Comparison of some positive variance estimators for the Fay-Herriot small area model
2. EBLUP and MSE of the EBLUP under the Fay-Herriot modelComparison of some positive variance estimators for the Fay-Herriot small area model
2. EBLUP and MSE of the EBLUP under the Fay-Herriot model
Let
y
i
,
i
=
1
,
…
,
m
,
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyEamaaBa
aaleaacaWGPbaabeaakiaacYcacaWGPbGaeyypa0JaaGymaiaacYca
cqWIMaYscaGGSaGaamyBaiaacYcaaaa@40D1@
be the direct survey estimators of the small
area means
θ
i
,
i
=
1
,
…
,
m
.
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeqiUde3aaS
baaSqaaiaadMgaaeqaaOGaaiilaiaadMgacqGH9aqpcaaIXaGaaiil
aiablAciljaacYcacaWGTbGaaiOlaaaa@418B@
The
Fay-Herriot model consists of the following sampling and linking models:
Sampling model:
y
i
=
θ
i
+
e
i
,
e
i
|
θ
i
∼
i
.d
.
(
0
,
ψ
i
)
,
i
=
1
,
…
,
m
,
(
2.1
)
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyEamaaBa
aaleaacaWGPbaabeaakiabg2da9iabeI7aXnaaBaaaleaacaWGPbaa
beaakiabgUcaRiaadwgadaWgaaWcbaGaamyAaaqabaGccaGGSaWaaq
GaaeaacaWGLbWaaSbaaSqaaiaadMgaaeqaaaGccaGLiWoacqaH4oqC
daWgaaWcbaGaamyAaaqabaGcdaWfGaqaaiablYJi6aWcbeqaaiaabM
gacaqGUaGaaeizaiaab6caaaGcdaqadaqaaiaaicdacaGGSaGaeqiY
dK3aaSbaaSqaaiaadMgaaeqaaaGccaGLOaGaayzkaaGaaiilaiaays
W7caaMe8UaamyAaiabg2da9iaaigdacaGGSaGaeSOjGSKaaiilaiaa
d2gacaGGSaGaaGzbVlaaywW7caaMf8UaaGzbVlaaywW7caGGOaGaaG
Omaiaac6cacaaIXaGaaiykaaaa@67C6@
Linking model:
θ
i
=
z
i
′
β
+
v
i
,
v
i
∼
i
.i
.d
.
(
0
,
σ
v
2
)
,
σ
v
2
>
0
,
i
=
1
,
…
,
m
,
(
2.2
)
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeqiUde3aaS
baaSqaaiaadMgaaeqaaOGaeyypa0JaaCOEamaaDaaaleaacaWGPbaa
baGccWaGyBOmGikaaiaahk7acqGHRaWkcaWG2bWaaSbaaSqaaiaadM
gaaeqaaOGaaiilaiaadAhadaWgaaWcbaGaamyAaaqabaGcdaWfGaqa
aiablYJi6aWcbeqaaiaabMgacaqGUaGaaeyAaiaab6cacaqGKbGaae
OlaaaakmaabmaabaGaaGimaiaacYcacqaHdpWCdaqhaaWcbaGaamOD
aaqaaiaaikdaaaaakiaawIcacaGLPaaacaGGSaGaeq4Wdm3aa0baaS
qaaiaadAhaaeaacaaIYaaaaOaeaaaaaaaaa8qacqGH+aGpcaGGGcGa
aGimaiaacYcacaaMe8UaaGjbV=aacaWGPbGaeyypa0JaaGymaiaacY
cacqWIMaYscaGGSaGaamyBaiaacYcacaaMf8UaaGzbVlaaywW7caaM
f8UaaGzbVlaacIcacaaIYaGaaiOlaiaaikdacaGGPaaaaa@716F@
where
e
i
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyzamaaBa
aaleaacaWGPbaabeaaaaa@3930@
are the
sampling errors, independently distributed with mean zero and “known” sampling
variances
ψ
i
,
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeqiYdK3aaS
baaSqaaiaadMgaaeqaaOGaaiilaaaa@3ACE@
z
i
(
p
×
1
)
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaCOEamaaBa
aaleaacaWGPbaabeaakmaabmaabaGaamiCaiabgEna0kaaigdaaiaa
wIcacaGLPaaaaaa@3EA3@
are known vectors of covariate values;
β
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaCOSdaaa@386A@
is a
p
×
1
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiCaiabgE
na0kaaigdaaaa@3AF3@
vector of unknown fixed regression coefficients;
and
v
i
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamODamaaBa
aaleaacaWGPbaabeaaaaa@3941@
are
independent and identically distributed random effects with mean zero and model
variance
σ
v
2
.
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0
baaSqaaiaadAhaaeaacaaIYaaaaOGaaiOlaaaa@3B8F@
Combining (2.1) and (2.2) we obtain:
y
i
=
z
i
′
β
+
v
i
+
e
i
,
i
=
1
,
…
,
m
,
(
2.3
)
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyEamaaBa
aaleaacaWGPbaabeaakiabg2da9iaahQhadaqhaaWcbaGaamyAaaqa
aOGamai2gkdiIcaacaWHYoGaey4kaSIaamODamaaBaaaleaacaWGPb
aabeaakiabgUcaRiaadwgadaWgaaWcbaGaamyAaaqabaGccaGGSaGa
aGjbVlaaysW7caWGPbGaeyypa0JaaGymaiaacYcacqWIMaYscaGGSa
GaamyBaiaacYcacaaMf8UaaGzbVlaaywW7caaMf8UaaGzbVlaacIca
caaIYaGaaiOlaiaaiodacaGGPaaaaa@5C71@
with both model and sampling
errors. The
y
i
,
i
=
1
,
…
,
m
,
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyEamaaBa
aaleaacaWGPbaabeaakiaacYcacaWGPbGaeyypa0JaaGymaiaacYca
cqWIMaYscaGGSaGaamyBaiaacYcaaaa@40D1@
can be
viewed as outcomes in the combined design-model space (see Rubin-Bleuer and
Schiopu-Kratina 2005).
Under model
(2.3), the EBLUP of the small area mean
θ
i
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeqiUde3aaS
baaSqaaiaadMgaaeqaaaaa@39FC@
is given by:
θ
^
i
(
σ
^
v
2
)
=
z
i
′
β
^
(
σ
^
v
2
)
+
γ
^
i
[
y
i
−
z
i
′
β
^
(
σ
^
v
2
)
]
=
γ
^
i
y
i
+
(
1
−
γ
^
i
)
z
i
′
β
^
(
σ
^
v
2
)
,
i
=
1
,
…
,
m
,
(
2.4
)
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGafqiUdeNbaK
aadaWgaaWcbaGaamyAaaqabaGcdaqadaqaaiqbeo8aZzaajaWaa0ba
aSqaaiaadAhaaeaacaaIYaaaaaGccaGLOaGaayzkaaGaeyypa0JaaC
OEamaaDaaaleaacaWGPbaabaGccWaGyBOmGikaaiqahk7agaqcamaa
bmaabaGafq4WdmNbaKaadaqhaaWcbaGaamODaaqaaiaaikdaaaaaki
aawIcacaGLPaaacqGHRaWkcuaHZoWzgaqcamaaBaaaleaacaWGPbaa
beaakmaadmaabaGaamyEamaaBaaaleaacaWGPbaabeaakiabgkHiTi
aahQhadaqhaaWcbaGaamyAaaqaaOGamai2gkdiIcaaceWHYoGbaKaa
daqadaqaaiqbeo8aZzaajaWaa0baaSqaaiaadAhaaeaacaaIYaaaaa
GccaGLOaGaayzkaaaacaGLBbGaayzxaaGaeyypa0Jafq4SdCMbaKaa
daWgaaWcbaGaamyAaaqabaGccaWG5bWaaSbaaSqaaiaadMgaaeqaaO
Gaey4kaSYaaeWaaeaacaaIXaGaeyOeI0Iafq4SdCMbaKaadaWgaaWc
baGaamyAaaqabaaakiaawIcacaGLPaaacaWH6bWaa0baaSqaaiaadM
gaaeaakiadaITHYaIOaaGabCOSdyaajaWaaeWaaeaacuaHdpWCgaqc
amaaDaaaleaacaWG2baabaGaaGOmaaaaaOGaayjkaiaawMcaaiaacY
cacaaMe8UaaGjbVlaadMgacqGH9aqpcaaIXaGaaiilaiablAciljaa
cYcacaWGTbGaaiilaiaaywW7caaMf8UaaGzbVlaacIcacaaIYaGaai
OlaiaaisdacaGGPaaaaa@8BC0@
where
σ
^
v
2
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGafq4WdmNbaK
aadaqhaaWcbaGaamODaaqaaiaaikdaaaaaaa@3AE3@
is a
consistent estimator of
σ
v
2
,
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0
baaSqaaiaadAhaaeaacaaIYaaaaOGaaiilaaaa@3B8D@
γ
^
i
=
σ
^
v
2
/
(
σ
^
v
2
+
ψ
i
)
,
and
β
^
(
σ
^
v
2
)
=
[
∑
i
=
1
m
z
i
z
i
′
/
(
σ
^
v
2
+
ψ
i
)
]
−
1
[
∑
i
=
1
m
z
i
y
i
/
(
σ
^
v
2
+
ψ
i
)
]
.
(
2.5
)
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGafq4SdCMbaK
aadaWgaaWcbaGaamyAaaqabaGccqGH9aqpdaWcgaqaaiqbeo8aZzaa
jaWaa0baaSqaaiaadAhaaeaacaaIYaaaaaGcbaWaaeWaaeaacuaHdp
WCgaqcamaaDaaaleaacaWG2baabaGaaGOmaaaakiabgUcaRiabeI8a
5naaBaaaleaacaWGPbaabeaaaOGaayjkaiaawMcaaaaacaGGSaGaae
iiaiaabccacaqGHbGaaeOBaiaabsgacaqGGaGaaeiiaiqahk7agaqc
amaabmaabaGafq4WdmNbaKaadaqhaaWcbaGaamODaaqaaiaaikdaaa
aakiaawIcacaGLPaaacqGH9aqpdaWadaqaamaalyaabaWaaabCaeaa
caWH6bWaaSbaaSqaaiaadMgaaeqaaOGaaCOEamaaDaaaleaacaWGPb
aabaGccWaGyBOmGikaaaWcbaGaamyAaiabg2da9iaaigdaaeaacaWG
TbaaniabggHiLdaakeaadaqadaqaaiqbeo8aZzaajaWaa0baaSqaai
aadAhaaeaacaaIYaaaaOGaey4kaSIaeqiYdK3aaSbaaSqaaiaadMga
aeqaaaGccaGLOaGaayzkaaaaaaGaay5waiaaw2faamaaCaaaleqaba
GaeyOeI0IaaGymaaaakmaadmaabaWaaSGbaeaadaaeWbqaaiaahQha
daWgaaWcbaGaamyAaaqabaGccaWG5bWaaSbaaSqaaiaadMgaaeqaaa
qaaiaadMgacqGH9aqpcaaIXaaabaGaamyBaaqdcqGHris5aaGcbaWa
aeWaaeaacuaHdpWCgaqcamaaDaaaleaacaWG2baabaGaaGOmaaaaki
abgUcaRiabeI8a5naaBaaaleaacaWGPbaabeaaaOGaayjkaiaawMca
aaaaaiaawUfacaGLDbaacaGGUaGaaGzbVlaacIcacaaIYaGaaiOlai
aaiwdacaGGPaaaaa@8AC5@
To calculate the
Mean Squared Error (MSE) of the EBLUP , we set the following regularity
conditions:
The
ψ
i
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaCiYdmaaBa
aaleaacaWGPbaabeaaaaa@399A@
are bounded from above and away from zero,
The
z
i
,
1
≤
i
≤
m
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaCOEamaaBa
aaleaacaWGPbaabeaakiaacYcacaaIXaGaeyizImQaamyAaiabgsMi
Jkaad2gaaaa@4008@
are
bounded, and
lim
inf
λ
min
(
1
/
m
∑
i
z
i
⋅
z
i
′
)
>
0
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaciiBaiaacM
gacaGGTbGaciyAaiaac6gacaGGMbGaaC4UdmaaBaaaleaaciGGTbGa
aiyAaiaac6gaaeqaaOWaaeWaaeaadaWcgaqaaiaaigdaaeaacaWGTb
aaamaaqababaGaaCOEamaaBaaaleaacaWGPbaabeaaaeaacaWGPbaa
beqdcqGHris5aOGaeyyXICTaaCOEamaaDaaaleaacaWGPbaabaGccW
aGyBOmGikaaaGaayjkaiaawMcaaiabg6da+iaaicdaaaa@5263@
where
λ
min
(
A
)
=
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaC4UdmaaBa
aaleaaciGGTbGaaiyAaiaac6gaaeqaaOWaaeWaaeaacaWGbbaacaGL
OaGaayzkaaGaeyypa0daaa@3ED0@
minimum eigenvalue of matrix
A
.
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyqaiaac6
caaaa@38A4@
Under normality of the sampling errors
e
i
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyzamaaBa
aaleaacaWGPbaabeaaaaa@3930@
associated with model (2.3) and the above
regularity conditions, a second order approximation to the MSE is given by:
MSE
{
θ
^
i
(
σ
^
v
2
)
}
=
g
1
i
(
σ
v
2
)
+
g
2
i
(
σ
v
2
)
+
g
3
i
(
σ
v
2
)
+
o
(
1
m
)
,
(
2.6
)
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaeytaiaabo
facaqGfbWaaiWaaeaacuaH4oqCgaqcamaaBaaaleaacaWGPbaabeaa
kmaabmaabaGafq4WdmNbaKaadaqhaaWcbaGaamODaaqaaiaaikdaaa
aakiaawIcacaGLPaaaaiaawUhacaGL9baacqGH9aqpcaWGNbWaaSba
aSqaaiaaigdacaWGPbaabeaakmaabmaabaGaeq4Wdm3aa0baaSqaai
aadAhaaeaacaaIYaaaaaGccaGLOaGaayzkaaGaey4kaSIaam4zamaa
BaaaleaacaaIYaGaamyAaaqabaGcdaqadaqaaiabeo8aZnaaDaaale
aacaWG2baabaGaaGOmaaaaaOGaayjkaiaawMcaaiabgUcaRiaadEga
daWgaaWcbaGaaG4maiaadMgaaeqaaOWaaeWaaeaacqaHdpWCdaqhaa
WcbaGaamODaaqaaiaaikdaaaaakiaawIcacaGLPaaacqGHRaWkcaWG
VbWaaeWaaeaadaWcaaqaaiaaigdaaeaacaWGTbaaaaGaayjkaiaawM
caaiaacYcacaaMf8UaaGzbVlaaywW7caaMf8UaaGzbVlaacIcacaaI
YaGaaiOlaiaaiAdacaGGPaaaaa@6FF3@
with
g
1
i
(
σ
v
2
)
=
γ
i
ψ
i
,
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4zamaaBa
aaleaacaaIXaGaamyAaaqabaGcdaqadaqaaiabeo8aZnaaDaaaleaa
caWG2baabaGaaGOmaaaaaOGaayjkaiaawMcaaiabg2da9iabeo7aNn
aaBaaaleaacaWGPbaabeaakiabeI8a5naaBaaaleaacaWGPbaabeaa
kiaacYcaaaa@46A4@
g
2
i
(
σ
v
2
)
=
(
1
−
γ
i
)
2
z
i
′
[
∑
i
=
1
m
z
i
z
i
′
/
(
σ
v
2
+
ψ
i
)
]
−
1
z
i
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4zamaaBa
aaleaacaaIYaGaamyAaaqabaGcdaqadaqaaiabeo8aZnaaDaaaleaa
caWG2baabaGaaGOmaaaaaOGaayjkaiaawMcaaiabg2da9maabmaaba
GaaGymaiabgkHiTiabeo7aNnaaBaaaleaacaWGPbaabeaaaOGaayjk
aiaawMcaamaaCaaaleqabaGaaGOmaaaakiaahQhadaqhaaWcbaGaam
yAaaqaaOGamai2gkdiIcaadaWadaqaamaalyaabaWaaabmaeaacaWH
6bWaaSbaaSqaaiaadMgaaeqaaOGaaCOEamaaDaaaleaacaWGPbaaba
GccWaGyBOmGikaaaWcbaGaamyAaiabg2da9iaaigdaaeaacaWGTbaa
niabggHiLdaakeaadaqadaqaaiabeo8aZnaaDaaaleaacaWG2baaba
GaaGOmaaaakiabgUcaRiabeI8a5naaBaaaleaacaWGPbaabeaaaOGa
ayjkaiaawMcaaaaaaiaawUfacaGLDbaadaahaaWcbeqaaiabgkHiTi
aaigdaaaGccaWH6bWaaSbaaSqaaiaadMgaaeqaaaaa@681D@
and
g
3
i
(
σ
v
2
)
=
(
ψ
i
)
2
V
¯
(
σ
^
v
2
)
/
(
σ
v
2
+
ψ
i
)
3
,
(
2.7
)
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4zamaaBa
aaleaacaaIZaGaamyAaaqabaGcdaqadaqaaiabeo8aZnaaDaaaleaa
caWG2baabaGaaGOmaaaaaOGaayjkaiaawMcaaiabg2da9maalyaaba
WaaeWaaeaacqaHipqEdaWgaaWcbaGaamyAaaqabaaakiaawIcacaGL
PaaadaahaaWcbeqaaiaaikdaaaGcceWGwbGbaebadaqadaqaaiqbeo
8aZzaajaWaa0baaSqaaiaadAhaaeaacaaIYaaaaaGccaGLOaGaayzk
aaaabaWaaeWaaeaacqaHdpWCdaqhaaWcbaGaamODaaqaaiaaikdaaa
GccqGHRaWkcqaHipqEdaWgaaWcbaGaamyAaaqabaaakiaawIcacaGL
PaaadaahaaWcbeqaaiaaiodaaaaaaOGaaiilaiaaywW7caaMf8UaaG
zbVlaaywW7caaMf8UaaiikaiaaikdacaGGUaGaaG4naiaacMcaaaa@61F9@
where
V
¯
(
σ
^
v
2
)
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmOvayaara
WaaeWaaeaacuaHdpWCgaqcamaaDaaaleaacaWG2baabaGaaGOmaaaa
aOGaayjkaiaawMcaaaaa@3D69@
is the asymptotic variance of
σ
^
v
2
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbbG8FaYPYRWFb9fi0FXxbbf9Ff0dfrpm0dXdHqVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGafq4WdmNbaK
aadaqhaaWcbaGaamODaaqaaiaaikdaaaaaaa@3AE3@
(Das, Jiang and Rao 2004).
ISSN : 1492-0921
Editorial policy
Survey Methodology publishes articles dealing with various aspects of statistical development relevant to a statistical agency, such as design issues in the context of practical constraints, use of different data sources and collection techniques, total survey error, survey evaluation, research in survey methodology, time series analysis, seasonal adjustment, demographic studies, data integration, estimation and data analysis methods, and general survey systems development. The emphasis is placed on the development and evaluation of specific methodologies as applied to data collection or the data themselves. All papers will be refereed. However, the authors retain full responsibility for the contents of their papers and opinions expressed are not necessarily those of the Editorial Board or of Statistics Canada.
Submission of Manuscripts
Survey Methodology is published twice a year in electronic format. Authors are invited to submit their articles in English or French in electronic form, preferably in Word to the Editor, (statcan.smj-rte.statcan@canada.ca , Statistics Canada, 150 Tunney’s Pasture Driveway, Ottawa, Ontario, Canada, K1A 0T6). For formatting instructions, please see the guidelines provided in the journal and on the web site (www.statcan.gc.ca/SurveyMethodology).
Note of appreciation
Canada owes the success of its statistical system to a long-standing partnership between Statistics Canada, the citizens of Canada, its businesses, governments and other institutions. Accurate and timely statistical information could not be produced without their continued co-operation and goodwill.
Standards of service to the public
Statistics Canada is committed to serving its clients in a prompt, reliable and courteous manner. To this end, the Agency has developed standards of service which its employees observe in serving its clients.
Copyright
Published by authority of the Minister responsible for Statistics Canada.
© Minister of Industry, 2016
Use of this publication is governed by the Statistics Canada Open Licence Agreement .
Catalogue No. 12-001-X
Frequency: semi-annual
Ottawa
Date modified:
2016-06-22