaceWGzbGbaKaadaWgaaWcbaGaamyAaa qabaGccaaI9aWaaabeaeqaleaacaWGRbGaeyicI4Saam4CamaaBaaa meaacaWGPbaabeaaaSqab0GaeyyeIuoakiaayIW7cqaHapaCdaqhaa WcbaWaaqGaaeaacaWGRbGaaGjcVdGaayjcSdGaaGjcVlaadMgaaeaa cqGHsislcaaIXaaaaOGaamyEamaaBaaaleaacaaIXaGaam4Aaaqaba GccaaMb8Uaaiilaaaa@4C26@ and an unbiased variance estimator for t ^ y 1 HH MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaceWG0bGbaKaadaqhaaWcbaGaamyEai aaigdaaeaacaqGibGaaeisaaaaaaa@3676@ is

v HH ( t ^ y 1 HH ) = m m 1 i s I ( Y ^ i π I i t ^ y 1 HH m ) 2 . ( 2.3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWG2bWaaWbaaSqabeaacaqGibGaae isaaaakmaabmaabaGabmiDayaajaWaa0baaSqaaiaadMhacaaIXaaa baGaaeisaiaabIeaaaaakiaawIcacaGLPaaacaaMe8UaaGPaVlaai2 dacaaMe8UaaGPaVpaalaaabaGaamyBaaqaaiaad2gacqGHsislcaaI XaaaamaaqafabeWcbaGaamyAaiabgIGiolaadohadaWgaaadbaGaam ysaaqabaaaleqaniabggHiLdGcdaqadaqaamaalaaabaGabmywayaa jaWaaSbaaSqaaiaadMgaaeqaaaGcbaGaeqiWda3aaSbaaSqaaiaadM eacaWGPbaabeaaaaGccqGHsisldaWcaaqaaiqadshagaqcamaaDaaa leaacaWG5bGaaGymaaqaaiaabIeacaqGibaaaaGcbaGaamyBaaaaai aawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaGccaaMb8UaaGOlaiaa ywW7caaMf8UaaGzbVlaaywW7caaMf8UaaiikaiaaikdacaGGUaGaaG 4maiaacMcaaaa@6858@

2.2  Estimating the Gini coefficient

If the variable Y 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=Hr8znaaBaaaleaacaaIXaaabeaaaaa@3E48@ is measured on the population U , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGvbGaaiilaaaa@337B@ the Gini coefficient is

G 1 = 1 2 k U l U | y 1 k y 1 l | N k U y 1 k , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGhbWaaSbaaSqaaiaaigdaaeqaaO GaaGjbVlaaykW7caaI9aGaaGjbVlaaykW7daWcaaqaaiaaigdaaeaa caaIYaaaamaalaaabaWaaabeaeaadaaeqaqaamaaemaabaGaaGjcVl aadMhadaWgaaWcbaGaaGymaiaadUgaaeqaaOGaeyOeI0IaamyEamaa BaaaleaacaaIXaGaamiBaaqabaGccaaMi8oacaGLhWUaayjcSdaale aacaWGSbGaeyicI4Saamyvaaqab0GaeyyeIuoaaSqaaiaadUgacqGH iiIZcaWGvbaabeqdcqGHris5aaGcbaGaamOtamaaqababaGaamyEam aaBaaaleaacaaIXaGaam4AaaqabaaabaGaam4AaiabgIGiolaadwfa aeqaniabggHiLdaaaOGaaGilaaaa@5D26@

see for example Nygård and Sandström (1985). It follows that G 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGhbWaaSbaaSqaaiaaigdaaeqaaa aa@33A4@ is zero if Y 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=Hr8znaaBaaaleaacaaIXaaabeaaaaa@3E48@ is constant on the population, which occurs when the total of Y 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=Hr8znaaBaaaleaacaaIXaaabeaaaaa@3E48@ is equally distributed among all the population individuals. In the opposite case, when only one individual owns the whole amount of Y 1 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=Hr8znaaBaaaleaacaaIXaaabeaakiaaiYca aaa@3F08@ G 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGhbWaaSbaaSqaaiaaigdaaeqaaa aa@33A4@ is maximized and equal to 1 1 / N : MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaaIXaGaeyOeI0YaaSGbaeaacaaIXa aabaGaamOtaaaacaaMi8UaaiOoaaaa@378C@ the total of Y 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=Hr8znaaBaaaleaacaaIXaaabeaaaaa@3E48@ is then concentrated in one point only, which means maximum inequality among members of the population.

If all individuals k l MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGRbGaeyiyIKRaamiBaaaa@3599@ have different values for the variable Y 1 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=Hr8znaaBaaaleaacaaIXaaabeaakiaacYca aaa@3F02@ the Gini coefficient G 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGhbWaaSbaaSqaaiaaigdaaeqaaa aa@33A4@ is

G 1 = k = 1 N y 1 ( k ) ( 2 k / N 1 ) t y 1 1 N = k U y 1 k { 2 F 1 N ( y 1 k ) 1 } t y 1 1 N ( 2.4 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGhbWaaSbaaSqaaiaaigdaaeqaaO GaaGjbVlaaykW7caaI9aGaaGjbVlaaykW7daWcaaqaamaaqadabaGa amyEamaaBaaaleaacaaIXaWaaeWaaeaacaWGRbaacaGLOaGaayzkaa aabeaakmaabmaabaWaaSGbaeaacaaIYaGaam4Aaaqaaiaad6eacqGH sislcaaIXaaaaaGaayjkaiaawMcaaaWcbaGaam4Aaiaai2dacaaIXa aabaGaamOtaaqdcqGHris5aaGcbaGaamiDamaaBaaaleaacaWG5bGa aGymaaqabaaaaOGaeyOeI0YaaSaaaeaacaaIXaaabaGaamOtaaaaca aMe8UaaGypaiaaysW7daWcaaqaamaaqababaGaamyEamaaBaaaleaa caaIXaGaam4AaaqabaGcdaGadaqaaiaaikdacaWGgbWaaSbaaSqaai aaigdacaWGobaabeaakmaabmaabaGaamyEamaaBaaaleaacaaIXaGa am4AaaqabaaakiaawIcacaGLPaaacqGHsislcaaIXaaacaGL7bGaay zFaaaaleaacaWGRbGaeyicI4Saamyvaaqab0GaeyyeIuoaaOqaaiaa dshadaWgaaWcbaGaamyEaiaaigdaaeqaaaaakiabgkHiTmaalaaaba GaaGymaaqaaiaad6eaaaGaaGzbVlaaywW7caGGOaGaaGOmaiaac6ca caaI0aGaaiykaaaa@7351@

with y 1 ( 1 ) y 1 ( N ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWG5bWaaSbaaSqaaiaaigdadaqada qaaiaaigdaaiaawIcacaGLPaaaaeqaaOGaeyizImQaeS47IWKaeyiz ImQaamyEamaaBaaaleaacaaIXaWaaeWaaeaacaWGobaacaGLOaGaay zkaaaabeaaaaa@3FBD@ the ordered values and F 1 N ( ) = N 1 k U 1 { y 1 k } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGgbWaaSbaaSqaaiaaigdacaWGob aabeaakmaabmaabaGaeyyXICnacaGLOaGaayzkaaGaaGypaiaad6ea daahaaWcbeqaaiabgkHiTiaaigdaaaGcdaaeqaqabSqaaiaadUgacq GHiiIZcaWGvbaabeqdcqGHris5aOGaaGjcVlaaigdadaWgaaWcbaWa aiWaaeaacaWG5bWaaSbaaWqaaiaaigdacaWGRbaabeaaliabgsMiJk aaykW7cqGHflY1aiaawUhacaGL9baaaeqaaaaa@4E1C@ the finite population distribution function; see Sandström, Wretman and Waldèn (1988) and Deville (1997) for further details on the derivation of (2.4). Nygård and Sandström (1985) called the term 1 / N MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaWcgaqaaiabgkHiTiaaigdaaeaaca WGobaaaaaa@3482@ the Gini finite population correction and gave several reasons to make this correction, such as the non-negativity of the lower bound of G 1 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGhbWaaSbaaSqaaiaaigdaaeqaaO GaaiOlaaaa@3460@ As is frequently done in the literature (see for example Glasser, 1962), this correction is ignored in the sequel. We redefine the Gini coefficient as

