Comparison of some positive variance estimators for the Fay-Herriot small area model 2. EBLUP and MSE of the EBLUP under the Fay-Herriot model

Let y i , i = 1 , , m , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyEamaaBa aaleaacaWGPbaabeaakiaacYcacaWGPbGaeyypa0JaaGymaiaacYca cqWIMaYscaGGSaGaamyBaiaacYcaaaa@40D1@ be the direct survey estimators of the small area means θ i , i = 1 , , m . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeqiUde3aaS baaSqaaiaadMgaaeqaaOGaaiilaiaadMgacqGH9aqpcaaIXaGaaiil aiablAciljaacYcacaWGTbGaaiOlaaaa@418B@ The Fay-Herriot model consists of the following sampling and linking models:

Sampling model: y i = θ i + e i , e i | θ i i .d . ( 0 , ψ i ) , i = 1 , , m , ( 2.1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyEamaaBa aaleaacaWGPbaabeaakiabg2da9iabeI7aXnaaBaaaleaacaWGPbaa beaakiabgUcaRiaadwgadaWgaaWcbaGaamyAaaqabaGccaGGSaWaaq GaaeaacaWGLbWaaSbaaSqaaiaadMgaaeqaaaGccaGLiWoacqaH4oqC daWgaaWcbaGaamyAaaqabaGcdaWfGaqaaiablYJi6aWcbeqaaiaabM gacaqGUaGaaeizaiaab6caaaGcdaqadaqaaiaaicdacaGGSaGaeqiY dK3aaSbaaSqaaiaadMgaaeqaaaGccaGLOaGaayzkaaGaaiilaiaays W7caaMe8UaamyAaiabg2da9iaaigdacaGGSaGaeSOjGSKaaiilaiaa d2gacaGGSaGaaGzbVlaaywW7caaMf8UaaGzbVlaaywW7caGGOaGaaG Omaiaac6cacaaIXaGaaiykaaaa@67C6@

Linking model: θ i = z i β + v i , v i i .i .d . ( 0 , σ v 2 ) , σ v 2 >   0 , i = 1 , , m , ( 2.2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeqiUde3aaS baaSqaaiaadMgaaeqaaOGaeyypa0JaaCOEamaaDaaaleaacaWGPbaa baGccWaGyBOmGikaaiaahk7acqGHRaWkcaWG2bWaaSbaaSqaaiaadM gaaeqaaOGaaiilaiaadAhadaWgaaWcbaGaamyAaaqabaGcdaWfGaqa aiablYJi6aWcbeqaaiaabMgacaqGUaGaaeyAaiaab6cacaqGKbGaae OlaaaakmaabmaabaGaaGimaiaacYcacqaHdpWCdaqhaaWcbaGaamOD aaqaaiaaikdaaaaakiaawIcacaGLPaaacaGGSaGaeq4Wdm3aa0baaS qaaiaadAhaaeaacaaIYaaaaOaeaaaaaaaaa8qacqGH+aGpcaGGGcGa aGimaiaacYcacaaMe8UaaGjbV=aacaWGPbGaeyypa0JaaGymaiaacY cacqWIMaYscaGGSaGaamyBaiaacYcacaaMf8UaaGzbVlaaywW7caaM f8UaaGzbVlaacIcacaaIYaGaaiOlaiaaikdacaGGPaaaaa@716F@

where e i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyzamaaBa aaleaacaWGPbaabeaaaaa@3930@ are the sampling errors, independently distributed with mean zero and “known” sampling variances ψ i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeqiYdK3aaS baaSqaaiaadMgaaeqaaOGaaiilaaaa@3ACE@ z i ( p × 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaCOEamaaBa aaleaacaWGPbaabeaakmaabmaabaGaamiCaiabgEna0kaaigdaaiaa wIcacaGLPaaaaaa@3EA3@ are known vectors of covariate values; β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaCOSdaaa@386A@ is a p × 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiCaiabgE na0kaaigdaaaa@3AF3@ vector of unknown fixed regression coefficients; and v i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamODamaaBa aaleaacaWGPbaabeaaaaa@3941@ are independent and identically distributed random effects with mean zero and model variance σ v 2 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaadAhaaeaacaaIYaaaaOGaaiOlaaaa@3B8F@ Combining (2.1) and (2.2) we obtain:

y i = z i β + v i + e i , i = 1 , , m , ( 2.3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyEamaaBa aaleaacaWGPbaabeaakiabg2da9iaahQhadaqhaaWcbaGaamyAaaqa aOGamai2gkdiIcaacaWHYoGaey4kaSIaamODamaaBaaaleaacaWGPb aabeaakiabgUcaRiaadwgadaWgaaWcbaGaamyAaaqabaGccaGGSaGa aGjbVlaaysW7caWGPbGaeyypa0JaaGymaiaacYcacqWIMaYscaGGSa GaamyBaiaacYcacaaMf8UaaGzbVlaaywW7caaMf8UaaGzbVlaacIca caaIYaGaaiOlaiaaiodacaGGPaaaaa@5C71@

with both model and sampling errors. The y i , i = 1 , , m , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyEamaaBa aaleaacaWGPbaabeaakiaacYcacaWGPbGaeyypa0JaaGymaiaacYca cqWIMaYscaGGSaGaamyBaiaacYcaaaa@40D1@ can be viewed as outcomes in the combined design-model space (see Rubin-Bleuer and Schiopu-Kratina 2005).

Under model (2.3), the EBLUP of the small area mean θ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeqiUde3aaS baaSqaaiaadMgaaeqaaaaa@39FC@ is given by:

θ ^ i ( σ ^ v 2 ) = z i β ^ ( σ ^ v 2 ) + γ ^ i [ y i z i β ^ ( σ ^ v 2 ) ] = γ ^ i y i + ( 1 γ ^ i ) z i β ^ ( σ ^ v 2 ) , i = 1 , , m , ( 2.4 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGafqiUdeNbaK aadaWgaaWcbaGaamyAaaqabaGcdaqadaqaaiqbeo8aZzaajaWaa0ba aSqaaiaadAhaaeaacaaIYaaaaaGccaGLOaGaayzkaaGaeyypa0JaaC OEamaaDaaaleaacaWGPbaabaGccWaGyBOmGikaaiqahk7agaqcamaa bmaabaGafq4WdmNbaKaadaqhaaWcbaGaamODaaqaaiaaikdaaaaaki aawIcacaGLPaaacqGHRaWkcuaHZoWzgaqcamaaBaaaleaacaWGPbaa beaakmaadmaabaGaamyEamaaBaaaleaacaWGPbaabeaakiabgkHiTi aahQhadaqhaaWcbaGaamyAaaqaaOGamai2gkdiIcaaceWHYoGbaKaa daqadaqaaiqbeo8aZzaajaWaa0baaSqaaiaadAhaaeaacaaIYaaaaa GccaGLOaGaayzkaaaacaGLBbGaayzxaaGaeyypa0Jafq4SdCMbaKaa daWgaaWcbaGaamyAaaqabaGccaWG5bWaaSbaaSqaaiaadMgaaeqaaO Gaey4kaSYaaeWaaeaacaaIXaGaeyOeI0Iafq4SdCMbaKaadaWgaaWc baGaamyAaaqabaaakiaawIcacaGLPaaacaWH6bWaa0baaSqaaiaadM gaaeaakiadaITHYaIOaaGabCOSdyaajaWaaeWaaeaacuaHdpWCgaqc amaaDaaaleaacaWG2baabaGaaGOmaaaaaOGaayjkaiaawMcaaiaacY cacaaMe8UaaGjbVlaadMgacqGH9aqpcaaIXaGaaiilaiablAciljaa cYcacaWGTbGaaiilaiaaywW7caaMf8UaaGzbVlaacIcacaaIYaGaai OlaiaaisdacaGGPaaaaa@8BC0@

where σ ^ v 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGafq4WdmNbaK aadaqhaaWcbaGaamODaaqaaiaaikdaaaaaaa@3AE3@ is a consistent estimator of σ v 2 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaadAhaaeaacaaIYaaaaOGaaiilaaaa@3B8D@

γ ^ i = σ ^ v 2 / ( σ ^ v 2 + ψ i ) ,   and   β ^ ( σ ^ v 2 ) = [ i = 1 m z i z i / ( σ ^ v 2 + ψ i ) ] 1 [ i = 1 m z i y i / ( σ ^ v 2 + ψ i ) ] . ( 2.5 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGafq4SdCMbaK aadaWgaaWcbaGaamyAaaqabaGccqGH9aqpdaWcgaqaaiqbeo8aZzaa jaWaa0baaSqaaiaadAhaaeaacaaIYaaaaaGcbaWaaeWaaeaacuaHdp WCgaqcamaaDaaaleaacaWG2baabaGaaGOmaaaakiabgUcaRiabeI8a 5naaBaaaleaacaWGPbaabeaaaOGaayjkaiaawMcaaaaacaGGSaGaae iiaiaabccacaqGHbGaaeOBaiaabsgacaqGGaGaaeiiaiqahk7agaqc amaabmaabaGafq4WdmNbaKaadaqhaaWcbaGaamODaaqaaiaaikdaaa aakiaawIcacaGLPaaacqGH9aqpdaWadaqaamaalyaabaWaaabCaeaa caWH6bWaaSbaaSqaaiaadMgaaeqaaOGaaCOEamaaDaaaleaacaWGPb aabaGccWaGyBOmGikaaaWcbaGaamyAaiabg2da9iaaigdaaeaacaWG TbaaniabggHiLdaakeaadaqadaqaaiqbeo8aZzaajaWaa0baaSqaai aadAhaaeaacaaIYaaaaOGaey4kaSIaeqiYdK3aaSbaaSqaaiaadMga aeqaaaGccaGLOaGaayzkaaaaaaGaay5waiaaw2faamaaCaaaleqaba GaeyOeI0IaaGymaaaakmaadmaabaWaaSGbaeaadaaeWbqaaiaahQha daWgaaWcbaGaamyAaaqabaGccaWG5bWaaSbaaSqaaiaadMgaaeqaaa qaaiaadMgacqGH9aqpcaaIXaaabaGaamyBaaqdcqGHris5aaGcbaWa aeWaaeaacuaHdpWCgaqcamaaDaaaleaacaWG2baabaGaaGOmaaaaki abgUcaRiabeI8a5naaBaaaleaacaWGPbaabeaaaOGaayjkaiaawMca aaaaaiaawUfacaGLDbaacaGGUaGaaGzbVlaacIcacaaIYaGaaiOlai aaiwdacaGGPaaaaa@8AC5@

To calculate the Mean Squared Error (MSE) of the EBLUP, we set the following regularity conditions:

  1. The ψ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaCiYdmaaBa aaleaacaWGPbaabeaaaaa@399A@ are bounded from above and away from zero,
  2. The z i , 1 i m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaCOEamaaBa aaleaacaWGPbaabeaakiaacYcacaaIXaGaeyizImQaamyAaiabgsMi Jkaad2gaaaa@4008@ are bounded, and
  3. lim inf λ min ( 1 / m i z i z i ) > 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaciiBaiaacM gacaGGTbGaciyAaiaac6gacaGGMbGaaC4UdmaaBaaaleaaciGGTbGa aiyAaiaac6gaaeqaaOWaaeWaaeaadaWcgaqaaiaaigdaaeaacaWGTb aaamaaqababaGaaCOEamaaBaaaleaacaWGPbaabeaaaeaacaWGPbaa beqdcqGHris5aOGaeyyXICTaaCOEamaaDaaaleaacaWGPbaabaGccW aGyBOmGikaaaGaayjkaiaawMcaaiabg6da+iaaicdaaaa@5263@ where λ min ( A ) = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaC4UdmaaBa aaleaaciGGTbGaaiyAaiaac6gaaeqaaOWaaeWaaeaacaWGbbaacaGL OaGaayzkaaGaeyypa0daaa@3ED0@ minimum eigenvalue of matrix A . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyqaiaac6 caaaa@38A4@

Under normality of the sampling errors e i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyzamaaBa aaleaacaWGPbaabeaaaaa@3930@ associated with model (2.3) and the above regularity conditions, a second order approximation to the MSE is given by:

MSE { θ ^ i ( σ ^ v 2 ) } = g 1 i ( σ v 2 ) + g 2 i ( σ v 2 ) + g 3 i ( σ v 2 ) + o ( 1 m ) , ( 2.6 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaeytaiaabo facaqGfbWaaiWaaeaacuaH4oqCgaqcamaaBaaaleaacaWGPbaabeaa kmaabmaabaGafq4WdmNbaKaadaqhaaWcbaGaamODaaqaaiaaikdaaa aakiaawIcacaGLPaaaaiaawUhacaGL9baacqGH9aqpcaWGNbWaaSba aSqaaiaaigdacaWGPbaabeaakmaabmaabaGaeq4Wdm3aa0baaSqaai aadAhaaeaacaaIYaaaaaGccaGLOaGaayzkaaGaey4kaSIaam4zamaa BaaaleaacaaIYaGaamyAaaqabaGcdaqadaqaaiabeo8aZnaaDaaale aacaWG2baabaGaaGOmaaaaaOGaayjkaiaawMcaaiabgUcaRiaadEga daWgaaWcbaGaaG4maiaadMgaaeqaaOWaaeWaaeaacqaHdpWCdaqhaa WcbaGaamODaaqaaiaaikdaaaaakiaawIcacaGLPaaacqGHRaWkcaWG VbWaaeWaaeaadaWcaaqaaiaaigdaaeaacaWGTbaaaaGaayjkaiaawM caaiaacYcacaaMf8UaaGzbVlaaywW7caaMf8UaaGzbVlaacIcacaaI YaGaaiOlaiaaiAdacaGGPaaaaa@6FF3@

with g 1 i ( σ v 2 ) = γ i ψ i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4zamaaBa aaleaacaaIXaGaamyAaaqabaGcdaqadaqaaiabeo8aZnaaDaaaleaa caWG2baabaGaaGOmaaaaaOGaayjkaiaawMcaaiabg2da9iabeo7aNn aaBaaaleaacaWGPbaabeaakiabeI8a5naaBaaaleaacaWGPbaabeaa kiaacYcaaaa@46A4@ g 2 i ( σ v 2 ) = ( 1 γ i ) 2 z i [ i = 1 m z i z i / ( σ v 2 + ψ i ) ] 1 z i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4zamaaBa aaleaacaaIYaGaamyAaaqabaGcdaqadaqaaiabeo8aZnaaDaaaleaa caWG2baabaGaaGOmaaaaaOGaayjkaiaawMcaaiabg2da9maabmaaba GaaGymaiabgkHiTiabeo7aNnaaBaaaleaacaWGPbaabeaaaOGaayjk aiaawMcaamaaCaaaleqabaGaaGOmaaaakiaahQhadaqhaaWcbaGaam yAaaqaaOGamai2gkdiIcaadaWadaqaamaalyaabaWaaabmaeaacaWH 6bWaaSbaaSqaaiaadMgaaeqaaOGaaCOEamaaDaaaleaacaWGPbaaba GccWaGyBOmGikaaaWcbaGaamyAaiabg2da9iaaigdaaeaacaWGTbaa niabggHiLdaakeaadaqadaqaaiabeo8aZnaaDaaaleaacaWG2baaba GaaGOmaaaakiabgUcaRiabeI8a5naaBaaaleaacaWGPbaabeaaaOGa ayjkaiaawMcaaaaaaiaawUfacaGLDbaadaahaaWcbeqaaiabgkHiTi aaigdaaaGccaWH6bWaaSbaaSqaaiaadMgaaeqaaaaa@681D@ and

g 3 i ( σ v 2 ) = ( ψ i ) 2 V ¯ ( σ ^ v 2 ) / ( σ v 2 + ψ i ) 3 , ( 2.7 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4zamaaBa aaleaacaaIZaGaamyAaaqabaGcdaqadaqaaiabeo8aZnaaDaaaleaa caWG2baabaGaaGOmaaaaaOGaayjkaiaawMcaaiabg2da9maalyaaba WaaeWaaeaacqaHipqEdaWgaaWcbaGaamyAaaqabaaakiaawIcacaGL PaaadaahaaWcbeqaaiaaikdaaaGcceWGwbGbaebadaqadaqaaiqbeo 8aZzaajaWaa0baaSqaaiaadAhaaeaacaaIYaaaaaGccaGLOaGaayzk aaaabaWaaeWaaeaacqaHdpWCdaqhaaWcbaGaamODaaqaaiaaikdaaa GccqGHRaWkcqaHipqEdaWgaaWcbaGaamyAaaqabaaakiaawIcacaGL PaaadaahaaWcbeqaaiaaiodaaaaaaOGaaiilaiaaywW7caaMf8UaaG zbVlaaywW7caaMf8UaaiikaiaaikdacaGGUaGaaG4naiaacMcaaaa@61F9@

where V ¯ ( σ ^ v 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmOvayaara WaaeWaaeaacuaHdpWCgaqcamaaDaaaleaacaWG2baabaGaaGOmaaaa aOGaayjkaiaawMcaaaaa@3D69@ is the asymptotic variance of σ ^ v 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9 vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGafq4WdmNbaK aadaqhaaWcbaGaamODaaqaaiaaikdaaaaaaa@3AE3@ (Das, Jiang and Rao 2004).

Date modified: