Register-based sampling for household panels
3. Inclusion weightsRegister-based sampling for household panels
3. Inclusion weights
3.1 Weighting with
inclusion expectations
For design-based inference, first
and second order inclusion probabilities for households and persons are
required. Let
M
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamytaaaa@37FE@
denote the number of households in the population,
N
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOtaaaa@37FF@
the number of persons in the population aged 15 years or over and
g
k
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4zamaaBa
aaleaacaWGRbaabeaaaaa@3934@
the number of persons aged 15 years or over
that belong to the
k
th
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4AamaaCa
aaleqabaGaaeiDaiaabIgaaaaaaa@3A2B@
household. With the sample design described in
Section 2, households
k
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4Aaaaa@381C@
can be included more than once but a maximum of
g
k
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4zamaaBa
aaleaacaWGRbaabeaaaaa@3934@
times. This complicates the derivation of
inclusion probabilities since the probability of selecting household
k
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4Aaaaa@381C@
is equal to the selection probability of the
union of its household members
(
k
,
j
)
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca
WGRbGaaiilaiaadQgaaiaawIcacaGLPaaaaaa@3B44@
aged 15 years and over. This probability is defined as:
P
(
k
∈
s
)
=
P
(
∪
j
=
1
g
k
[
(
k
,
j
)
∈
s
]
)
=
∑
j
=
1
g
k
P
(
(
k
,
j
)
∈
s
)
−
∑
j
=
1
g
k
∑
j
′
=
j
+
1
g
k
P
(
[
(
k
,
j
)
∩
(
k
,
j
′
)
]
∈
s
)
+
∑
j
=
1
g
k
∑
j
′
=
j
+
1
g
k
∑
j
″
=
j
+
j
′
+
1
g
k
P
(
[
(
k
,
j
)
∩
(
k
,
j
′
)
∩
(
k
,
j
″
)
]
∈
s
)
−
...
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaqbaeaabmGaaa
qaaiaadcfadaqadaqaaiaadUgacqGHiiIZcaWGZbaacaGLOaGaayzk
aaGaeyypa0JaamiuamaabmaabaWaambCaeaadaWadaqaamaabmaaba
Gaam4AaiaacYcacaWGQbaacaGLOaGaayzkaaGaeyicI4Saam4CaaGa
ay5waiaaw2faaaWcbaGaamOAaiabg2da9iaaigdaaeaacaWGNbWaaS
baaWqaaiaadUgaaeqaaaqdcqWIQisvaaGccaGLOaGaayzkaaaabaGa
eyypa0ZaaabCaeaacaWGqbWaaeWaaeaadaqadaqaaiaadUgacaGGSa
GaamOAaaGaayjkaiaawMcaaiabgIGiolaadohaaiaawIcacaGLPaaa
aSqaaiaadQgacqGH9aqpcaaIXaaabaGaam4zamaaBaaameaacaWGRb
aabeaaa0GaeyyeIuoaaOqaaaqaaiabgkHiTmaaqahabaWaaabCaeaa
caWGqbWaaeWaaeaadaWadaqaamaabmaabaGaam4AaiaacYcacaWGQb
aacaGLOaGaayzkaaGaeyykIC8aaeWaaeaacaWGRbGaaiilaiqadQga
gaqbaaGaayjkaiaawMcaaaGaay5waiaaw2faaiabgIGiolaadohaai
aawIcacaGLPaaaaSqaaiqadQgagaqbaiabg2da9iaadQgacqGHRaWk
caaIXaaabaGaam4zamaaBaaameaacaWGRbaabeaaa0GaeyyeIuoaaS
qaaiaadQgacqGH9aqpcaaIXaaabaGaam4zamaaBaaameaacaWGRbaa
beaaa0GaeyyeIuoaaOqaaaqaaiabgUcaRmaaqahabaWaaabCaeaada
aeWbqaaiaadcfadaqadaqaamaadmaabaWaaeWaaeaacaWGRbGaaiil
aiaadQgaaiaawIcacaGLPaaacqGHPiYXdaqadaqaaiaadUgacaGGSa
GabmOAayaafaaacaGLOaGaayzkaaGaeyykIC8aaeWaaeaacaWGRbGa
aiilaiqadQgagaGbaaGaayjkaiaawMcaaaGaay5waiaaw2faaiabgI
GiolaadohaaiaawIcacaGLPaaaaSqaaiqadQgagaGbaiabg2da9iaa
dQgacqGHRaWkceWGQbGbauaacqGHRaWkcaaIXaaabaGaam4zamaaBa
aameaacaWGRbaabeaaa0GaeyyeIuoaaSqaaiqadQgagaqbaiabg2da
9iaadQgacqGHRaWkcaaIXaaabaGaam4zamaaBaaameaacaWGRbaabe
aaa0GaeyyeIuoaaSqaaiaadQgacqGH9aqpcaaIXaaabaGaam4zamaa
BaaameaacaWGRbaabeaaa0GaeyyeIuoakiabgkHiTiaac6cacaGGUa
GaaiOlaaaaaaa@B6D5@
This kind of computation can be
avoided by using the concept of inclusion expectations instead of inclusion
probabilities. Bethlehem (2009), Chapter 2, generalizes the HT estimator to the
concept of inclusion expectation for sampling with replacement. Let
a
k
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyyamaaBa
aaleaacaWGRbaabeaaaaa@392E@
denote
the number of times that household
k
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4Aaaaa@381C@
is selected in the sample. In the proposed
sample design
a
k
∈
[
0
,
1
,
…
,
g
k
]
.
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyyamaaBa
aaleaacaWGRbaabeaakiabgIGiopaadmaabaGaaGimaiaacYcacaaI
XaGaaiilaiablAciljaacYcacaWGNbWaaSbaaSqaaiaadUgaaeqaaa
GccaGLBbGaayzxaaGaaiOlaaaa@4419@
Let
E
(
.
)
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaeyramaabm
aabaGaaiOlaaGaayjkaiaawMcaaaaa@3A2F@
denote the expectation with respect to the
sample design. Now
π
k
=
E
(
a
k
)
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeqiWda3aaS
baaSqaaiaadUgaaeqaaOGaeyypa0JaaeyramaabmaabaGaamyyamaa
BaaaleaacaWGRbaabeaaaOGaayjkaiaawMcaaaaa@3F72@
denotes
the inclusion expectation of sampling unit
k
.
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4Aaiaac6
caaaa@38CE@
Since
a
k
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyyamaaBa
aaleaacaWGRbaabeaaaaa@392E@
can be
larger than one,
π
k
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeqiWda3aaS
baaSqaaiaadUgaaeqaaaaa@3A05@
can also
take values larger than one and can therefore no longer be interpreted as an
inclusion probability. It can, however, be interpreted as an expectation.
The
parameter of interest is the population total, which is defined as
t
y
=
∑
k
=
1
M
∑
j
=
1
N
k
y
k
j
≡
∑
k
=
1
M
y
k
.
(
3.1
)
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiDamaaBa
aaleaacaWG5baabeaakiabg2da9maaqahabaWaaabCaeaacaWG5bWa
aSbaaSqaaiaadUgacaWGQbaabeaaaeaacaWGQbGaeyypa0JaaGymaa
qaaiaad6eadaWgaaadbaGaam4AaaqabaaaniabggHiLdaaleaacaWG
RbGaeyypa0JaaGymaaqaaiaad2eaa0GaeyyeIuoakiabggMi6oaaqa
habaGaamyEamaaBaaaleaacaWGRbaabeaaaeaacaWGRbGaeyypa0Ja
aGymaaqaaiaad2eaa0GaeyyeIuoakiaac6cacaaMf8UaaGzbVlaayw
W7caaMf8UaaGzbVlaacIcacaaIZaGaaiOlaiaaigdacaGGPaaaaa@5FAF@
The HT
estimator for the population total in (3.1) can be defined as
t
^
y
=
∑
k
=
1
M
a
k
y
k
π
k
.
(
3.2
)
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmiDayaaja
WaaSbaaSqaaiaadMhaaeqaaOGaeyypa0ZaaabCaeaadaWcaaqaaiaa
dggadaWgaaWcbaGaam4AaaqabaGccaWG5bWaaSbaaSqaaiaadUgaae
qaaaGcbaGaeqiWda3aaSbaaSqaaiaadUgaaeqaaaaakiaac6caaSqa
aiaadUgacqGH9aqpcaaIXaaabaGaamytaaqdcqGHris5aOGaaGzbVl
aaywW7caaMf8UaaGzbVlaaywW7caGGOaGaaG4maiaac6cacaaIYaGa
aiykaaaa@535C@
Since
E
(
a
k
)
=
π
k
,
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaeyramaabm
aabaGaamyyamaaBaaaleaacaWGRbaabeaaaOGaayjkaiaawMcaaiab
g2da9iabec8aWnaaBaaaleaacaWGRbaabeaakiaacYcaaaa@4022@
it
follows that this HT estimator is design unbiased. Let
π
k
k
′
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeqiWda3aaS
baaSqaaiaadUgaceWGRbGbauaaaeqaaaaa@3B01@
denote
the inclusion expectation of units
k
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4Aaaaa@381C@
and
k
′
,
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabm4Aayaafa
Gaaiilaaaa@38D8@
i.e. ,
π
k
k
′
=
E
(
a
k
a
k
′
)
.
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeqiWda3aaS
baaSqaaiaadUgacaWGRbGaam4jaaqabaGccqGH9aqpcaqGfbWaaeWa
aeaacaWGHbWaaSbaaSqaaiaadUgaaeqaaOGaamyyamaaBaaaleaace
WGRbGbauaaaeqaaaGccaGLOaGaayzkaaGaaiOlaaaa@43D8@
The
variance of the HT estimator is by definition equal to
V
(
t
^
y
)
=
∑
k
=
1
M
∑
k
′
=
1
M
Cov
(
a
k
a
k
′
)
y
k
π
k
y
k
′
π
k
′
=
∑
k
=
1
M
∑
k
′
=
1
M
[
E
(
a
k
a
k
′
)
−
E
(
a
k
)
E
(
a
k
′
)
]
y
k
π
k
y
k
′
π
k
′
=
∑
k
=
1
M
∑
k
′
=
1
M
(
π
k
k
′
−
π
k
π
k
′
)
y
k
π
k
y
k
′
π
k
′
.
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaqbaeaabmGaaa
qaaiaabAfadaqadaqaaiqadshagaqcamaaBaaaleaacaWG5baabeaa
aOGaayjkaiaawMcaaaqaaiabg2da9maaqahabaWaaabCaeaacaqGdb
Gaae4BaiaabAhadaqadaqaaiaadggadaWgaaWcbaGaam4AaaqabaGc
caWGHbWaaSbaaSqaaiqadUgagaqbaaqabaaakiaawIcacaGLPaaada
WcaaqaaiaadMhadaWgaaWcbaGaam4AaaqabaaakeaacqaHapaCdaWg
aaWcbaGaam4AaaqabaaaaOWaaSaaaeaacaWG5bWaaSbaaSqaaiqadU
gagaqbaaqabaaakeaacqaHapaCdaWgaaWcbaGabm4Aayaafaaabeaa
aaaabaGabm4AayaafaGaeyypa0JaaGymaaqaaiaad2eaa0GaeyyeIu
oaaSqaaiaadUgacqGH9aqpcaaIXaaabaGaamytaaqdcqGHris5aaGc
baaabaGaeyypa0ZaaabCaeaadaaeWbqaamaadmaabaGaaeyramaabm
aabaGaamyyamaaBaaaleaacaWGRbaabeaakiaadggadaWgaaWcbaGa
bm4AayaafaaabeaaaOGaayjkaiaawMcaaiabgkHiTiaabweadaqada
qaaiaadggadaWgaaWcbaGaam4AaaqabaaakiaawIcacaGLPaaacaqG
fbWaaeWaaeaacaWGHbWaaSbaaSqaaiqadUgagaqbaaqabaaakiaawI
cacaGLPaaaaiaawUfacaGLDbaadaWcaaqaaiaadMhadaWgaaWcbaGa
am4AaaqabaaakeaacqaHapaCdaWgaaWcbaGaam4AaaqabaaaaOWaaS
aaaeaacaWG5bWaaSbaaSqaaiqadUgagaqbaaqabaaakeaacqaHapaC
daWgaaWcbaGabm4AayaafaaabeaaaaaabaGabm4AayaafaGaeyypa0
JaaGymaaqaaiaad2eaa0GaeyyeIuoaaSqaaiaadUgacqGH9aqpcaaI
XaaabaGaamytaaqdcqGHris5aaGcbaaabaGaeyypa0ZaaabCaeaada
aeWbqaamaabmaabaGaeqiWda3aaSbaaSqaaiaadUgaceWGRbGbauaa
aeqaaOGaeyOeI0IaeqiWda3aaSbaaSqaaiaadUgaaeqaaOGaeqiWda
3aaSbaaSqaaiqadUgagaqbaaqabaaakiaawIcacaGLPaaadaWcaaqa
aiaadMhadaWgaaWcbaGaam4AaaqabaaakeaacqaHapaCdaWgaaWcba
Gaam4AaaqabaaaaOWaaSaaaeaacaWG5bWaaSbaaSqaaiqadUgagaqb
aaqabaaakeaacqaHapaCdaWgaaWcbaGabm4Aayaafaaabeaaaaaaba
Gabm4AayaafaGaeyypa0JaaGymaaqaaiaad2eaa0GaeyyeIuoaaSqa
aiaadUgacqGH9aqpcaaIXaaabaGaamytaaqdcqGHris5aOGaaiOlaa
aaaaa@A7B2@
Note that in the case of sampling
without replacement
a
k
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyyamaaBa
aaleaacaWGRbaabeaaaaa@392E@
is a dummy taking values zero or one
indicating whether unit
k
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4Aaaaa@381C@
is selected in the sample. In this case
π
k
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeqiWda3aaS
baaSqaaiaadUgaaeqaaaaa@3A05@
and
π
k
k
′
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeqiWda3aaS
baaSqaaiaadUgaceWGRbGbauaaaeqaaaaa@3B01@
are the usual first and second order inclusion
probabilities. This illustrates that the standard HT estimator, based on
inclusion probabilities, can be extended easily to inclusion expectations. In
the case of sample designs where units can be selected more than once, it is
more convenient to work with inclusion expectations, since they are derived
relatively easily. In the remainder of this subsection, first and second order
inclusion expectations for the sample design described in Section 2 are
derived.
Core persons are drawn by means of
stratified simple random sampling. Since stratification is based on
geographical regions, all members of a household
k
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4Aaaaa@381C@
belong to the same stratum
h
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiAaaaa@3819@
at the moment of drawing core persons. Let
N
h
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOtamaaBa
aaleaacaWGObaabeaaaaa@3918@
denote the number of persons in the population
of stratum
h
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiAaaaa@3819@
aged 15 years or over,
n
h
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOBamaaBa
aaleaacaWGObaabeaaaaa@3938@
the number of core persons selected in the
sample from stratum
h
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiAaaaa@3819@
and
g
k
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4zamaaBa
aaleaacaWGRbaabeaaaaa@3934@
the number of persons aged 15 years or over,
belonging to household
k
.
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4Aaiaac6
caaaa@38CE@
Finally,
a
j
k
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyyamaaBa
aaleaacaWGQbGaam4Aaaqabaaaaa@3A1D@
denotes an indicator that is equal to one if
person
j
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOAaaaa@381B@
from household
k
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4Aaaaa@381C@
is selected in the sample and zero otherwise.
The first order inclusion expectation of the
k
th
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4AamaaCa
aaleqabaGaaeiDaiaabIgaaaaaaa@3A2B@
household equals
π
k
h
=
E
(
a
k
)
=
E
(
∑
j
=
1
g
k
a
j
k
)
=
∑
j
=
1
g
k
E
(
a
j
k
)
=
g
k
n
h
N
h
.
(
3.3
)
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeqiWda3aaS
baaSqaaiaadUgacaWGObaabeaakiabg2da9iaabweadaqadaqaaiaa
dggadaWgaaWcbaGaam4AaaqabaaakiaawIcacaGLPaaacqGH9aqpca
WGfbWaaeWaaeaadaaeWbqaaiaadggadaWgaaWcbaGaamOAaiaadUga
aeqaaaqaaiaadQgacqGH9aqpcaaIXaaabaGaam4zamaaBaaameaaca
WGRbaabeaaa0GaeyyeIuoaaOGaayjkaiaawMcaaiabg2da9maaqaha
baGaamyramaabmaabaGaamyyamaaBaaaleaacaWGQbGaam4Aaaqaba
aakiaawIcacaGLPaaaaSqaaiaadQgacqGH9aqpcaaIXaaabaGaam4z
amaaBaaameaacaWGRbaabeaaa0GaeyyeIuoakiabg2da9iaadEgada
WgaaWcbaGaam4AaaqabaGcdaWcaaqaaiaad6gadaWgaaWcbaGaamiA
aaqabaaakeaacaWGobWaaSbaaSqaaiaadIgaaeqaaaaakiaac6caca
aMf8UaaGzbVlaaywW7caaMf8UaaGzbVlaacIcacaaIZaGaaiOlaiaa
iodacaGGPaaaaa@6E2C@
Second order inclusion expectations
for households
k
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4Aaaaa@381C@
and
k
′
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabm4Aayaafa
aaaa@3828@
for
k
≠
k
′
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4Aaiabgc
Mi5kqadUgagaqbaaaa@3ADF@
belonging to the same stratum
h
,
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiAaiaacY
caaaa@38C9@
equal
π
k
k
′
=
E
(
a
k
a
k
′
)
=
E
(
∑
j
=
1
g
k
a
j
k
∑
j
′
=
1
g
k
′
a
j
′
k
′
)
=
∑
j
=
1
g
k
∑
j
′
=
1
g
k
′
E
(
a
j
k
a
j
′
k
′
)
=
g
k
g
k
′
n
h
(
n
h
−
1
)
N
h
(
N
h
−
1
)
.
(
3.4
)
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeqiWda3aaS
baaSqaaiaadUgaceWGRbGbauaaaeqaaOGaeyypa0Jaaeyramaabmaa
baGaamyyamaaBaaaleaacaWGRbaabeaakiaadggadaWgaaWcbaGabm
4AayaafaaabeaaaOGaayjkaiaawMcaaiabg2da9iaadweadaqadaqa
amaaqahabaGaamyyamaaBaaaleaacaWGQbGaam4AaaqabaaabaGaam
OAaiabg2da9iaaigdaaeaacaWGNbWaaSbaaWqaaiaadUgaaeqaaaqd
cqGHris5aOWaaabCaeaacaWGHbWaaSbaaSqaaiqadQgagaqbaiqadU
gagaqbaaqabaaabaGabmOAayaafaGaeyypa0JaaGymaaqaaiaadEga
daWgaaadbaGabm4Aayaafaaabeaaa0GaeyyeIuoaaOGaayjkaiaawM
caaiabg2da9maaqahabaWaaabCaeaacaWGfbWaaeWaaeaacaWGHbWa
aSbaaSqaaiaadQgacaWGRbaabeaakiaadggadaWgaaWcbaGabmOAay
aafaGabm4AayaafaaabeaaaOGaayjkaiaawMcaaaWcbaGabmOAayaa
faGaeyypa0JaaGymaaqaaiaadEgadaWgaaadbaGabm4Aayaafaaabe
aaa0GaeyyeIuoaaSqaaiaadQgacqGH9aqpcaaIXaaabaGaam4zamaa
BaaameaacaWGRbaabeaaa0GaeyyeIuoakiabg2da9iaadEgadaWgaa
WcbaGaam4AaaqabaGccaWGNbWaaSbaaSqaaiqadUgagaqbaaqabaGc
daWcaaqaaiaad6gadaWgaaWcbaGaamiAaaqabaGcdaqadaqaaiaad6
gadaWgaaWcbaGaamiAaaqabaGccqGHsislcaaIXaaacaGLOaGaayzk
aaaabaGaamOtamaaBaaaleaacaWGObaabeaakmaabmaabaGaamOtam
aaBaaaleaacaWGObaabeaakiabgkHiTiaaigdaaiaawIcacaGLPaaa
aaGaaiOlaiaaywW7caaMf8UaaGzbVlaaywW7caGGOaGaaG4maiaac6
cacaaI0aGaaiykaaaa@8F93@
The
second order inclusion expectation for household
k
=
k
′
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4Aaiabg2
da9iqadUgagaqbaaaa@3A1E@
from the same stratum
h
,
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiAaiaacY
caaaa@38C9@
is given by
π
k
k
=
E
(
a
k
a
k
)
=
E
(
∑
j
=
1
g
k
a
j
k
∑
j
′
=
1
g
k
a
j
′
k
)
=
E
(
∑
j
=
1
g
k
a
j
k
+
∑
j
=
1
g
k
∑
j
′
≠
j
=
1
g
k
a
j
k
a
j
′
k
)
=
∑
j
=
1
g
k
E
(
a
j
k
)
+
∑
j
=
1
g
k
∑
j
′
≠
j
=
1
g
k
E
(
a
j
k
a
j
′
k
)
=
g
k
n
h
N
h
+
g
k
(
g
k
−
1
)
n
h
(
n
h
−
1
)
N
h
(
N
h
−
1
)
.
(
3.5
)
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaqbaeaabiGaaa
qaaiabec8aWnaaBaaaleaacaWGRbGaam4AaaqabaaakeaacqGH9aqp
caqGfbWaaeWaaeaacaWGHbWaaSbaaSqaaiaadUgaaeqaaOGaamyyam
aaBaaaleaacaWGRbaabeaaaOGaayjkaiaawMcaaiabg2da9iaadwea
daqadaqaamaaqahabaGaamyyamaaBaaaleaacaWGQbGaam4Aaaqaba
aabaGaamOAaiabg2da9iaaigdaaeaacaWGNbWaaSbaaWqaaiaadUga
aeqaaaqdcqGHris5aOWaaabCaeaacaWGHbWaaSbaaSqaaiqadQgaga
qbaiaadUgaaeqaaaqaaiqadQgagaqbaiabg2da9iaaigdaaeaacaWG
NbWaaSbaaWqaaiaadUgaaeqaaaqdcqGHris5aaGccaGLOaGaayzkaa
Gaeyypa0JaamyramaabmaabaWaaabCaeaacaWGHbWaaSbaaSqaaiaa
dQgacaWGRbaabeaaaeaacaWGQbGaeyypa0JaaGymaaqaaiaadEgada
WgaaadbaGaam4AaaqabaaaniabggHiLdGccqGHRaWkdaaeWbqaamaa
qahabaGaamyyamaaBaaaleaacaWGQbGaam4AaaqabaGccaWGHbWaaS
baaSqaaiqadQgagaqbaiaadUgaaeqaaaqaaiqadQgagaqbaiabgcMi
5kaadQgacqGH9aqpcaaIXaaabaGaam4zamaaBaaameaacaWGRbaabe
aaa0GaeyyeIuoaaSqaaiaadQgacqGH9aqpcaaIXaaabaGaam4zamaa
BaaameaacaWGRbaabeaaa0GaeyyeIuoaaOGaayjkaiaawMcaaaqaaa
qaaiabg2da9maaqahabaGaamyramaabmaabaGaamyyamaaBaaaleaa
caWGQbGaam4AaaqabaaakiaawIcacaGLPaaaaSqaaiaadQgacqGH9a
qpcaaIXaaabaGaam4zamaaBaaameaacaWGRbaabeaaa0GaeyyeIuoa
kiabgUcaRmaaqahabaWaaabCaeaacaWGfbWaaeWaaeaacaWGHbWaaS
baaSqaaiaadQgacaWGRbaabeaakiaadggadaWgaaWcbaGabmOAayaa
faGaam4AaaqabaaakiaawIcacaGLPaaaaSqaaiqadQgagaqbaiabgc
Mi5kaadQgacqGH9aqpcaaIXaaabaGaam4zamaaBaaameaacaWGRbaa
beaaa0GaeyyeIuoaaSqaaiaadQgacqGH9aqpcaaIXaaabaGaam4zam
aaBaaameaacaWGRbaabeaaa0GaeyyeIuoakiabg2da9iaadEgadaWg
aaWcbaGaam4AaaqabaGcdaWcaaqaaiaad6gadaWgaaWcbaGaamiAaa
qabaaakeaacaWGobWaaSbaaSqaaiaadIgaaeqaaaaakiabgUcaRiaa
dEgadaWgaaWcbaGaam4AaaqabaGcdaqadaqaaiaadEgadaWgaaWcba
Gaam4AaaqabaGccqGHsislcaaIXaaacaGLOaGaayzkaaWaaSaaaeaa
caWGUbWaaSbaaSqaaiaadIgaaeqaaOWaaeWaaeaacaWGUbWaaSbaaS
qaaiaadIgaaeqaaOGaeyOeI0IaaGymaaGaayjkaiaawMcaaaqaaiaa
d6eadaWgaaWcbaGaamiAaaqabaGcdaqadaqaaiaad6eadaWgaaWcba
GaamiAaaqabaGccqGHsislcaaIXaaacaGLOaGaayzkaaaaaiaac6ca
aaGaaGzbVlaaywW7caaMf8UaaGzbVlaacIcacaaIZaGaaiOlaiaaiw
dacaGGPaaaaa@CE50@
Second
order inclusion expectations for households
k
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4Aaaaa@381C@
and
k
′
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabm4Aayaafa
aaaa@3828@
for
k
≠
k
′
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4Aaiabgc
Mi5kqadUgagaqbaaaa@3ADF@
belonging to two different strata
h
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiAaaaa@3819@
and
h
′
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmiAayaafa
aaaa@3825@
equal
π
k
k
′
=
E
(
a
k
a
k
′
)
=
E
(
∑
j
=
1
g
k
a
j
k
∑
j
′
=
1
g
k
′
a
j
′
k
′
)
=
∑
j
=
1
g
k
∑
j
′
=
1
g
k
′
E
(
a
j
k
a
j
′
k
′
)
=
g
k
h
g
k
′
h
′
n
h
n
h
′
N
h
N
h
′
.
(
3.6
)
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeqiWda3aaS
baaSqaaiaadUgaceWGRbGbauaaaeqaaOGaeyypa0Jaaeyramaabmaa
baGaamyyamaaBaaaleaacaWGRbaabeaakiaadggadaWgaaWcbaGabm
4AayaafaaabeaaaOGaayjkaiaawMcaaiabg2da9iaabweadaqadaqa
amaaqahabaGaamyyamaaBaaaleaacaWGQbGaam4AaaqabaaabaGaam
OAaiabg2da9iaaigdaaeaacaWGNbWaaSbaaWqaaiaadUgaaeqaaaqd
cqGHris5aOWaaabCaeaacaWGHbWaaSbaaSqaaiqadQgagaqbaiqadU
gagaqbaaqabaaabaGabmOAayaafaGaeyypa0JaaGymaaqaaiaadEga
daWgaaadbaGabm4Aayaafaaabeaaa0GaeyyeIuoaaOGaayjkaiaawM
caaiabg2da9maaqahabaWaaabCaeaacaWGfbWaaeWaaeaacaWGHbWa
aSbaaSqaaiaadQgacaWGRbaabeaakiaadggadaWgaaWcbaGabmOAay
aafaGabm4AayaafaaabeaaaOGaayjkaiaawMcaaiabg2da9iaadEga
daWgaaWcbaGaam4AaiaadIgaaeqaaOGaam4zamaaBaaaleaaceWGRb
GbauaaceWGObGbauaaaeqaaOWaaSaaaeaacaWGUbWaaSbaaSqaaiaa
dIgaaeqaaOGaamOBamaaBaaaleaaceWGObGbauaaaeqaaaGcbaGaam
OtamaaBaaaleaacaWGObaabeaakiaad6eadaWgaaWcbaGabmiAayaa
faaabeaaaaaabaGabmOAayaafaGaeyypa0JaaGymaaqaaiaadEgada
WgaaadbaGabm4Aayaafaaabeaaa0GaeyyeIuoaaSqaaiaadQgacqGH
9aqpcaaIXaaabaGaam4zamaaBaaameaacaWGRbaabeaaa0GaeyyeIu
oakiaac6cacaaMf8UaaGzbVlaaywW7caaMf8UaaiikaiaaiodacaGG
UaGaaGOnaiaacMcaaaa@8B1A@
An alternative proof based on the
definition of an expected value, which does not use the rule that the expected
value of a sum of mutual dependent variables is equal to the sum over the
expected values of these variables is given by van den Brakel (2013).
As time proceeds the household
composition of the core persons changes, which affects the inclusion
expectations of the households in the sample. If sampling fractions differ
between strata, the inclusion expectations (3.3) through (3.6) become more
complicated and require information of stratum membership for all persons
belonging to the household of the core persons. This complication is avoided by
choosing a self-weighted sampling design. In this case each household member of
a core persons has the same inclusion probability and the only household
specific information required to derive household inclusion expectations is the
number of persons aged 15 years and over in the household of the core person.
Since all members of a selected
household are included in the sample, it follows that the first order inclusion
expectations for persons belonging to household
k
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4Aaaaa@381C@
are equal to the first order inclusion
expectation of household
k
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4Aaaaa@381C@
defined in (3.3). The second order inclusion expectations for persons
from two different households
k
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4Aaaaa@381C@
and
k
′
,
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabm4Aayaafa
Gaaiilaaaa@38D8@
are equal to (3.4) for two households from the
same stratum or (3.6) for two households from two different strata. The second
order inclusion expectations for persons from the same household are defined by
(3.5).
During the review the question was
raised whether the inclusion expectations themselves have a variance that
should be taken into account in the variance of HT or GREG estimators when they
are based on inclusion expectations instead inclusion probabilities. In the
finite population each person and each household has a pre-specified inclusion
expectation. For the households observed in the sample these expectations can
be calculated exactly without uncertainty since all information required to
evaluate the true value of these expectations is available. Substituting
inclusion probabilities for expectations, therefore does not result in an
additional variance component.
3.2 Generalized Weight
Share method
The sample design described in
Section 2 can be considered as a special case of indirect sampling (Lavallée
2007). Indirect sampling refers to the situation where the population of
interest is sampled through the use of a frame that refers to a different
population. Lavallée (1995) develops the Generalized Weight Share method to
construct weights for these situations and can be used to derive design weights
for households and persons in the sample design described in Section 2.
Following the notation of Lavallée
(1995) for the case of indirect sampling, there is a population
U
A
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyvamaaCa
aaleqabaGaamyqaaaaaaa@38F9@
of size
N
A
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOtamaaCa
aaleqabaGaamyqaaaaaaa@38F2@
from which a sample
s
A
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4CamaaCa
aaleqabaGaamyqaaaaaaa@3917@
of size
n
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOBaaaa@381F@
is drawn with selection probabilities
π
i
A
.
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeqiWda3aa0
baaSqaaiaadMgaaeaacaWGbbaaaOGaaiOlaaaa@3B86@
In addition, there is the target population
U
B
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyvamaaCa
aaleqabaGaamOqaaaaaaa@38FA@
of size
N
B
.
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOtamaaCa
aaleqabaGaamOqaaaakiaac6caaaa@39AF@
This population can be divided in
M
B
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamytamaaCa
aaleqabaGaamOqaaaaaaa@38F2@
clusters. Each cluster
k
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4Aaaaa@381C@
contains
N
k
B
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOtamaaDa
aaleaacaWGRbaabaGaamOqaaaaaaa@39E3@
units, such that
N
B
=
∑
k
=
1
M
B
N
k
B
.
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOtamaaCa
aaleqabaGaamOqaaaakiabg2da9maaqadabaGaamOtamaaDaaaleaa
caWGRbaabaGaamOqaaaaaeaacaWGRbGaeyypa0JaaGymaaqaaiaad2
eadaahaaadbeqaaiaadkeaaaaaniabggHiLdGccaGGUaaaaa@43E5@
The situation for the sample design described in Section 2 is depicted in
Figure 3.1. The clusters are households,
U
A
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyvamaaCa
aaleqabaGaamyqaaaaaaa@38F9@
is the population of persons aged 15 years and
over, and
U
B
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyvamaaCa
aaleqabaGaamOqaaaaaaa@38FA@
is the population of all persons residing in
the Netherlands. Persons in
U
A
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyvamaaCa
aaleqabaGaamyqaaaaaaa@38F9@
and
U
B
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyvamaaCa
aaleqabaGaamOqaaaaaaa@38FA@
are depicted as circles, households in
U
B
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyvamaaCa
aaleqabaGaamOqaaaaaaa@38FA@
are depicted as shaded squares, and the
circles within a shaded square visualise persons belonging to the same
household. Figure 3.1 shows respectively, a single person household, a two
person household containing for example a divorced parent with a child younger
than 15, a two person household containing two adults without children, and a
four person household containing two parents with two children and one of the
children is younger than 15 while the other is 15 years or older. The arrows
depict the links between the units of
U
A
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyvamaaCa
aaleqabaGaamyqaaaaaaa@38F9@
and
U
B
.
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyvamaaCa
aaleqabaGaamOqaaaakiaac6caaaa@39B6@
In the sample design considered in Section 2,
each unit in
U
A
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyvamaaCa
aaleqabaGaamyqaaaaaaa@38F9@
has exactly one unique link with a unit in
U
B
.
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyvamaaCa
aaleqabaGaamOqaaaakiaac6caaaa@39B6@
Clusters in
U
B
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyvamaaCa
aaleqabaGaamOqaaaaaaa@38FA@
have at least one link with units in
U
A
.
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyvamaaCa
aaleqabaGaamyqaaaakiaac6caaaa@39B5@
Links are identified with an indicator variable
l
i
j
=
{
1
if there is a link between
i
∈
U
A
and
j
∈
U
B
0
if there is no link between
i
∈
U
A
and
j
∈
U
B
.
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiBamaaBa
aaleaacaWGPbGaamOAaaqabaGccqGH9aqpdaGabaqaauaabaqaciaa
aeaacaaIXaaabaGaaeyAaiaabAgacaqGGaGaaeiDaiaabIgacaqGLb
GaaeOCaiaabwgacaqGGaGaaeyAaiaabohacaqGGaGaaeyyaiaabcca
caqGSbGaaeyAaiaab6gacaqGRbGaaeiiaiaabkgacaqGLbGaaeiDai
aabEhacaqGLbGaaeyzaiaab6gacaqGGaGaamyAaiabgIGiolaadwfa
daahaaWcbeqaaiaadgeaaaGccaqGGaGaaeyyaiaab6gacaqGKbGaae
iiaiaaykW7caaMc8UaamOAaiabgIGiolaadwfadaahaaWcbeqaaiaa
dkeaaaaakeaacaaIWaaabaGaaeyAaiaabAgacaqGGaGaaeiDaiaabI
gacaqGLbGaaeOCaiaabwgacaqGGaGaaeyAaiaabohacaqGGaGaaeOB
aiaab+gacaqGGaGaaeiBaiaabMgacaqGUbGaae4AaiaabccacaqGIb
GaaeyzaiaabshacaqG3bGaaeyzaiaabwgacaqGUbGaaeiiaiaadMga
cqGHiiIZcaWGvbWaaWbaaSqabeaacaWGbbaaaOGaaeiiaiaabggaca
qGUbGaaeizaiaabccacaaMc8UaaGPaVlaadQgacqGHiiIZcaWGvbWa
aWbaaSqabeaacaWGcbaaaOGaaiOlaaaaaiaawUhaaaaa@8D76@
If a unit
i
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyAaaaa@381A@
in
U
A
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyvamaaCa
aaleqabaGaamyqaaaaaaa@38F9@
is selected in the sample, the entire cluster
k
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4Aaaaa@381C@
to which this unit belongs, is included in the
sample. The parameter of interest is the population total in
U
B
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyvamaaCa
aaleqabaGaamOqaaaaaaa@38FA@
and is similar to (3.1) defined as
t
y
=
∑
k
=
1
M
B
∑
j
=
1
N
k
B
y
k
j
.
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiDamaaBa
aaleaacaWG5baabeaakiabg2da9maaqadabaWaaabmaeaacaWG5bWa
aSbaaSqaaiaadUgacaWGQbaabeaaaeaacaWGQbGaeyypa0JaaGymaa
qaaiaad6eadaqhaaadbaGaam4AaaqaaiaadkeaaaaaniabggHiLdaa
leaacaWGRbGaeyypa0JaaGymaaqaaiaad2eadaahaaadbeqaaiaadk
eaaaaaniabggHiLdGccaGGUaaaaa@4BFD@
An estimator for
t
y
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiDamaaBa
aaleaacaWG5baabeaaaaa@394F@
is defined as
t
^
y
=
∑
k
=
1
m
∑
j
=
1
N
k
B
w
k
j
y
k
j
,
(
3.7
)
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmiDayaaja
WaaSbaaSqaaiaadMhaaeqaaOGaeyypa0ZaaabmaeaadaaeWaqaaiaa
dEhadaWgaaWcbaGaam4AaiaadQgaaeqaaOGaamyEamaaBaaaleaaca
WGRbGaamOAaaqabaaabaGaamOAaiabg2da9iaaigdaaeaacaWGobWa
a0baaWqaaiaadUgaaeaacaWGcbaaaaqdcqGHris5aaWcbaGaam4Aai
abg2da9iaaigdaaeaacaWGTbaaniabggHiLdGccaGGSaGaaGzbVlaa
ywW7caaMf8UaaGzbVlaaywW7caGGOaGaaG4maiaac6cacaaI3aGaai
ykaaaa@5995@
with
m
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyBaaaa@381E@
the number of unique clusters (households)
included in the sample and
w
k
j
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4DamaaBa
aaleaacaWGRbGaamOAaaqabaaaaa@3A33@
the
weight attached to each unit
j
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOAaaaa@381B@
of cluster
k
.
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4Aaiaac6
caaaa@38CE@
Generally the inverse of the selection
probabilities of units
(
k
,
j
)
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca
WGRbGaaiilaiaadQgaaiaawIcacaGLPaaaaaa@3B44@
observed in the sample are used as weights in
the HT estimator. In this situation not all units in the sample have a known
inclusion probability. Firstly not all units in
U
B
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyvamaaCa
aaleqabaGaamOqaaaaaaa@38FA@
have a
link to
U
A
.
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyvamaaCa
aaleqabaGaamyqaaaakiaac6caaaa@39B5@
Secondly, as time proceeds household
compositions change due to marriages, divorces, departures of children and
cohabitation. As a result, as time proceeds, units with a link to
U
A
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyvamaaCa
aaleqabaGaamyqaaaaaaa@38F9@
enter
the clusters in the sample although they are not initially included in the
sample drawn from
U
A
.
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyvamaaCa
aaleqabaGaamyqaaaakiaac6caaaa@39B5@
For
these units inclusion probabilities are not necessarily known. They affect,
however, the inclusion expectations of the clusters included in the sample.
Reconstruction of the inclusion probabilities requires information of selection
probabilities of all units in the population at the moment that the sample is
drawn. In many practical situations this information is not available.
Description of Figure 3.1
Figure
representing the links between units from the sample frame
U
A
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lqpe0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGvbWaaW
baaSqabeaacaWGbbaaaaaa@3A2D@
and units from the target population
U
B
.
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lqpe0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGvbWaaW
baaSqabeaacaWGcbaaaOGaaiOlaaaa@3AEA@
Persons in
U
A
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lqpe0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGvbWaaW
baaSqabeaacaWGbbaaaaaa@3A2D@
and
U
B
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lqpe0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGvbWaaW
baaSqabeaacaWGcbaaaaaa@3A2E@
are depicted as circles, households in
U
B
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lqpe0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGvbWaaW
baaSqabeaacaWGcbaaaaaa@3A2E@
are depicted as shaded squares, and the
circles within a shaded square visualise persons belonging to the same
household. Person
number 1 from
U
A
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lqpe0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGvbWaaW
baaSqabeaacaWGbbaaaaaa@3A2D@
is linked to person number 1 from
U
B
,
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lqpe0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGvbWaaW
baaSqabeaacaWGcbaaaOGaaiilaaaa@3AE8@
who’s the only person in her shaded square (a
single person household).
Person number 2 from
U
A
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lqpe0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGvbWaaW
baaSqabeaacaWGbbaaaaaa@3A2D@
is linked to person number 2 from
U
B
,
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lqpe0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGvbWaaW
baaSqabeaacaWGcbaaaOGaaiilaaaa@3AE8@
who’s with person number 3 in her shaded
square (a two person household containing for example a
divorced parent with a child younger than 15). People number 3 and 4 from
U
A
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lqpe0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGvbWaaW
baaSqabeaacaWGbbaaaaaa@3A2D@
are linked to people number 4 and 5 from
U
B
,
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lqpe0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGvbWaaW
baaSqabeaacaWGcbaaaOGaaiilaaaa@3AE8@
sharing a shaded square (a
two person household containing two adults without children). People number 5, 6 and
7 from
U
A
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lqpe0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGvbWaaW
baaSqabeaacaWGbbaaaaaa@3A2D@
are linked to people number 6, 7 and 9 from
U
B
,
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lqpe0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGvbWaaW
baaSqabeaacaWGcbaaaOGaaiilaaaa@3AE8@
sharing a shaded square (a
four person household containing two parents with two children and one of the
children is younger than 15 while the other is 15 years or older).
The Generalized Weight Share method
can be used to derive non-zero weights for all units in the sample. This method
starts by deriving initial weights, which are defined as
w
k
j
*
=
{
δ
i
A
π
i
A
if
(
k
,
j
)
has a link with
i
∈
U
A
0
otherwise
,
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4DamaaDa
aaleaacaWGRbGaamOAaaqaaiaacQcaaaGccqGH9aqpdaGabaqaauaa
baqaciaaaeaadaWcaaqaaiabes7aKnaaDaaaleaacaWGPbaabaGaam
yqaaaaaOqaaiabec8aWnaaDaaaleaacaWGPbaabaGaamyqaaaaaaaa
keaacaqGPbGaaeOzaiaabccadaqadaqaaiaadUgacaGGSaGaamOAaa
GaayjkaiaawMcaaiaabccacaqGObGaaeyyaiaabohacaqGGaGaaeyy
aiaabccacaqGSbGaaeyAaiaab6gacaqGRbGaaeiiaiaabEhacaqGPb
GaaeiDaiaabIgacaqGGaGaamyAaiabgIGiolaadwfadaahaaWcbeqa
aiaadgeaaaaakeaacaaIWaaabaGaae4BaiaabshacaqGObGaaeyzai
aabkhacaqG3bGaaeyAaiaabohacaqGLbaaaiaacYcaaiaawUhaaaaa
@6774@
with
δ
i
A
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeqiTdq2aa0
baaSqaaiaadMgaaeaacaWGbbaaaaaa@3AB2@
an indicator variable that is equal to one if
i
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyAaaaa@381A@
is included in the sample
s
A
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4CamaaCa
aaleqabaGaamyqaaaaaaa@3917@
and zero otherwise. This expression follows
directly from Lavallée (1995), equation (2) in combination with the fact that
in this application each unit in
U
A
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyvamaaCa
aaleqabaGaamyqaaaaaaa@38F9@
has
exactly one unique link with a unit in
U
B
,
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyvamaaCa
aaleqabaGaamOqaaaakiaacYcaaaa@39B4@
see
Figure 3.1. In a second step a so-called basic weight for each cluster
k
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4Aaaaa@381C@
is
derived as the mean of all initial weights within each cluster
w
k
=
∑
j
=
1
N
k
B
w
k
j
*
∑
j
=
1
N
k
B
l
k
j
,
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4DamaaBa
aaleaacaWGRbaabeaakiabg2da9maalaaabaWaaabmaeaacaWG3bWa
a0baaSqaaiaadUgacaWGQbaabaGaaiOkaaaaaeaacaWGQbGaeyypa0
JaaGymaaqaaiaad6eadaqhaaadbaGaam4Aaaqaaiaadkeaaaaaniab
ggHiLdaakeaadaaeWaqaaiaadYgadaWgaaWcbaGaam4AaiaadQgaae
qaaaqaaiaadQgacqGH9aqpcaaIXaaabaGaamOtamaaDaaameaacaWG
RbaabaGaamOqaaaaa0GaeyyeIuoaaaGccaGGSaaaaa@5097@
which follows from Lavallée
(1995), equation (7). Finally all persons
j
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOAaaaa@381B@
that belong to the same household
k
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4Aaaaa@381C@
receive
the same weight assigned to their household, i.e. ,
w
k
j
=
w
k
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4DamaaBa
aaleaacaWGRbGaamOAaaqabaGccqGH9aqpcaWG3bWaaSbaaSqaaiaa
dUgaaeqaaaaa@3D5B@
for all
j
∈
k
.
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOAaiabgI
GiolaadUgacaGGUaaaaa@3B41@
A proof that the use of the basic weights in (3.7)
is an unbiased estimator for the population total is also given by Lavallée
(1995).
Let
∑
j
=
1
N
k
B
l
k
j
=
g
k
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaWaaabmaeaaca
WGSbWaaSbaaSqaaiaadUgacaWGQbaabeaakiabg2da9iaadEgadaWg
aaWcbaGaam4AaaqabaaabaGaamOAaiabg2da9iaaigdaaeaacaWGob
Waa0baaWqaaiaadUgaaeaacaWGcbaaaaqdcqGHris5aaaa@449F@
denote the number of persons in household
k
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4Aaaaa@381C@
aged 15 years and older and
a
k
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyyamaaBa
aaleaacaWGRbaabeaaaaa@392E@
the number of core persons in household
k
,
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4AaiaacY
caaaa@38CC@
i.e. , the number of persons in household
k
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4Aaaaa@381C@
that are included in sample
s
A
.
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4CamaaCa
aaleqabaGaamyqaaaakiaac6caaaa@39D3@
Since
s
A
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4CamaaCa
aaleqabaGaamyqaaaaaaa@3917@
is drawn by means of stratified simple random
sampling, it follows that
π
i
A
=
n
h
A
/
N
h
A
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeqiWda3aa0
baaSqaaiaadMgaaeaacaWGbbaaaOGaeyypa0ZaaSGbaeaacaWGUbWa
a0baaSqaaiaadIgaaeaacaWGbbaaaaGcbaGaamOtamaaDaaaleaaca
WGObaabaGaamyqaaaaaaaaaa@4180@
with
N
h
A
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOtamaaDa
aaleaacaWGObaabaGaamyqaaaaaaa@39DF@
the number of persons aged 15 years and older
in the population of stratum
h
,
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiAaiaacY
caaaa@38C9@
and
n
h
A
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOBamaaDa
aaleaacaWGObaabaGaamyqaaaaaaa@39FF@
the number of core persons selected in the
sample from stratum
h
.
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiAaiaac6
caaaa@38CB@
Then it follows that
w
k
=
a
k
g
k
N
h
A
n
h
A
.
(
3.8
)
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4DamaaBa
aaleaacaWGRbaabeaakiabg2da9maalaaabaGaamyyamaaBaaaleaa
caWGRbaabeaaaOqaaiaadEgadaWgaaWcbaGaam4AaaqabaaaaOWaaS
aaaeaacaWGobWaa0baaSqaaiaadIgaaeaacaWGbbaaaaGcbaGaamOB
amaaDaaaleaacaWGObaabaGaamyqaaaaaaGccaGGUaGaaGzbVlaayw
W7caaMf8UaaGzbVlaaywW7caGGOaGaaG4maiaac6cacaaI4aGaaiyk
aaaa@502D@
Inserting the first order
inclusion expectation (3.3) into (3.2) gives the same HT estimator as derived
with the Generalized Weight Share method, i.e. , inserting (3.8) into (3.7).
The derivation of the inclusion
expectations in Subsection 3.1 applies to stratified sampling of households
with inclusion expectations proportional to household size and is a special
case of the Generalized Weight Share method. An argument to apply a design as
outlined in Section 2 is that sampling households proportional to household
size is efficient for target variables that are positively correlated with
household size.
Lavallée (1995) also provides
variance expressions for (3.7) based on the Generalized Weight Share method.
This expression is based on the first and second order inclusion probabilities
of the sample units drawn from
U
A
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyvamaaCa
aaleqabaGaamyqaaaaaaa@38F9@
and a transformation of the target variable.
As a result the property that clusters are drawn proportional to their size is
not made explicit, nor that the fact they are drawn partially with replacement.
In Section 6 it is pointed out that the variance expressions in Lavallée (1995)
for this application are equal to the variance expressions based on the
inclusion expectations derived in (3.3) through (3.6).
ISSN : 1492-0921
Editorial policy
Survey Methodology publishes articles dealing with various aspects of statistical development relevant to a statistical agency, such as design issues in the context of practical constraints, use of different data sources and collection techniques, total survey error, survey evaluation, research in survey methodology, time series analysis, seasonal adjustment, demographic studies, data integration, estimation and data analysis methods, and general survey systems development. The emphasis is placed on the development and evaluation of specific methodologies as applied to data collection or the data themselves. All papers will be refereed. However, the authors retain full responsibility for the contents of their papers and opinions expressed are not necessarily those of the Editorial Board or of Statistics Canada.
Submission of Manuscripts
Survey Methodology is published twice a year in electronic format. Authors are invited to submit their articles in English or French in electronic form, preferably in Word to the Editor, (statcan.smj-rte.statcan@canada.ca , Statistics Canada, 150 Tunney’s Pasture Driveway, Ottawa, Ontario, Canada, K1A 0T6). For formatting instructions, please see the guidelines provided in the journal and on the web site (www.statcan.gc.ca/SurveyMethodology).
Note of appreciation
Canada owes the success of its statistical system to a long-standing partnership between Statistics Canada, the citizens of Canada, its businesses, governments and other institutions. Accurate and timely statistical information could not be produced without their continued co-operation and goodwill.
Standards of service to the public
Statistics Canada is committed to serving its clients in a prompt, reliable and courteous manner. To this end, the Agency has developed standards of service which its employees observe in serving its clients.
Copyright
Published by authority of the Minister responsible for Statistics Canada.
© Minister of Industry, 2016
All rights reserved. Use of this publication is governed by the Statistics Canada Open Licence Agreement .
Catalogue No. 12-001-X
Frequency: semi-annual
Ottawa
Report a problem on this page
Is something not working? Is there information outdated? Can't find what you're looking for?
Please contact us and let us know how we can help you.
Privacy notice
Date modified:
2016-06-22