G 1 = k U y 1 k { 2 F 1 N ( y 1 k ) 1 } t y 1 = { 2 F 1 N ( y ) 1 } y d M 1 ( y ) y d M 1 ( y ) ( 2.5 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGhbWaaSbaaSqaaiaaigdaaeqaaO GaaGjbVlaaykW7caaI9aGaaGjbVlaaykW7daWcaaqaamaaqababaGa amyEamaaBaaaleaacaaIXaGaam4AaaqabaGcdaGadaqaaiaaikdaca WGgbWaaSbaaSqaaiaaigdacaWGobaabeaakiaayIW7daqadaqaaiaa dMhadaWgaaWcbaGaaGymaiaadUgaaeqaaaGccaGLOaGaayzkaaGaey OeI0IaaGymaaGaay5Eaiaaw2haaaWcbaGaam4AaiabgIGiolaadwfa aeqaniabggHiLdaakeaacaWG0bWaaSbaaSqaaiaadMhacaaIXaaabe aaaaGccaaMe8UaaGypaiaaysW7daWcaaqaamaapeaabeWcbeqab0Ga ey4kIipakmaacmaabaGaaGOmaiaadAeadaWgaaWcbaGaaGymaiaad6 eaaeqaaOGaaGjcVpaabmaabaGaamyEaaGaayjkaiaawMcaaiabgkHi TiaaigdaaiaawUhacaGL9baacaWG5bGaamizaiaad2eadaWgaaWcba GaaGymaaqabaGccaaMi8+aaeWaaeaacaWG5baacaGLOaGaayzkaaaa baWaa8qaaeqaleqabeqdcqGHRiI8aOGaamyEaiaadsgacaWGnbWaaS baaSqaaiaaigdaaeqaaOGaaGjcVpaabmaabaGaamyEaaGaayjkaiaa wMcaaaaacaaMf8UaaGzbVlaaywW7caGGOaGaaGOmaiaac6cacaaI1a Gaaiykaaaa@7DC0@

where the finite population distribution function F 1 N ( ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGgbWaaSbaaSqaaiaaigdacaWGob aabeaakiaayIW7daqadaqaaiabgwSixdGaayjkaiaawMcaaaaa@39E4@ is a functional family

F 1 N ( y ) = 1 d M 1 ( y ) 1 { ξ y } d M 1 ( ξ ) ( 2.6 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGgbWaaSbaaSqaaiaaigdacaWGob aabeaakiaayIW7daqadaqaaiaadMhaaiaawIcacaGLPaaacaaMe8Ua aGPaVlaai2dacaaMe8UaaGPaVpaalaaabaGaaGymaaqaamaapeaabe Wcbeqab0Gaey4kIipakiaadsgacaWGnbWaaSbaaSqaaiaaigdaaeqa aOGaaGjcVpaabmaabaGaamyEaaGaayjkaiaawMcaaaaadaWdbaqabS qabeqaniabgUIiYdGccaaIXaWaaSbaaSqaamaacmaabaGaeqOVdGNa aGPaVlabgsMiJkaaykW7caWG5baacaGL7bGaayzFaaaabeaakiaads gacaWGnbWaaSbaaSqaaiaaigdaaeqaaOGaaGjcVpaabmaabaGaeqOV dGhacaGLOaGaayzkaaGaaGzbVlaaywW7caaMf8UaaGzbVlaaywW7ca GGOaGaaGOmaiaac6cacaaI2aGaaiykaaaa@68AD@

indexed by y . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWG5bGaaiOlaaaa@33A1@ Substituting M ^ 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaceWGnbGbaKaadaWgaaWcbaGaaGymaa qabaaaaa@33BA@ into (2.5) and (2.6) yields the estimator

G ^ 1 = { 2 F ^ 1 N ( y ) 1 } y d M ^ 1 ( y ) y d M ^ 1 ( y ) = k s w k { 2 F ^ 1 N ( y 1 k ) 1 } y 1 k k s w k y 1 k , ( 2.7 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaceWGhbGbaKaadaWgaaWcbaGaaGymaa qabaGccaaMe8UaaGPaVlaai2dacaaMe8UaaGPaVpaalaaabaWaa8qa aeqaleqabeqdcqGHRiI8aOWaaiWaaeaacaaIYaGabmOrayaajaWaaS baaSqaaiaaigdacaWGobaabeaakiaayIW7daqadaqaaiaadMhaaiaa wIcacaGLPaaacqGHsislcaaIXaaacaGL7bGaayzFaaGaamyEaiaads gaceWGnbGbaKaadaWgaaWcbaGaaGymaaqabaGccaaMi8+aaeWaaeaa caWG5baacaGLOaGaayzkaaaabaWaa8qaaeqaleqabeqdcqGHRiI8aO GaamyEaiaadsgaceWGnbGbaKaadaWgaaWcbaGaaGymaaqabaGccaaM i8+aaeWaaeaacaWG5baacaGLOaGaayzkaaaaaiaaysW7caaI9aGaaG jbVpaalaaabaWaaabeaeaacaWG3bWaaSbaaSqaaiaadUgaaeqaaOWa aiWaaeaacaaIYaGabmOrayaajaWaaSbaaSqaaiaaigdacaWGobaabe aakiaayIW7daqadaqaaiaadMhadaWgaaWcbaGaaGymaiaadUgaaeqa aaGccaGLOaGaayzkaaGaeyOeI0IaaGymaaGaay5Eaiaaw2haaiaadM hadaWgaaWcbaGaaGymaiaadUgaaeqaaaqaaiaadUgacqGHiiIZcaWG ZbaabeqdcqGHris5aaGcbaWaaabeaeaacaWG3bWaaSbaaSqaaiaadU gaaeqaaOGaamyEamaaBaaaleaacaaIXaGaam4AaaqabaaabaGaam4A aiabgIGiolaadohaaeqaniabggHiLdaaaOGaaGilaiaaywW7caaMf8 UaaGzbVlaacIcacaaIYaGaaiOlaiaaiEdacaGGPaaaaa@8850@

where

F ^ 1 N ( y ) = 1 d M ^ 1 ( y ) 1 { ξ y } d M ^ 1 ( ξ ) = 1 k s w k k s w k 1 { y 1 k y } ( 2.8 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaceWGgbGbaKaadaWgaaWcbaGaaGymai aad6eaaeqaaOGaaGjcVpaabmaabaGaamyEaaGaayjkaiaawMcaaiaa ysW7caaMc8UaaGypaiaaysW7caaMc8+aaSaaaeaacaaIXaaabaWaa8 qaaeqaleqabeqdcqGHRiI8aOGaamizaiqad2eagaqcamaaBaaaleaa caaIXaaabeaakiaayIW7daqadaqaaiaadMhaaiaawIcacaGLPaaaaa Waa8qaaeqaleqabeqdcqGHRiI8aOGaaGymamaaBaaaleaadaGadaqa aiabe67a4jaaykW7cqGHKjYOcaaMc8UaamyEaaGaay5Eaiaaw2haaa qabaGccaWGKbGabmytayaajaWaaSbaaSqaaiaaigdaaeqaaOGaaGjc VpaabmaabaGaeqOVdGhacaGLOaGaayzkaaGaaGjbVlaai2dacaaMe8 +aaSaaaeaacaaIXaaabaWaaabeaeaacaWG3bWaaSbaaSqaaiaadUga aeqaaaqaaiaadUgacqGHiiIZcaWGZbaabeqdcqGHris5aaaakmaaqa fabaGaam4DamaaBaaaleaacaWGRbaabeaakiaaigdadaWgaaWcbaWa aiWaaeaacaWG5bWaaSbaaWqaaiaaigdacaWGRbaabeaaliabgsMiJk aadMhaaiaawUhacaGL9baaaeqaaaqaaiaadUgacqGHiiIZcaWGZbaa beqdcqGHris5aOGaaGzbVlaaywW7caaMf8UaaGzbVlaacIcacaaIYa GaaiOlaiaaiIdacaGGPaaaaa@83BF@

is the substitution estimator of the distribution function F 1 N . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGgbWaaSbaaSqaaiaaigdacaWGob aabeaakiaac6caaaa@3532@

2.3  Linearization variance estimation

We give below some brief details about the influence function linearization (IFL) (Deville, 1999), which consists in giving a first-order expansion of the substitution estimator θ ^ 1 = T ( M ^ 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacuaH4oqCgaqcamaaBaaaleaacaaIXa aabeaakiaai2dacaWGubGaaGjcVpaabmaabaGabmytayaajaWaaSba aSqaaiaaigdaaeqaaaGccaGLOaGaayzkaaaaaa@3B35@ around the true value θ 1 = T ( M 1 ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaH4oqCdaWgaaWcbaGaaGymaaqaba GccaaI9aGaamivaiaayIW7daqadaqaaiaad2eadaWgaaWcbaGaaGym aaqabaaakiaawIcacaGLPaaacaGGSaaaaa@3BC5@ to approximate the error by a linear estimator of some artificial linearized variable. More precisely, the first derivatives of T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGubaaaa@32CA@ with respect to M 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGnbWaaSbaaSqaaiaaigdaaeqaaa aa@33AA@ are the influence functions

IT ( M 1 ; y ) = lim h 0 T ( M 1 + h δ y ) T ( M 1 ) h , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaqGjbGaaeivaiaayIW7daqadaqaai aad2eadaWgaaWcbaGaaGymaaqabaGccaaI7aGaamyEaaGaayjkaiaa wMcaaiaaysW7caaMc8UaaGypaiaaysW7caaMc8+aaybuaeqaleaaca WGObGaeyOKH4QaaGimaaqabOqaaiGacYgacaGGPbGaaiyBaaaadaWc aaqaaiaadsfacaaMi8+aaeWaaeaacaWGnbWaaSbaaSqaaiaaigdaae qaaOGaey4kaSIaamiAaiabes7aKnaaBaaaleaacaWG5baabeaaaOGa ayjkaiaawMcaaiabgkHiTiaadsfacaaMi8+aaeWaaeaacaWGnbWaaS baaSqaaiaaigdaaeqaaaGccaGLOaGaayzkaaaabaGaamiAaaaacaaI Saaaaa@5AC6@

and u 1 k = IT ( M 1 ; y 1 k ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWG1bWaaSbaaSqaaiaaigdacaWGRb aabeaakiaai2dacaqGjbGaaeivaiaayIW7daqadaqaaiaad2eadaWg aaWcbaGaaGymaaqabaGccaaI7aGaaGPaVlaadMhadaWgaaWcbaGaaG ymaiaadUgaaeqaaaGccaGLOaGaayzkaaaaaa@4142@ is the linearized variable for all k U . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGRbGaeyicI4Saamyvaiaac6caaa a@35F1@ Suppose that T ( ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGubGaaGjcVpaabmaabaGaeyyXIC nacaGLOaGaayzkaaaaaa@382E@ is homogeneous, namely there exists some positive number β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHYoGyaaa@3392@ dependent on T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGubaaaa@32CA@ such that T ( r M 1 ) = r β T ( M 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGubGaaGjcVpaabmaabaGaamOCai aad2eadaWgaaWcbaGaaGymaaqabaaakiaawIcacaGLPaaacaaI9aGa amOCamaaCaaaleqabaGaeqOSdigaaOGaamivaiaayIW7daqadaqaai aad2eadaWgaaWcbaGaaGymaaqabaaakiaawIcacaGLPaaaaaa@41EA@ for any real r > 0. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGYbGaaGOpaiaaicdacaaIUaaaaa@3522@ Assume also that lim N N β T ( M 1 ) < . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaqGSbGaaeyAaiaab2gadaWgaaWcba GaamOtaiabgkziUkabg6HiLcqabaGccaWGobWaaWbaaSqabeaacqGH sislcqaHYoGyaaGccaWGubGaaGjcVpaabmaabaGaamytamaaBaaale aacaaIXaaabeaaaOGaayjkaiaawMcaaiaaiYdacqGHEisPcaGGUaaa aa@455A@ Under some additional regularity assumptions upon T ( ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGubGaaGjcVpaabmaabaGaeyyXIC nacaGLOaGaayzkaaaaaa@382E@ and the sampling design (e.g., Goga and Ruiz-Gazen, 2014), Deville (1999) establishes that

θ ^ 1 θ 1 = ( k s w k u 1 k k U u 1 k ) + o p ( N β n 1 / 2 ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacuaH4oqCgaqcamaaBaaaleaacaaIXa aabeaakiabgkHiTiabeI7aXnaaBaaaleaacaaIXaaabeaakiaaysW7 caaMc8UaaGypaiaaysW7caaMc8+aaeWaaeaadaaeqbqaaiaadEhada WgaaWcbaGaam4AaaqabaGccaWG1bWaaSbaaSqaaiaaigdacaWGRbaa beaaaeaacaWGRbGaeyicI4Saam4Caaqab0GaeyyeIuoakiabgkHiTm aaqafabaGaamyDamaaBaaaleaacaaIXaGaam4AaaqabaaabaGaam4A aiabgIGiolaadwfaaeqaniabggHiLdaakiaawIcacaGLPaaacqGHRa WkcaWGVbWaaSbaaSqaaiaadchaaeqaaOWaaeWaaeaacaWGobWaaWba aSqabeaacqaHYoGyaaGccaWGUbWaaWbaaSqabeaadaWcgaqaaiabgk HiTiaaigdaaeaacaaIYaaaaaaaaOGaayjkaiaawMcaaiaaiYcaaaa@5FF9@

so that the error θ ^ 1 θ 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacuaH4oqCgaqcamaaBaaaleaacaaIXa aabeaakiabgkHiTiabeI7aXnaaBaaaleaacaaIXaaabeaaaaa@3832@ can be approximated by the error of the HT estimator for the total of the linearized variable u 1 k . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWG1bWaaSbaaSqaaiaaigdacaWGRb aabeaakiaac6caaaa@357E@ For a without-replacement sampling design, using a sample-based estimator u ^ 1 k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaceWG1bGbaKaadaWgaaWcbaGaaGymai aadUgaaeqaaaaa@34D2@ of the linearized variable u 1 k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWG1bWaaSbaaSqaaiaaigdacaWGRb aabeaaaaa@34C2@ in the HT variance estimator yields the variance estimator

v LIN HT ( θ ^ 1 ) = k s l s Δ k l π k l u ^ 1 k π k u ^ 1 l π l , ( 2.9 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWG2bWaa0baaSqaaiaabYeacaqGjb GaaeOtaaqaaiaabIeacaqGubaaaOWaaeWaaeaacuaH4oqCgaqcamaa BaaaleaacaaIXaaabeaaaOGaayjkaiaawMcaaiaaysW7caaMc8UaaG ypaiaaysW7caaMc8+aaabuaeqaleaacaWGRbGaeyicI4Saam4Caaqa b0GaeyyeIuoakmaaqafabeWcbaGaamiBaiabgIGiolaadohaaeqani abggHiLdGcdaWcaaqaaiabfs5aenaaBaaaleaacaWGRbGaamiBaaqa baaakeaacqaHapaCdaWgaaWcbaGaam4AaiaadYgaaeqaaaaakmaala aabaGabmyDayaajaWaaSbaaSqaaiaaigdacaWGRbaabeaaaOqaaiab ec8aWnaaBaaaleaacaWGRbaabeaaaaGcdaWcaaqaaiqadwhagaqcam aaBaaaleaacaaIXaGaamiBaaqabaaakeaacqaHapaCdaWgaaWcbaGa amiBaaqabaaaaOGaaGilaiaaywW7caaMf8UaaGzbVlaaywW7caaMf8 UaaiikaiaaikdacaGGUaGaaGyoaiaacMcaaaa@6CC1@

where π k l = Pr ( k , l s ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHapaCdaWgaaWcbaGaam4AaiaadY gaaeqaaOGaaGypaiaabcfacaqGYbGaaGjcVlaayIW7daqadaqaaiaa dUgacaaISaGaaGPaVlaadYgacqGHiiIZcaWGZbaacaGLOaGaayzkaa aaaa@439D@ denotes the probability that units k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGRbaaaa@32E1@ and l MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGSbaaaa@32E2@ are selected jointly in the sample, and Δ k l = π k l π k π l . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqqHuoardaWgaaWcbaGaam4AaiaadY gaaeqaaOGaaGypaiabec8aWnaaBaaaleaacaWGRbGaamiBaaqabaGc cqGHsislcqaHapaCdaWgaaWcbaGaam4AaaqabaGccqaHapaCdaWgaa WcbaGaamiBaaqabaGccaGGUaaaaa@416F@ Several results of asymptotic normality have been proved for specific sampling designs, see Hájek (1960, 1961, 1964), Rosén (1972), Sen (1980), Krewski and Rao (1981), Gordon (1983), Ohlsson (1986, 1989), Chen and Rao (2007), Brändén and Jonasson (2012), Saegusa and Wellner (2013) and Chauvet (2015), among others. If the sampling design is such that the substitution estimator θ ^ 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacuaH4oqCgaqcamaaBaaaleaacaaIXa aabeaaaaa@349E@ satisfies a central-limit theorem, an approximately ( 1 2 α ) % MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaqadaqaaiaaigdacqGHsislcaaIYa GaeqySdegacaGLOaGaayzkaaGaaGjcVlaaiwcaaaa@39BD@ confidence interval is [ θ ^ 1 z α v lin ( θ ^ 1 ) , θ ^ 1 + z α v lin ( θ ^ 1 ) ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaWadaqaaiqbeI7aXzaajaWaaSbaaS qaaiaaigdaaeqaaOGaeyOeI0IaamOEamaaBaaaleaacqaHXoqyaeqa aOWaaOaaaeaacaWG2bWaaSbaaSqaaiaabYgacaqGPbGaaeOBaaqaba GccaaMi8+aaeWaaeaacuaH4oqCgaqcamaaBaaaleaacaaIXaaabeaa aOGaayjkaiaawMcaaaWcbeaakiaaiYcacaaMc8UafqiUdeNbaKaada WgaaWcbaGaaGymaaqabaGccqGHRaWkcaWG6bWaaSbaaSqaaiabeg7a HbqabaGcdaGcaaqaaiaadAhadaWgaaWcbaGaaeiBaiaabMgacaqGUb aabeaakiaayIW7daqadaqaaiqbeI7aXzaajaWaaSbaaSqaaiaaigda aeqaaaGccaGLOaGaayzkaaaaleqaaaGccaGLBbGaayzxaaaaaa@56EF@ where z α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWG6bWaaSbaaSqaaiabeg7aHbqaba aaaa@34BB@ is the upper α % MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHXoqycaaILaaaaa@343F@ cutoff for the standard normal distribution.

In case of the Gini coefficient, we have β = 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHYoGycaaI9aGaaGimaaaa@3513@ and the linearized variable is

u 1 k = 2 F 1 N ( y 1 k ) y 1 k y ¯ 1 k , U < t y 1 y 1 k G 1 + 1 t y 1 + 1 G 1 N , ( 2.10 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWG1bWaaSbaaSqaaiaaigdacaWGRb aabeaakiaaysW7caaMc8UaaGypaiaaysW7caaMc8UaaGOmaiaadAea daWgaaWcbaGaaGymaiaad6eaaeqaaOGaaGjcVpaabmaabaGaamyEam aaBaaaleaacaaIXaGaam4AaaqabaaakiaawIcacaGLPaaadaWcaaqa aiaadMhadaWgaaWcbaGaaGymaiaadUgaaeqaaOGaeyOeI0IabmyEay aaraWaaSbaaSqaaiaaigdacaWGRbGaaGilaiaadwfacaaI8aaabeaa aOqaaiaadshadaWgaaWcbaGaamyEaiaaigdaaeqaaaaakiabgkHiTi aadMhadaWgaaWcbaGaaGymaiaadUgaaeqaaOWaaSaaaeaacaWGhbWa aSbaaSqaaiaaigdaaeqaaOGaey4kaSIaaGymaaqaaiaadshadaWgaa WcbaGaamyEaiaaigdaaeqaaaaakiabgUcaRmaalaaabaGaaGymaiab gkHiTiaadEeadaWgaaWcbaGaaGymaaqabaaakeaacaWGobaaaiaaiY cacaaMf8UaaGzbVlaaywW7caaMf8UaaGzbVlaacIcacaaIYaGaaiOl aiaaigdacaaIWaGaaiykaaaa@6D17@

where y ¯ 1k,U< = ( lU 1 { y 1l < y 1k }     ) 1 jU y 1j 1 { y 1j < y 1k } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaceWG5bGbaebadaWgaaWcbaGaaGymai aadUgacaaISaGaamyvaiaaiYdaaeqaaOGaaGypamaabmaabaWaaabe aeqaleaacaWGSbGaeyicI4Saamyvaaqab0GaeyyeIuoakiaayIW7ca aIXaWaaSbaaSqaaiaaiUhacaWG5bWaaSbaaWqaaiaaigdacaWGSbaa beaaliaaiYdacaWG5bWaaSbaaWqaaiaaigdacaWGRbaabeaaliaai2 haaeqaaOGaaGjbVdGaayjkaiaawMcaamaaCaaaleqabaGaeyOeI0Ia aGymaaaakmaaqababaGaamyEamaaBaaaleaacaaIXaGaamOAaaqaba GccaaIXaWaaSbaaSqaamaacmaabaGaamyEamaaBaaameaacaaIXaGa amOAaaqabaWccaaI8aGaamyEamaaBaaameaacaaIXaGaam4Aaaqaba aaliaawUhacaGL9baaaeqaaaqaaiaadQgacqGHiiIZcaWGvbaabeqd cqGHris5aaaa@5EF0@   denotes the mean of the y 1 j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWG5bWaaSbaaSqaaiaaigdacaWGQb aabeaaaaa@34C5@ lower than y 1 k , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWG5bWaaSbaaSqaaiaaigdacaWGRb aabeaakiaacYcaaaa@3580@ see Deville (1999). Kovačević and Binder (1997) derived the same expression by means of the estimating equations linearization method; using the Demnati and Rao (2004) linearization approach also leads to the same result. The estimated linearized variable is

u ^ 1 k = 2 F ^ 1 N ( y 1 k ) y 1 k y ¯ 1 k , s < t ^ y 1 y 1 k G ^ 1 + 1 t ^ y 1 + 1 G ^ 1 N ^ ( 2.11 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaceWG1bGbaKaadaWgaaWcbaGaaGymai aadUgaaeqaaOGaaGjbVlaaykW7caaI9aGaaGjbVlaaykW7caaIYaGa bmOrayaajaWaaSbaaSqaaiaaigdacaWGobaabeaakiaayIW7daqada qaaiaadMhadaWgaaWcbaGaaGymaiaadUgaaeqaaaGccaGLOaGaayzk aaWaaSaaaeaacaWG5bWaaSbaaSqaaiaaigdacaWGRbaabeaakiabgk HiTiqadMhagaqeamaaBaaaleaacaaIXaGaam4AaiaaygW7caaISaGa aGPaVlaadohacaaI8aaabeaaaOqaaiqadshagaqcamaaBaaaleaaca WG5bGaaGymaaqabaaaaOGaeyOeI0IaamyEamaaBaaaleaacaaIXaGa am4AaaqabaGcdaWcaaqaaiqadEeagaqcamaaBaaaleaacaaIXaaabe aakiabgUcaRiaaigdaaeaaceWG0bGbaKaadaWgaaWcbaGaamyEaiaa igdaaeqaaaaakiabgUcaRmaalaaabaGaaGymaiabgkHiTiqadEeaga qcamaaBaaaleaacaaIXaaabeaaaOqaaiqad6eagaqcaaaacaaMf8Ua aGzbVlaaywW7caaMf8UaaiikaiaaikdacaGGUaGaaGymaiaaigdaca GGPaaaaa@6E77@

where y ¯ 1 k , s < = ( l s w l 1 { y 1 l < y 1 k } ) 1 j s w j y 1 j 1 { y 1 j < y 1 k } . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaceWG5bGbaebadaWgaaWcbaGaaGymai aadUgacaaMb8UaaGilaiaaykW7caWGZbGaaGipaaqabaGccaaI9aWa aeWaaeaadaaeqaqaaiaadEhadaWgaaWcbaGaamiBaaqabaGccaaIXa WaaSbaaSqaamaacmaabaGaamyEamaaBaaameaacaaIXaGaamiBaaqa baWccaaI8aGaamyEamaaBaaameaacaaIXaGaam4AaaqabaaaliaawU hacaGL9baaaeqaaaqaaiaadYgacqGHiiIZcaWGZbaabeqdcqGHris5 aaGccaGLOaGaayzkaaWaaWbaaSqabeaacqGHsislcaaIXaaaaOWaaa beaeaacaWG3bWaaSbaaSqaaiaadQgaaeqaaOGaamyEamaaBaaaleaa caaIXaGaamOAaaqabaGccaaIXaWaaSbaaSqaamaacmaabaGaamyEam aaBaaameaacaaIXaGaamOAaaqabaWccaaI8aGaamyEamaaBaaameaa caaIXaGaam4AaaqabaaaliaawUhacaGL9baaaeqaaaqaaiaadQgacq GHiiIZcaWGZbaabeqdcqGHris5aOGaaiOlaaaa@6450@

In the particular SI case, the linearization variance estimator for the Gini coefficient is

v LIN HT ( G ^ 1 ) = N 2 ( 1 n 1 N ) S u ^ 1 , s 2 where S u ^ 1 , s 2 = 1 n 1 k s ( u ^ 1 k u ^ ¯ 1, s ) 2 , ( 2.12 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWG2bWaa0baaSqaaiaabYeacaqGjb GaaeOtaaqaaiaabIeacaqGubaaaOGaaGjcVpaabmaabaGabm4rayaa jaWaaSbaaSqaaiaaigdaaeqaaaGccaGLOaGaayzkaaGaaGjbVlaayk W7caaI9aGaaGjbVlaaykW7caWGobWaaWbaaSqabeaacaaIYaaaaOWa aeWaaeaadaWcaaqaaiaaigdaaeaacaWGUbaaaiabgkHiTmaalaaaba GaaGymaaqaaiaad6eaaaaacaGLOaGaayzkaaGaam4uamaaDaaaleaa ceWG1bGbaKaadaWgaaadbaGaaGymaaqabaWccaaMb8UaaGilaiaayk W7caWGZbaabaGaaGOmaaaakiaaysW7caaMc8UaaGPaVlaaykW7caqG 3bGaaeiAaiaabwgacaqGYbGaaeyzaiaaysW7caaMc8UaaGPaVlaayk W7caWGtbWaa0baaSqaaiqadwhagaqcamaaBaaameaacaaIXaaabeaa liaaygW7caaISaGaaGPaVlaadohaaeaacaaIYaaaaOGaaGjbVlaayk W7caaI9aGaaGjbVlaaykW7daWcaaqaaiaaigdaaeaacaWGUbGaeyOe I0IaaGymaaaadaaeqbqaamaabmaabaGabmyDayaajaWaaSbaaSqaai aaigdacaWGRbaabeaakiabgkHiTiqadwhagaqcgaqeamaaBaaaleaa caaIXaGaaGilaiaaykW7caWGZbaabeaaaOGaayjkaiaawMcaaaWcba Gaam4AaiabgIGiolaadohaaeqaniabggHiLdGcdaahaaWcbeqaaiaa ikdaaaGccaaISaGaaGzbVlaaywW7caGGOaGaaGOmaiaac6cacaaIXa GaaGOmaiaacMcaaaa@9067@

and where u ^ ¯ 1, s = n 1 k s u ^ 1 k . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaceWG1bGbaKGbaebadaWgaaWcbaGaaG ymaiaaiYcacaaMc8Uaam4CaaqabaGccaaI9aGaamOBamaaCaaaleqa baGaeyOeI0IaaGymaaaakmaaqababaGabmyDayaajaWaaSbaaSqaai aaigdacaWGRbaabeaaaeaacaWGRbGaeyicI4Saam4Caaqab0Gaeyye Iuoakiaac6caaaa@43B6@ In the particular case of multistage sampling and with-replacement sampling of PSUs, the linearization variance estimator for the Gini coefficient is

v LIN HH ( G ^ 1 ) = m m 1 i s I ( U ^ 1 i π I i t ^ u ^ 1 HH m ) 2 where U ^ 1 i = k s i π k | i 1 u ^ 1 k . ( 2.13 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWG2bWaa0baaSqaaiaabYeacaqGjb GaaeOtaaqaaiaabIeacaqGibaaaOGaaGjcVpaabmaabaGabm4rayaa jaWaaSbaaSqaaiaaigdaaeqaaaGccaGLOaGaayzkaaGaaGjbVlaayk W7caaI9aGaaGjbVlaaykW7daWcaaqaaiaad2gaaeaacaWGTbGaeyOe I0IaaGymaaaadaaeqbqabSqaaiaadMgacqGHiiIZcaWGZbWaaSbaaW qaaiaadMeaaeqaaaWcbeqdcqGHris5aOWaaeWaaeaadaWcaaqaaiqa dwfagaqcamaaBaaaleaacaaIXaGaamyAaaqabaaakeaacqaHapaCda WgaaWcbaGaamysaiaadMgaaeqaaaaakiabgkHiTmaalaaabaGabmiD ayaajaWaa0baaSqaaiqadwhagaqcamaaBaaameaacaaIXaaabeaaaS qaaiaabIeacaqGibaaaaGcbaGaamyBaaaaaiaawIcacaGLPaaadaah aaWcbeqaaiaaikdaaaGccaaMe8UaaGPaVlaaykW7caaMc8Uaae4Dai aabIgacaqGLbGaaeOCaiaabwgacaaMe8UaaGPaVlaaykW7caaMc8Ua bmyvayaajaWaaSbaaSqaaiaaigdacaWGPbaabeaakiaaysW7caaMc8 UaaGypaiaaysW7caaMc8+aaabuaeaacqaHapaCdaqhaaWcbaWaaqGa aeaacaWGRbGaaGjcVdGaayjcSdGaaGjcVlaadMgaaeaacqGHsislca aIXaaaaOGabmyDayaajaWaaSbaaSqaaiaaigdacaWGRbaabeaaaeaa caWGRbGaeyicI4Saam4CamaaBaaameaacaWGPbaabeaaaSqab0Gaey yeIuoakiaai6cacaaMf8UaaGzbVlaaywW7caaMf8Uaaiikaiaaikda caGGUaGaaGymaiaaiodacaGGPaaaaa@96BE@

2.4  Bootstrap variance estimation

The use of bootstrap techniques in survey sampling has been extensively studied in the literature. The main bootstrap techniques may be thought as particular cases of the weighted bootstrap (Bertail and Combris, 1997; Antal and Tillé, 2011; Beaumont and Patak, 2012); see also Shao and Tu (1995, Chapter 6), Davison and Hinkley (1997, Section 3.7) and Davison and Sardy (2007) for detailed reviews. Under a weighted bootstrap procedure, the measure M ^ 1 = s w k δ y k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaceWGnbGbaKaadaWgaaWcbaGaaGymaa qabaGccaaI9aWaaabeaeaacaWG3bWaaSbaaSqaaiaadUgaaeqaaOGa eqiTdq2aaSbaaSqaaiaadMhadaWgaaqaaiaadUgaaeqaaaqabaaaba Gaam4Caaqab0GaeyyeIuoaaaa@3D5D@ is estimated, conditionally on the sample s , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGZbGaaiilaaaa@3399@ by the bootstrap measure

M ^ 1 * = k s w k D k δ y k ( 2.14 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaceWGnbGbaKaadaqhaaWcbaGaaGymaa qaaiaacQcaaaGccaaMe8UaaGPaVlaai2dacaaMe8UaaGPaVpaaqafa baGaam4DamaaBaaaleaacaWGRbaabeaakiaadseadaWgaaWcbaGaam 4AaaqabaGccqaH0oazdaWgaaWcbaGaamyEamaaBaaameaacaWGRbaa beaaaSqabaaabaGaam4AaiabgIGiolaadohaaeqaniabggHiLdGcca aMf8UaaGzbVlaaywW7caaMf8UaaGzbVlaacIcacaaIYaGaaiOlaiaa igdacaaI0aGaaiykaaaa@5506@

where D = { D k } k s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGebGaaGypamaacmaabaGaamiram aaBaaaleaacaWGRbaabeaaaOGaay5Eaiaaw2haamaaBaaaleaacaWG RbGaeyicI4Saam4Caaqabaaaaa@3B39@ denotes a (random) vector of resampling weights. We note E * MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGfbWaaSbaaSqaaiaacQcaaeqaaa aa@3395@ and V * MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGwbWaaSbaaSqaaiaacQcaaeqaaa aa@33A6@ for the expectation and variance with respect to the resampling scheme. In case of without-replacement sampling, the vector D MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGebaaaa@32BA@ is generated in such a way that

E * ( s w k D k y k ) t ^ y 1 HT and V * ( s w k D k y k ) v HT ( t ^ y 1 HT ) ( 2.15 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGfbWaaSbaaSqaaiaacQcaaeqaaO WaaeWaaeaadaaeqbqabSqaaiaadohaaeqaniabggHiLdGccaaMc8Ua am4DamaaBaaaleaacaWGRbaabeaakiaadseadaWgaaWcbaGaam4Aaa qabaGccaWG5bWaaSbaaSqaaiaadUgaaeqaaaGccaGLOaGaayzkaaGa aGjbVlaaykW7rqqr1ngBPrgifHhDYfgaiqaacqWFdjYocaaMe8UaaG PaVlqadshagaqcamaaDaaaleaacaWG5bGaaGymaaqaaiaabIeacaqG ubaaaOGaaGjbVlaaykW7caaMc8UaaGPaVlaaykW7caqGHbGaaeOBai aabsgacaaMe8UaaGPaVlaaykW7caaMc8UaaGPaVlaadAfadaWgaaWc baGaaiOkaaqabaGcdaqadaqaamaaqafabeWcbaGaam4Caaqab0Gaey yeIuoakiaaykW7caWG3bWaaSbaaSqaaiaadUgaaeqaaOGaamiramaa BaaaleaacaWGRbaabeaakiaadMhadaWgaaWcbaGaam4Aaaqabaaaki aawIcacaGLPaaacaaMe8UaaGPaVlab=nKi7iaaysW7caaMc8UaamOD amaaCaaaleqabaGaaeisaiaabsfaaaGcdaqadaqaaiqadshagaqcam aaDaaaleaacaWG5bGaaGymaaqaaiaabIeacaqGubaaaaGccaGLOaGa ayzkaaGaaGzbVlaaywW7caaMf8UaaGzbVlaacIcacaaIYaGaaiOlai aaigdacaaI1aGaaiykaaaa@8BBA@

so that the two first moments of the HT-estimator are approximately matched. In case of with-replacement sampling, the vector D MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGebaaaa@32BA@ is generated in such a way that

E * ( s w k D k y k ) t ^ y 1 HH and V * ( s w k D k y k ) v HH ( t ^ y 1 HH ) ( 2.16 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGfbWaaSbaaSqaaiaaiQcaaeqaaO WaaeWaaeaadaaeqbqabSqaaiaadohaaeqaniabggHiLdGccaaMc8Ua am4DamaaBaaaleaacaWGRbaabeaakiaadseadaWgaaWcbaGaam4Aaa qabaGccaWG5bWaaSbaaSqaaiaadUgaaeqaaaGccaGLOaGaayzkaaGa aGjbVlaaykW7rqqr1ngBPrgifHhDYfgaiqaacqWFdjYocaaMe8UaaG PaVlqadshagaqcamaaDaaaleaacaWG5bGaaGymaaqaaiaabIeacaqG ibaaaOGaaGjbVlaaykW7caaMc8UaaGPaVlaaykW7caqGHbGaaeOBai aabsgacaaMe8UaaGPaVlaaykW7caaMc8UaaGPaVlaadAfadaWgaaWc baGaaGOkaaqabaGcdaqadaqaamaaqafabeWcbaGaam4Caaqab0Gaey yeIuoakiaaykW7caWG3bWaaSbaaSqaaiaadUgaaeqaaOGaamiramaa BaaaleaacaWGRbaabeaakiaadMhadaWgaaWcbaGaam4Aaaqabaaaki aawIcacaGLPaaacaaMe8UaaGPaVlab=nKi7iaaysW7caaMc8UaamOD amaaCaaaleqabaGaaeisaiaabIeaaaGcdaqadaqaaiqadshagaqcam aaDaaaleaacaWG5bGaaGymaaqaaiaabIeacaqGibaaaaGccaGLOaGa ayzkaaGaaGzbVlaaywW7caaMf8UaaiikaiaaikdacaGGUaGaaGymai aaiAdacaGGPaaaaa@8A15@

so that the two first moments of the HH-estimator are approximately matched.

Under any weighted bootstrap technique, the plug-in estimator of θ 1 = T ( M 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaH4oqCdaWgaaWcbaGaaGymaaqaba GccaaI9aGaamivaiaayIW7daqadaqaaiaad2eadaWgaaWcbaGaaGym aaqabaaakiaawIcacaGLPaaaaaa@3B15@ is θ ^ 1 * = T ( M ^ 1 * ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacuaH4oqCgaqcamaaDaaaleaacaaIXa aabaGaaiOkaaaakiaai2dacaWGubGaaGjcVpaabmaabaGabmytayaa jaWaa0baaSqaaiaaigdaaeaacaGGQaaaaaGccaGLOaGaayzkaaGaai ilaaaa@3D43@ and the variance of θ ^ 1 = T ( M ^ 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacuaH4oqCgaqcamaaBaaaleaacaaIXa aabeaakiaai2dacaWGubGaaGjcVpaabmaabaGabmytayaajaWaaSba aSqaaiaaigdaaeqaaaGccaGLOaGaayzkaaaaaa@3B35@ is estimated by

V * ( θ ^ 1 * ) = E * { θ ^ 1 * E * ( θ ^ 1 * ) } 2 . ( 2.17 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGwbWaaSbaaSqaaiaacQcaaeqaaO WaaeWaaeaacuaH4oqCgaqcamaaDaaaleaacaaIXaaabaGaaiOkaaaa aOGaayjkaiaawMcaaiaaysW7caaMc8UaaGypaiaaysW7caaMc8Uaam yramaaBaaaleaacaGGQaaabeaakmaacmaabaGafqiUdeNbaKaadaqh aaWcbaGaaGymaaqaaiaacQcaaaGccqGHsislcaWGfbWaaSbaaSqaai aacQcaaeqaaOWaaeWaaeaacuaH4oqCgaqcamaaDaaaleaacaaIXaaa baGaaiOkaaaaaOGaayjkaiaawMcaaaGaay5Eaiaaw2haamaaCaaale qabaGaaGOmaaaakiaaygW7caaIUaGaaGzbVlaaywW7caaMf8UaaGzb VlaacIcacaaIYaGaaiOlaiaaigdacaaI3aGaaiykaaaa@5C14@

Since the variance estimator (2.17) may be difficult to compute exactly, a simulation-based variance estimator may be used instead. More precisely, C MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGdbaaaa@32B9@ independent realizations D 1 , , D C MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGebWaaSbaaSqaaiaaigdaaeqaaO GaaGilaiaaykW7cqWIMaYscaaISaGaaGPaVlaadseadaWgaaWcbaGa am4qaaqabaaaaa@3B0C@ of the vector D MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGebaaaa@32BA@ are generated, and we denote θ ^ 1 c * = T ( M ^ 1 c * ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacuaH4oqCgaqcamaaDaaaleaacaaIXa Gaam4yaaqaaiaacQcaaaGccaaI9aGaamivaiaayIW7daqadaqaaiqa d2eagaqcamaaDaaaleaacaaIXaGaam4yaaqaaiaacQcaaaaakiaawI cacaGLPaaaaaa@3E63@ with M ^ 1 c * MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaceWGnbGbaKaadaqhaaWcbaGaaGymai aadogaaeaacaGGQaaaaaaa@3551@ the Bootstrap measure associated to the vector D c . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGebWaaSbaaSqaaiaadogaaeqaaO GaaiOlaaaa@348A@ Then V ( θ ^ 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGwbGaaGjcVpaabmaabaGafqiUde NbaKaadaWgaaWcbaGaaGymaaqabaaakiaawIcacaGLPaaaaaa@389D@ is estimated by

v B ( θ ^ 1 ) = 1 C 1 c = 1 C { θ ^ 1 c * 1 C c = 1 C θ ^ 1 c * } 2 . ( 2.18 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWG2bWaaSbaaSqaaiaadkeaaeqaaO WaaeWaaeaacuaH4oqCgaqcamaaBaaaleaacaaIXaaabeaaaOGaayjk aiaawMcaaiaaysW7caaMc8UaaGypaiaaysW7caaMc8+aaSaaaeaaca aIXaaabaGaam4qaiabgkHiTiaaigdaaaGaaGiiamaaqahabeWcbaGa am4yaiaai2dacaaIXaaabaGaam4qaaqdcqGHris5aOWaaiWaaeaacu aH4oqCgaqcamaaDaaaleaacaaIXaGaam4yaaqaaiaacQcaaaGccqGH sisldaWcaaqaaiaaigdaaeaacaWGdbaaaiaaiccadaaeWbqaaiqbeI 7aXzaajaWaa0baaSqaaiaaigdacaWGJbWaaWbaaWqabeaacWaGyBOm GikaaaWcbaGaaiOkaaaaaeaacaWGJbWaaWbaaWqabeaacWaGyBOmGi kaaSGaaGypaiaaigdaaeaacaWGdbaaniabggHiLdaakiaawUhacaGL 9baadaahaaWcbeqaaiaaikdaaaGccaaMb8UaaGOlaiaaywW7caaMf8 UaaGzbVlaaywW7caaMf8UaaiikaiaaikdacaGGUaGaaGymaiaaiIda caGGPaaaaa@7154@

Two types of confidence intervals are usually computed. The percentile method makes use of the ordered bootstrap estimates θ ^ ( 1 c ) * , c = 1, , C MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacuaH4oqCgaqcamaaDaaaleaadaqada qaaiaaigdacaWGJbaacaGLOaGaayzkaaaabaGaaiOkaaaakiaaygW7 caaISaGaaGjbVlaadogacaaI9aGaaGymaiaaiYcacaaMc8UaeSOjGS KaaGilaiaaykW7caWGdbaaaa@446B@ to form a ( 1 2 α ) % MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaqadaqaaiaaigdacqGHsislcaaIYa GaeqySdegacaGLOaGaayzkaaGaaGjcVlaaiwcaaaa@39BD@ confidence interval [ θ ^ ( 1 L ) * , θ ^ ( 1 U ) * ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaWadaqaaiqbeI7aXzaajaWaa0baaS qaamaabmaabaGaaGymaiaadYeaaiaawIcacaGLPaaaaeaacaGGQaaa aOGaaGilaiaaykW7cuaH4oqCgaqcamaaDaaaleaadaqadaqaaiaaig dacaWGvbaacaGLOaGaayzkaaaabaGaaiOkaaaaaOGaay5waiaaw2fa aaaa@41AD@ with L = α C MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGmbGaaGypaiabeg7aHjaadoeaaa a@35F0@ and U = ( 1 α ) C . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGvbGaaGypamaabmaabaGaaGymai abgkHiTiabeg7aHbGaayjkaiaawMcaaiaadoeacaGGUaaaaa@39DC@ The bootstrap t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqGHsislcaWG0baaaa@33D7@ involves the estimation of the pivotal statistic t = ( θ ^ 1 θ 1 ) / v BWO ( θ ^ 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWG0bGaaGypamaalyaabaWaaeWaae aacuaH4oqCgaqcamaaBaaaleaacaaIXaaabeaakiabgkHiTiabeI7a XnaaBaaaleaacaaIXaaabeaaaOGaayjkaiaawMcaaaqaamaakaaaba GaamODamaaBaaaleaacaqGcbGaae4vaiaab+eaaeqaaOWaaeWaaeaa cuaH4oqCgaqcamaaBaaaleaacaaIXaaabeaaaOGaayjkaiaawMcaaa Wcbeaaaaaaaa@4398@ by its bootstrap counterpart t * = ( θ ^ 1 * θ ^ 1 ) / v BWO * ( θ ^ 1 * ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWG0bWaaWbaaSqabeaacaGGQaaaaO GaaGypamaalyaabaWaaeWaaeaacuaH4oqCgaqcamaaDaaaleaacaaI XaaabaGaaiOkaaaakiabgkHiTiqbeI7aXzaajaWaaSbaaSqaaiaaig daaeqaaaGccaGLOaGaayzkaaaabaWaaOaaaeaacaWG2bWaa0baaSqa aiaabkeacaqGxbGaae4taaqaaiaacQcaaaGcdaqadaqaaiqbeI7aXz aajaWaa0baaSqaaiaaigdaaeaacaGGQaaaaaGccaGLOaGaayzkaaaa leqaaaaakiaacYcaaaa@4754@ where v BWO * ( θ ^ 1 * ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWG2bWaa0baaSqaaiaabkeacaqGxb Gaae4taaqaaiaacQcaaaGcdaqadaqaaiqbeI7aXzaajaWaa0baaSqa aiaaigdaaeaacaGGQaaaaaGccaGLOaGaayzkaaaaaa@3B31@ is obtained by applying the bootstrap procedure to the resample s * . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGZbWaaWbaaSqabeaacaGGQaaaaO GaaGzaVlaac6caaaa@360A@ The bootstrap t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqGHsislcaWG0baaaa@33D7@ is computationally very intensive since a double bootstrap is required, and is thus less attractive for a data user. Therefore, we do not pursue this approach further and we focus on the percentile method.

Linearization methods provide variance formulas applicable to general sampling designs, but involve possibly intricate computation of derivatives for complex parameters of interest such as the Gini coefficient. Unlike the linearization, the bootstrap avoids theoretical work by re-calculating the existing estimation system repeatedly. Replicate weights are supplied with the data set, and may be easily used to produce variance estimates for a wide range of statistics. However, a bootstrap technique is usually not suitable for general sampling designs. That is, a particular sampling design usually requires a tailor made resampling scheme. In this paper, we focus on two particular bootstrap techniques, which will be generalized in Section 3 to the two-sample context.

2.4.1  Without-replacement bootstrap for SI sampling

When the sample s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGZbaaaa@32E9@ is selected by means of SI, we consider the without replacement bootstrap (BWO) introduced by Gross (1980). The approach is readily extended to stratified simple random sampling (STSI) with a finite number of strata. Suppose that N / n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaWcgaqaaiaad6eaaeaacaWGUbaaaa aa@33CD@ is an integer. Then the vector D MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGebaaaa@32BA@ is obtained by, first creating a pseudo-population U * MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGvbWaaWbaaSqabeaacaGGQaaaaa aa@33A6@ of size N MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGobaaaa@32C4@ by duplicating N / n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaWcgaqaaiaad6eaaeaacaWGUbaaaa aa@33CD@ times each unit k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGRbaaaa@32E1@ in the original sample s , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGZbGaaiilaaaa@3399@ and then by selecting a SI resample s * MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGZbWaaWbaaSqabeaacaGGQaaaaa aa@33C4@ of size n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGUbaaaa@32E4@ in U * . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGvbWaaWbaaSqabeaacaGGQaaaaO GaaGzaVlaac6caaaa@35EC@

The bootstrap measure is given by (2.14), where the resampling weight D k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGebWaaSbaaSqaaiaadUgaaeqaaa aa@33D6@ is the number of times unit k s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGRbGaeyicI4Saam4Caaaa@355D@ is selected in s * . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGZbWaaWbaaSqabeaacaGGQaaaaO GaaGzaVlaac6caaaa@360A@ The building of U * MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGvbWaaWbaaSqabeaacaGGQaaaaa aa@33A6@ may be avoided by noting that under the BWO procedure, the vector D MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGebaaaa@32BA@ follows a multivariate hypergeometric distribution. Therefore, the resampling weights may be directly generated. It can be shown that the BWO procedure leads to

E * ( s w k D k y k ) = t ^ y 1 HT and V * ( s w k D k y k ) = 1 n 1 1 N 1 v HT ( t ^ y 1 HT ) , ( 2.19 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGfbWaaSbaaSqaaiaaiQcaaeqaaO WaaeWaaeaadaaeqbqabSqaaiaadohaaeqaniabggHiLdGccaaMc8Ua am4DamaaBaaaleaacaWGRbaabeaakiaadseadaWgaaWcbaGaam4Aaa qabaGccaWG5bWaaSbaaSqaaiaadUgaaeqaaaGccaGLOaGaayzkaaGa aGjbVlaaykW7caaI9aGaaGjbVlaaykW7ceWG0bGbaKaadaqhaaWcba GaamyEaiaaigdaaeaacaqGibGaaeivaaaakiaaysW7caaMc8UaaGPa VlaaykW7caaMc8Uaaeyyaiaab6gacaqGKbGaaGjbVlaaykW7caaMc8 UaaGPaVlaaykW7caWGwbWaaSbaaSqaaiaaiQcaaeqaaOWaaeWaaeaa daaeqbqabSqaaiaadohaaeqaniabggHiLdGccaaMc8Uaam4DamaaBa aaleaacaWGRbaabeaakiaadseadaWgaaWcbaGaam4AaaqabaGccaWG 5bWaaSbaaSqaaiaadUgaaeqaaaGccaGLOaGaayzkaaGaaGjbVlaayk W7caaI9aGaaGjbVlaaykW7daWcaaqaaiaaigdacqGHsislcaWGUbWa aWbaaSqabeaacqGHsislcaaIXaaaaaGcbaGaaGymaiabgkHiTiaad6 eadaahaaWcbeqaaiabgkHiTiaaigdaaaaaaOGaamODamaaCaaaleqa baGaaeisaiaabsfaaaGcdaqadaqaaiqadshagaqcamaaDaaaleaaca WG5bGaaGymaaqaaiaabIeacaqGubaaaaGccaGLOaGaayzkaaGaaGil aiaaywW7caaMf8UaaGzbVlaacIcacaaIYaGaaiOlaiaaigdacaaI5a Gaaiykaaaa@8E7F@

where v HT ( t ^ y 1 HT ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWG2bWaaWbaaSqabeaacaqGibGaae ivaaaakmaabmaabaGabmiDayaajaWaa0baaSqaaiaadMhacaaIXaaa baGaaeisaiaabsfaaaaakiaawIcacaGLPaaaaaa@3AE9@ is given in (2.2), so that equation (2.15) is approximately matched for a large sample size.

Several solutions have been proposed to handle the case when N / n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaWcgaqaaiaad6eaaeaacaWGUbaaaa aa@33CD@ is not an integer, see Chao and Lo (1985), Bickel and Freedman (1984), Sitter (1992b), Booth, Butler and Hall (1994), Presnell and Booth (1994), among others. The generalization of BWO variance estimation for unequal probability sampling designs is considered in Särndal, Swensson and Wretman (1992) and Chauvet (2007).

2.4.2  With-replacement bootstrap for multistage sampling

When the sample s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGZbaaaa@32E9@ is selected by means of multistage sampling and with-replacement unequal probability sampling of PSUs, we consider the bootstrap of PSUs (BWR) introduced by Rao and Wu (1988). A with-replacement resample s I * MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGZbWaa0baaSqaaiaadMeaaeaaca GGQaaaaaaa@3492@ of size m 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGTbGaeyOeI0IaaGymaaaa@348B@ is selected by means of simple random sampling with replacement (SIR) in the original first-stage sample s I . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGZbWaaSbaaSqaaiaadMeaaeqaaO GaaiOlaaaa@349F@ The bootstrap measure is

M ^ 1 * = m m 1 i s I * k s i π I i 1 π k | i 1 δ y 1 k = k s w k D k δ y k , ( 2.20 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaceWGnbGbaKaadaqhaaWcbaGaaGymaa qaaiaacQcaaaGccaaMe8UaaGPaVlaai2dacaaMe8UaaGPaVpaalaaa baGaamyBaaqaaiaad2gacqGHsislcaaIXaaaamaaqafabeWcbaGaam yAaiabgIGiolaadohadaqhaaadbaGaamysaaqaaiaacQcaaaaaleqa niabggHiLdGcdaaeqbqabSqaaiaadUgacqGHiiIZcaWGZbWaaSbaaW qaaiaadMgaaeqaaaWcbeqdcqGHris5aOGaaGPaVlabec8aWnaaDaaa leaacaWGjbGaamyAaaqaaiabgkHiTiaaigdaaaGccqaHapaCdaqhaa WcbaWaaqGaaeaacaWGRbGaaGjcVdGaayjcSdGaaGjcVlaadMgaaeaa cqGHsislcaaIXaaaaOGaeqiTdq2aaSbaaSqaaiaadMhadaWgaaadba GaaGymaiaadUgaaeqaaaWcbeaakiaaykW7caaI9aGaaGjbVpaaqafa beWcbaGaam4AaiabgIGiolaadohaaeqaniabggHiLdGccaaMc8Uaam 4DamaaBaaaleaacaWGRbaabeaakiaadseadaWgaaWcbaGaam4Aaaqa baGccqaH0oazdaWgaaWcbaGaamyEamaaBaaameaacaWGRbaabeaaaS qabaGccaaMb8UaaGilaiaaywW7caaMf8UaaGzbVlaaywW7caGGOaGa aGOmaiaac6cacaaIYaGaaGimaiaacMcaaaa@82AE@

where the resampling weight D k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGebWaaSbaaSqaaiaadUgaaeqaaa aa@33D6@ equals m ( m 1 ) 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGTbWaaeWaaeaacaWGTbGaeyOeI0 IaaGymaaGaayjkaiaawMcaamaaCaaaleqabaGaeyOeI0IaaGymaaaa aaa@38DB@ multiplied by the number of times the PSU containing k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGRbaaaa@32E1@ is selected in s I * . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGZbWaa0baaSqaaiaadMeaaeaaca GGQaaaaOGaaiOlaaaa@354E@

The resampling size m 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGTbGaeyOeI0IaaGymaaaa@348B@ is used to reproduce the usual unbiased variance estimator in the linear case (see Rao and Wu, 1988). It can be shown that the BWR procedure leads to

E * ( s w k D k y k ) = t ^ y 1 HH and V * ( s w k D k y k ) = v HH ( t ^ y 1 HH ) , ( 2.21 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGfbWaaSbaaSqaaiaacQcaaeqaaO WaaeWaaeaadaaeqbqabSqaaiaadohaaeqaniabggHiLdGccaaMc8Ua am4DamaaBaaaleaacaWGRbaabeaakiaadseadaWgaaWcbaGaam4Aaa qabaGccaWG5bWaaSbaaSqaaiaadUgaaeqaaaGccaGLOaGaayzkaaGa aGjbVlaaykW7caaI9aGaaGjbVlaaykW7ceWG0bGbaKaadaqhaaWcba GaamyEaiaaigdaaeaacaqGibGaaeisaaaakiaaysW7caaMc8UaaGPa VlaaykW7caaMc8Uaaeyyaiaab6gacaqGKbGaaGjbVlaaykW7caaMc8 UaaGPaVlaaykW7caWGwbWaaSbaaSqaaiaacQcaaeqaaOWaaeWaaeaa daaeqbqabSqaaiaadohaaeqaniabggHiLdGccaaMc8Uaam4DamaaBa aaleaacaWGRbaabeaakiaadseadaWgaaWcbaGaam4AaaqabaGccaWG 5bWaaSbaaSqaaiaadUgaaeqaaaGccaGLOaGaayzkaaGaaGjbVlaayk W7caaI9aGaaGjbVlaaykW7caWG2bWaaWbaaSqabeaacaqGibGaaeis aaaakmaabmaabaGabmiDayaajaWaa0baaSqaaiaadMhacaaIXaaaba GaaeisaiaabIeaaaaakiaawIcacaGLPaaacaaISaGaaGzbVlaaywW7 caaMf8UaaGzbVlaacIcacaaIYaGaaiOlaiaaikdacaaIXaGaaiykaa aa@86F2@

where v HH ( t ^ y 1 HH ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWG2bWaaWbaaSqabeaacaqGibGaae isaaaakmaabmaabaGabmiDayaajaWaa0baaSqaaiaadMhacaaIXaaa baGaaeisaiaabIeaaaaakiaawIcacaGLPaaaaaa@3AD1@ is given in (2.3), so that equation (2.16) is exactly matched. The BWR procedure is particulary simple, since involving a resampling for the first-stage of sampling only, the sub-samples of Secondary sampling Units (SSUs) being left unchanged inside the resampled PSUs.


Date modified: