Techniques d’enquête
Appariement statistique par imputation fractionnaire

par Jae Kwang Kim, Emily Berg et Taesung ParkNote 1

  • Date de diffusion : 22 juin 2016

Résumé

L’appariement statistique est une technique permettant d’intégrer deux ou plusieurs ensembles de données lorsque les renseignements nécessaires pour apparier les enregistrements des participants individuels dans les ensembles de données sont incomplets. On peut considérer l’appariement statistique comme un problème de données manquantes en vertu duquel on souhaite effectuer une analyse conjointe de variables qui ne sont jamais observées ensemble. On utilise souvent une hypothèse d’indépendance conditionnelle pour créer des données imputées aux fins d’appariement statistique. Nous examinons une approche générale de l’appariement statistique faisant appel à l’imputation fractionnaire paramétrique de Kim (2011) pour créer des données imputées en vertu de l’hypothèse que le modèle spécifié est entièrement identifié. La méthode proposée ne produit pas une séquence espérance-maximisation (EM) convergente si le modèle n’est pas identifié. Nous présentons aussi des estimateurs de variance convenant à la procédure d’imputation. Nous expliquons comment la méthode s’applique directement à l’analyse des données obtenues à partir de plans de sondage à questionnaire scindé et aux modèles d’erreur de mesure.

Mots-clés : Combinaison de données; fusion de données; imputation hot deck; plan de sondage à questionnaire scindé; modèle d’erreur de mesure.

Table des matières

Notes

Signaler un problème sur cette page

Quelque chose ne fonctionne pas? L'information n'est plus à jour? Vous ne trouvez pas ce que vous cherchez?

S'il vous plaît contactez-nous et nous informer comment nous pouvons vous aider.

Avis de confidentialité

Date de modification :