Adaptive survey designs to minimize survey mode effects – a case study on the Dutch Labor Force Survey
2. The multi-mode optimization problemAdaptive survey designs to minimize survey mode effects – a case study on the Dutch Labor Force Survey
2. The multi-mode optimization problem
In this section, we construct the multi-mode
optimization problem that accounts for mode effects on a single key survey
variable. Apart from the survey mode, we also consider caps on the number of
calls in telephone and face-to-face as design features in the optimization. In
the optimization model, we allow different design features to be assigned to
different subpopulations. Hence, the optimization may lead to an adaptive
survey design; it does so when the optimal allocation probabilities differ over
the subpopulations. In our case, the subpopulations are built on linked
administrative data. Note that they could also be built based on paradata
collected during the early stages of the survey. The last component to the
optimization problem is given by a set of explicit quality and cost functions.
In our case, the quality functions are derived from mode differences in
selection and measurement bias and from requirements on the precision of
statistics. As a cost function, we use the total variable costs of the survey
design. In the following paragraphs, we discuss the components of the
optimization problem.
We begin with the survey design features contained in
the survey strategy set
S
.
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbba9Fa0P0RWFb9fq0FXxbbf9=e0dfrpm0dXdirVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf
gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFse=ucaGGUaaaaa@438E@
We consider single mode and sequential
mixed-mode strategies, i.e., a strategies where nonrespondents in a mode are
followed-up in another mode. A single mode would be labelled as
M
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbba9Fa0P0RWFb9fq0FXxbbf9=e0dfrpm0dXdirVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamytaaaa@3849@
and a sequential mixed-mode as
M
1
→
M
2
.
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbba9Fa0P0RWFb9fq0FXxbbf9=e0dfrpm0dXdirVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamytamaaBa
aaleaacaaIXaaabeaakiabgkziUkaad2eadaWgaaWcbaGaaGOmaaqa
baGccaGGUaaaaa@3D9D@
We consider Web, telephone and face-to-face
survey as the modes of interest and abbreviate them to
W
e
b
,
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipu0de9LqFHe9fr
pepeuf0xe9q8qq0RWFaDk9vq=dbvh9v8Wq0db9Fn0dbba9pw0lfr=x
fr=xfbpdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4vaiaadw
gacaWGIbGaaiilaaaa@3A06@
T
e
l
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipu0de9LqFHe9fr
pepeuf0xe9q8qq0RWFaDk9vq=dbvh9v8Wq0db9Fn0dbba9pw0lfr=x
fr=xfbpdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamivaiaadw
gacaWGSbaaaa@395D@
and
F
2
F
.
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipu0de9LqFHe9fr
pepeuf0xe9q8qq0RWFaDk9vq=dbvh9v8Wq0db9Fn0dbba9pw0lfr=x
fr=xfbpdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOraiaaik
dacaWGgbGaaiOlaaaa@39AD@
Examples of single mode and sequential mixed
mode are
T
e
l
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipu0de9LqFHe9fr
pepeuf0xe9q8qq0RWFaDk9vq=dbvh9v8Wq0db9Fn0dbba9pw0lfr=x
fr=xfbpdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamivaiaadw
gacaWGSbaaaa@395D@
and
W
e
b
→
F
2
F
,
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbba9Fa0P0RWFb9fq0FXxbbf9=e0dfrpm0dXdirVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4vaiaadw
gacaWGIbGaeyOKH4QaamOraiaaikdacaWGgbGaaiilaaaa@3F13@
respectively. For interview modes, we
additionally consider a cap
k
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbba9Fa0P0RWFb9fq0FXxbbf9=e0dfrpm0dXdirVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4Aaaaa@3867@
on the number of calls, denoted as
M
k
.
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbba9Fa0P0RWFb9fq0FXxbbf9=e0dfrpm0dXdirVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamytaiaadU
gacaGGUaaaaa@39EB@
For example,
F
2
F
3
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipu0de9LqFHe9fr
pepeuf0xe9q8qq0RWFaDk9vq=dbvh9v8Wq0db9Fn0dbba9pw0lfr=x
fr=xfbpdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOraiaaik
dacaWGgbGaaG4maaaa@39B8@
denotes a single mode survey strategy that
uses face-to-face with a maximum of three visits. We let
M
k
+
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbba9Fa0P0RWFb9fq0FXxbbf9=e0dfrpm0dXdirVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamytaiaadU
gacqGHRaWkaaa@3A1B@
denote the counterpart strategy where there is
no explicit cap. We do not consider concurrent mixed-mode strategies (two or
more modes are offered simultaneously to sample units) in this paper. This
restriction is without loss of generality. It would be straightforward to apply
the methodology to any set of multi-mode strategies, including hybrid forms of
sequential and concurrent mixed-mode strategies. A wide or diffuse set of
strategies will, however, come at the cost of a larger number of input
parameters that need to be estimated. The survey strategy set
S
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbba9Fa0P0RWFb9fq0FXxbbf9=e0dfrpm0dXdirVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf
gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFse=uaaa@42DC@
explicitly includes the empty strategy,
denoted by
Φ
,
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbba9Fa0P0RWFb9fq0FXxbbf9=e0dfrpm0dXdirVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeuOPdyKaai
ilaaaa@39A1@
which represents the case where a population
unit is not sampled, i.e., no action is taken to get a response from the unit.
We let
S
R
= S \ { Φ }
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbba9Fa0P0RWFb9fq0FXxbbf9=e0dfrpm0dXdirVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf
gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFse=udaahaaWcbeqa
aiaadkfaaaGccqGH9aqpcqWFse=ucaGGCbWaaiWaaeaacqqHMoGrai
aawUhacaGL9baaaaa@4B56@
denote the set of real, non-empty strategies.
Population units are clustered into
G = {
1, … , G }
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbba9Fa0P0RWFb9fq0FXxbbf9=e0dfrpm0dXdirVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf
gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFge=rcqGH9aqpdaGa
daqaaiaaigdacaaISaGaeSOjGSKaaGilaiaadEeaaiaawUhacaGL9b
aaaaa@4A10@
groups given a set of characteristics
X
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbba9Fa0P0RWFb9fq0FXxbbf9=e0dfrpm0dXdirVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiwaaaa@3854@
such as age, ethnicity, that can be extracted
from external sources of data or from paradata. Let
p
(
s
,
g
)
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbba9Fa0P0RWFb9fq0FXxbbf9=e0dfrpm0dXdirVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiCamaabm
aabaGaam4CaiaaiYcacaWGNbaacaGLOaGaayzkaaaaaa@3C8F@
be the allocation probability of strategy
s
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbba9Fa0P0RWFb9fq0FXxbbf9=e0dfrpm0dXdirVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4Caaaa@386F@
to group
g
,
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbba9Fa0P0RWFb9fq0FXxbbf9=e0dfrpm0dXdirVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4zaiaacY
caaaa@3913@
i.e. , a proportion
p
(
s
,
g
)
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbba9Fa0P0RWFb9fq0FXxbbf9=e0dfrpm0dXdirVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiCamaabm
aabaGaam4CaiaaiYcacaWGNbaacaGLOaGaayzkaaaaaa@3C8F@
from subpopulation
g
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbba9Fa0P0RWFb9fq0FXxbbf9=e0dfrpm0dXdirVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4zaaaa@3863@
is sampled and approached through strategy
s
.
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbba9Fa0P0RWFb9fq0FXxbbf9=e0dfrpm0dXdirVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4Caiaac6
caaaa@3921@
In general, it may hold that multiple strategies
have non-zero allocation probabilities, so that the subpopulation is divided
over multiple strategies. Define the allocation probability
p
(
Φ
,
g
)
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbba9Fa0P0RWFb9fq0FXxbbf9=e0dfrpm0dXdirVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiCamaabm
aabaGaeuOPdyKaaGilaiaadEgaaiaawIcacaGLPaaaaaa@3D11@
as the probability that a unit from
subpopulation
g
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbba9Fa0P0RWFb9fq0FXxbbf9=e0dfrpm0dXdirVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4zaaaa@3863@
is not included in the sample. The ratio
p
(
s
,
g
)
/
(
1
−
p
(
Φ
,
g
)
)
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbba9Fa0P0RWFb9fq0FXxbbf9=e0dfrpm0dXdirVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaWaaSGbaeaaca
WGWbWaaeWaaeaacaWGZbGaaGilaiaadEgaaiaawIcacaGLPaaaaeaa
daqadaqaaiaaigdacqGHsislcaWGWbWaaeWaaeaacqqHMoGrcaaISa
Gaam4zaaGaayjkaiaawMcaaaGaayjkaiaawMcaaaaaaaa@4570@
is the probability that a unit is assigned
strategy
s
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbba9Fa0P0RWFb9fq0FXxbbf9=e0dfrpm0dXdirVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4Caaaa@386F@
given that it has been sampled. For example,
if only the allocation probabilities to the empty strategy
p
(
Φ
,
g
)
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbba9Fa0P0RWFb9fq0FXxbbf9=e0dfrpm0dXdirVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiCamaabm
aabaGaeuOPdyKaaGilaiaadEgaaiaawIcacaGLPaaaaaa@3D11@
vary and the allocation probabilities
p
(
s
,
g
)
,
∀
s
∈
S
R
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbba9Fa0P0RWFb9fq0FXxbbf9=e0dfrpm0dXdirVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiCamaabm
aabaGaam4CaiaaiYcacaWGNbaacaGLOaGaayzkaaGaaGilaiabgcGi
IiaadohacqGHiiIZtuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5
wzaGqbaiab=jr8tnaaCaaaleqabaGaamOuaaaaaaa@4CFA@
are equal conditional on being sampled, then
the design is stratified but non-adaptive. The probabilities must satisfy
∑
s ∈
S
R
p (
s , g
)
+ p (
Φ , g
)
=
1, ∀ g ∈ G ,
0 ≤ p (
s , g
)
≤
1, ∀ s ∈ S , g ∈ G .
( 2.1 )
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbba9Fa0P0RWFb9fq0FXxbbf9=e0dfrpm0dXdirVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaqbaeaabiWaaa
qaamaaqafabaGaamiCamaabmaabaGaam4CaiaaiYcacaWGNbaacaGL
OaGaayzkaaaaleaacaWGZbGaeyicI48efv3ySLgznfgDOfdaryqr1n
gBPrginfgDObYtUvgaiuaacqWFse=udaahaaadbeqaaiaadkfaaaaa
leqaniabggHiLdGccqGHRaWkcaWGWbWaaeWaaeaacqqHMoGrcaaISa
Gaam4zaaGaayjkaiaawMcaaaqaaiabg2da9aqaaiaaigdacaaISaGa
aGjbVlabgcGiIiaadEgacqGHiiIZcqWFge=rcaaISaaabaGaaGPaVl
aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua
aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGjbVlaaicdacq
GHKjYOcaWGWbWaaeWaaeaacaWGZbGaaGilaiaadEgaaiaawIcacaGL
PaaaaeaacqGHKjYOaeaacaaIXaGaaGilaiaaysW7cqGHaiIicaWGZb
GaeyicI4Sae8NeXpLaaGilaiaaysW7caWGNbGaeyicI4Sae8NbXFKa
aGOlaaaacaaMf8UaaGzbVlaaywW7caaMf8UaaGzbVlaacIcacaaIYa
GaaiOlaiaaigdacaGGPaaaaa@9A80@
The
allocation probabilities of survey strategies assigned to subpopulations
p
(
s
,
g
)
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbba9Fa0P0RWFb9fq0FXxbbf9=e0dfrpm0dXdirVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiCamaabm
aabaGaam4CaiaaiYcacaWGNbaacaGLOaGaayzkaaaaaa@3C8F@
define the decision variables in
the optimization model. More generally, and analogous to sampling designs, one
could allow for dependencies between population units being sampled and/or
being allocated to non-empty strategies
s
∈
S
R
.
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbba9Fa0P0RWFb9fq0FXxbbf9=e0dfrpm0dXdirVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4CaiabgI
Gioprr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae8Ne
Xp1aaWbaaSqabeaacaWGsbaaaOGaaiOlaaaa@4718@
We will not add that complexity
here, but assume independence.
We now discuss the quality and cost functions. We assume
that the interest lies in estimating the population means of a survey variable
y
.
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbba9Fa0P0RWFb9fq0FXxbbf9=e0dfrpm0dXdirVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyEaiaac6
caaaa@3927@
Given that we consider the survey mode as one
of the design features, we view the nonresponse adjusted bias on
y
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbba9Fa0P0RWFb9fq0FXxbbf9=e0dfrpm0dXdirVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyEaaaa@3875@
between the proposed design and a specified
benchmark design
BM
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbba9Fa0P0RWFb9fq0FXxbbf9=e0dfrpm0dXdirVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaeOqaiaab2
eaaaa@390C@
as the main quality function. This bias may be
viewed as the adjusted method effect with respect to
BM
,
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbba9Fa0P0RWFb9fq0FXxbbf9=e0dfrpm0dXdirVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaeOqaiaab2
eacaGGSaaaaa@39BC@
and it is a mix of mode-specific measurement
biases and remaining mode-specific nonresponse biases after adjustment. If both
the proposed design and the benchmark design are single mode, then the bias is
a true (adjusted) mode effect. If one of the designs is multi-mode, then the
bias represents a complex mixture of mode effects, see for instance Klausch, Hox and Schouten (2014).
Let
N
g
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbba9Fa0P0RWFb9fq0FXxbbf9=e0dfrpm0dXdirVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOtamaaBa
aaleaacaWGNbaabeaaaaa@3962@
be the population size of group
g
,
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbba9Fa0P0RWFb9fq0FXxbbf9=e0dfrpm0dXdirVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4zaiaacY
caaaa@3913@
w
g
=
N
g
/ N
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbba9Fa0P0RWFb9fq0FXxbbf9=e0dfrpm0dXdirVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4DamaaBa
aaleaacaWGNbaabeaakiabg2da9maalyaabaGaamOtamaaBaaaleaa
caWGNbaabeaaaOqaaiaad6eaaaaaaa@3D79@
be the proportion of group
g
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbba9Fa0P0RWFb9fq0FXxbbf9=e0dfrpm0dXdirVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4zaaaa@3863@
in the population of size
N
,
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbba9Fa0P0RWFb9fq0FXxbbf9=e0dfrpm0dXdirVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOtaiaacY
caaaa@38FA@
and
ρ
(
s
,
g
)
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbba9Fa0P0RWFb9fq0FXxbbf9=e0dfrpm0dXdirVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeqyWdi3aae
WaaeaacaWGZbGaaGilaiaadEgaaiaawIcacaGLPaaaaaa@3D5A@
be the response propensity for group
g
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbba9Fa0P0RWFb9fq0FXxbbf9=e0dfrpm0dXdirVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4zaaaa@3863@
if strategy
s
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbba9Fa0P0RWFb9fq0FXxbbf9=e0dfrpm0dXdirVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4Caaaa@386F@
is assigned. For a specific group, we define
the adjusted method effect as the nonresponse adjusted difference between the
survey estimate
y
¯
s
,
g
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbba9Fa0P0RWFb9fq0FXxbbf9=e0dfrpm0dXdirVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmyEayaara
WaaSbaaSqaaiaadohacaGGSaGaam4zaaqabaaaaa@3B4D@
and a benchmark estimate
y
¯
g
BM
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbba9Fa0P0RWFb9fq0FXxbbf9=e0dfrpm0dXdirVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmyEayaara
Waa0baaSqaaiaadEgaaeaacaqGcbGaaeytaaaaaaa@3B3B@
of the population mean
Y
¯
,
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbba9Fa0P0RWFb9fq0FXxbbf9=e0dfrpm0dXdirVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmywayaara
Gaaiilaaaa@391D@
where the survey estimate
y
¯
s
,
g
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbba9Fa0P0RWFb9fq0FXxbbf9=e0dfrpm0dXdirVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmyEayaara
WaaSbaaSqaaiaadohacaaISaGaam4zaaqabaaaaa@3B53@
is obtained by allocating strategy
s
∈
S
R
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbba9Fa0P0RWFb9fq0FXxbbf9=e0dfrpm0dXdirVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4CaiabgI
Gioprr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae8Ne
Xp1aaWbaaSqabeaacaWGsbaaaaaa@465C@
to subpopulation
g
∈
G
.
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbba9Fa0P0RWFb9fq0FXxbbf9=e0dfrpm0dXdirVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4zaiabgI
Gioprr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae8Nb
XFKaaiOlaaaa@45E6@
Let
D
(
s
,
g
)
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbba9Fa0P0RWFb9fq0FXxbbf9=e0dfrpm0dXdirVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiramaabm
aabaGaam4CaiaaiYcacaWGNbaacaGLOaGaayzkaaaaaa@3C63@
denote this difference. The adjusted method
effect is expressed as
D (
s , g
) =
y
¯
s , g
−
y
¯
g
BM
, ∀ s ∈
S
R
, g ∈ G . ( 2.2 )
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbba9Fa0P0RWFb9fq0FXxbbf9=e0dfrpm0dXdirVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiramaabm
aabaGaam4CaiaaiYcacaWGNbaacaGLOaGaayzkaaGaeyypa0JabmyE
ayaaraWaaSbaaSqaaiaadohacaaISaGaam4zaaqabaGccqGHsislce
WG5bGbaebadaqhaaWcbaGaam4zaaqaaiaabkeacaqGnbaaaOGaaGil
aiaaysW7cqGHaiIicaWGZbGaeyicI48efv3ySLgznfgDOfdaryqr1n
gBPrginfgDObYtUvgaiuaacqWFse=udaahaaWcbeqaaiaadkfaaaGc
caaISaGaaGjbVlaadEgacqGHiiIZcqWFge=rcaaIUaGaaGzbVlaayw
W7caaMf8UaaGzbVlaaywW7caGGOaGaaGOmaiaac6cacaaIYaGaaiyk
aaaa@6A82@
For
convenience, we omit the adjective “adjusted”' in the following and refer to
D
(
s
,
g
)
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbba9Fa0P0RWFb9fq0FXxbbf9=e0dfrpm0dXdirVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiramaabm
aabaGaam4CaiaaiYcacaWGNbaacaGLOaGaayzkaaaaaa@3C63@
simply as the method effect .
In this paper, we seek to minimize the expected absolute
overall method effect with respect to a given benchmark design
BM
,
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbba9Fa0P0RWFb9fq0FXxbbf9=e0dfrpm0dXdirVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaeOqaiaab2
eacaGGSaaaaa@39BC@
which is the weighted average of the method
effects
D
(
s
,
g
)
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbba9Fa0P0RWFb9fq0FXxbbf9=e0dfrpm0dXdirVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiramaabm
aabaGaam4CaiaaiYcacaWGNbaacaGLOaGaayzkaaaaaa@3C63@
per stratum and strategy to
BM
.
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbba9Fa0P0RWFb9fq0FXxbbf9=e0dfrpm0dXdirVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaeOqaiaab2
eacaGGUaaaaa@39BE@
The expected absolute overall method effect
with respect to
BM
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbba9Fa0P0RWFb9fq0FXxbbf9=e0dfrpm0dXdirVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaeOqaiaab2
eaaaa@390C@
is equal to
D
¯
BM
= |
∑
g ∈ G
w
g
∑
s ∈
S
R
p (
s , g
) ρ (
s , g
) D (
s , g
)
∑
s ∈
S
R
p (
s , g
) ρ (
s , g
)
| . ( 2.3 )
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbba9Fa0P0RWFb9fq0FXxbbf9=e0dfrpm0dXdirVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmirayaara
WaaWbaaSqabeaacaqGcbGaaeytaaaakiabg2da9maaemaabaGaaGPa
VpaaqafabeWcbaGaam4zaiabgIGioprr1ngBPrwtHrhAXaqeguuDJX
wAKbstHrhAG8KBLbacfaGae8NbXFeabeqdcqGHris5aOGaam4Damaa
BaaaleaacaWGNbaabeaakmaalaaabaWaaabuaeqaleaacaWGZbGaey
icI4Sae8NeXp1aaWbaaWqabeaacaWGsbaaaaWcbeqdcqGHris5aOGa
amiCamaabmaabaGaam4CaiaaiYcacaWGNbaacaGLOaGaayzkaaGaeq
yWdi3aaeWaaeaacaWGZbGaaGilaiaadEgaaiaawIcacaGLPaaacaWG
ebWaaeWaaeaacaWGZbGaaGilaiaadEgaaiaawIcacaGLPaaaaeaada
aeqbqabSqaaiaadohacqGHiiIZcqWFse=udaahaaadbeqaaiaadkfa
aaaaleqaniabggHiLdGccaWGWbWaaeWaaeaacaWGZbGaaGilaiaadE
gaaiaawIcacaGLPaaacqaHbpGCdaqadaqaaiaadohacaaISaGaam4z
aaGaayjkaiaawMcaaaaacaaMc8oacaGLhWUaayjcSdGaaiOlaiaayw
W7caaMf8UaaGzbVlaaywW7caaMf8UaaiikaiaaikdacaGGUaGaaG4m
aiaacMcaaaa@8982@
This objective function
represents the expected shift in the time series of the key survey statistic when
a redesign is implemented from the benchmark design to the adaptive design
using allocation probabilities
p
(
s
,
g
)
.
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbba9Fa0P0RWFb9fq0FXxbbf9=e0dfrpm0dXdirVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiCamaabm
aabaGaam4CaiaaiYcacaWGNbaacaGLOaGaayzkaaGaaiOlaaaa@3D41@
If a survey is new or if the
benchmark design was never actually fielded, the objective function represents
the bias of the adaptive survey design to the benchmark design. It is,
therefore, a very useful objective function. Note that
y
¯
s
,
g
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbba9Fa0P0RWFb9fq0FXxbbf9=e0dfrpm0dXdirVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmyEayaara
WaaSbaaSqaaiaadohacaaISaGaam4zaaqabaaaaa@3B53@
is a nonresponse adjusted
estimate of
Y
¯
,
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbba9Fa0P0RWFb9fq0FXxbbf9=e0dfrpm0dXdirVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmywayaara
Gaaiilaaaa@391D@
while
ρ
(
s
,
g
)
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbba9Fa0P0RWFb9fq0FXxbbf9=e0dfrpm0dXdirVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeqyWdi3aae
WaaeaacaWGZbGaaGilaiaadEgaaiaawIcacaGLPaaaaaa@3D5A@
is an unweighted estimate of the
group
g
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbba9Fa0P0RWFb9fq0FXxbbf9=e0dfrpm0dXdirVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4zaaaa@3863@
response probability in strategy
s
.
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbba9Fa0P0RWFb9fq0FXxbbf9=e0dfrpm0dXdirVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4Caiaac6
caaaa@3921@
We implicitly assume that the
nonresponse adjustment does not influence the contribution of each group and
strategy to the overall response. This allows us to write the objective
function as in (2.4), while performing nonresponse adjustment within the
optimization framework may lead to a very complex, perhaps even unsolvable,
problem. We minimize the overall method effect
D
¯
BM
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbba9Fa0P0RWFb9fq0FXxbbf9=e0dfrpm0dXdirVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmirayaara
WaaWbaaSqabeaacaqGcbGaaeytaaaaaaa@3A1A@
by optimally assigning strategies
s
∈
S
R
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbba9Fa0P0RWFb9fq0FXxbbf9=e0dfrpm0dXdirVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4CaiabgI
Gioprr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae8Ne
Xp1aaWbaaSqabeaacaWGsbaaaaaa@465C@
to the groups
g
∈
G
,
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbba9Fa0P0RWFb9fq0FXxbbf9=e0dfrpm0dXdirVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4zaiabgI
Gioprr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae8Nb
XFKaaiilaaaa@45E4@
i.e. ,
minimize
p (
s , g
)
D
¯
BM
. ( 2.4 )
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbba9Fa0P0RWFb9fq0FXxbbf9=e0dfrpm0dXdirVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaWaaCbeaeaaca
qGTbGaaeyAaiaab6gacaqGPbGaaeyBaiaabMgacaqG6bGaaeyzaaWc
baGaamiCamaabmaabaGaam4CaiaaiYcacaWGNbaacaGLOaGaayzkaa
aabeaakiaaysW7ceWGebGbaebadaahaaWcbeqaaiaabkeacaqGnbaa
aOGaaiOlaiaaywW7caaMf8UaaGzbVlaaywW7caaMf8Uaaiikaiaaik
dacaGGUaGaaGinaiaacMcaaaa@5482@
Ideally,
D
¯
BM
= 0.
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbba9Fa0P0RWFb9fq0FXxbbf9=e0dfrpm0dXdirVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmirayaara
WaaWbaaSqabeaacaqGcbGaaeytaaaakiabg2da9iaaicdacaGGUaaa
aa@3C96@
However, achieving this situation may have
serious practical issues such as requiring unlimited resources. Therefore,
various practical aspects such as scarcity in resources are reflected through a
number of constraints in our model. A limited budget
B
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbba9Fa0P0RWFb9fq0FXxbbf9=e0dfrpm0dXdirVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOqaaaa@383E@
is available to setup and run the survey. Let
c
(
s
,
g
)
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbba9Fa0P0RWFb9fq0FXxbbf9=e0dfrpm0dXdirVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4yamaabm
aabaGaam4CaiaaiYcacaWGNbaacaGLOaGaayzkaaaaaa@3C82@
be the unit cost of applying strategy
s
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbba9Fa0P0RWFb9fq0FXxbbf9=e0dfrpm0dXdirVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4Caaaa@386F@
to one unit in group
g
.
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbba9Fa0P0RWFb9fq0FXxbbf9=e0dfrpm0dXdirVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4zaiaac6
caaaa@3915@
The cost constraint is formulated as follows
∑
s
,
g
N
g
p
(
s
,
g
)
c
(
s
,
g
)
≤
B
.
(
2.5
)
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbba9Fa0P0RWFb9fq0FXxbbf9=e0dfrpm0dXdirVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaWaaabuaeaaca
WGobWaaSbaaSqaaiaadEgaaeqaaaqaaiaadohacaaISaGaam4zaaqa
b0GaeyyeIuoakiaadchadaqadaqaaiaadohacaaISaGaam4zaaGaay
jkaiaawMcaaiaadogadaqadaqaaiaadohacaaISaGaam4zaaGaayjk
aiaawMcaaiabgsMiJkaadkeacaaIUaGaaGzbVlaaywW7caaMf8UaaG
zbVlaaywW7caGGOaGaaGOmaiaac6cacaaI1aGaaiykaaaa@56C0@
To ensure a minimal precision for the survey estimate of
Y
¯
,
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbba9Fa0P0RWFb9fq0FXxbbf9=e0dfrpm0dXdirVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmywayaara
Gaaiilaaaa@391D@
a minimum number
R
g
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbba9Fa0P0RWFb9fq0FXxbbf9=e0dfrpm0dXdirVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOuamaaBa
aaleaacaWGNbaabeaaaaa@3966@
of respondents per group is required. This
translates to the following constraint
∑
s ∈
S
R
N
g
p (
s , g
) ρ (
s , g
) ≥
R
g
, ∀ g ∈ G . ( 2.6 )
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbba9Fa0P0RWFb9fq0FXxbbf9=e0dfrpm0dXdirVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaWaaabuaeaaca
WGobWaaSbaaSqaaiaadEgaaeqaaaqaaiaadohacqGHiiIZtuuDJXwA
K1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaiab=jr8tnaaCaaame
qabaGaamOuaaaaaSqab0GaeyyeIuoakiaadchadaqadaqaaiaadoha
caaISaGaam4zaaGaayjkaiaawMcaaiabeg8aYnaabmaabaGaam4Cai
aaiYcacaWGNbaacaGLOaGaayzkaaGaeyyzImRaamOuamaaBaaaleaa
caWGNbaabeaakiaaiYcacaaMe8UaeyiaIiIaam4zaiabgIGiolab=z
q8hjaai6cacaaMf8UaaGzbVlaaywW7caaMf8UaaGzbVlaacIcacaaI
YaGaaiOlaiaaiAdacaGGPaaaaa@6C79@
In addition to the objective function, the method effect
between the proposed design and the benchmark design is also part of a
constraint in the optimization problem: a constraint on comparability of
population subgroups. The overall method effect as an objective function could
lead to an unbalanced solution. For example, let a group
g
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbba9Fa0P0RWFb9fq0FXxbbf9=e0dfrpm0dXdirVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4zaaaa@3863@
be assigned a strategy
s
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbba9Fa0P0RWFb9fq0FXxbbf9=e0dfrpm0dXdirVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4Caaaa@386F@
such that the corresponding
D
(
s
,
g
)
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbba9Fa0P0RWFb9fq0FXxbbf9=e0dfrpm0dXdirVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiramaabm
aabaGaam4CaiaaiYcacaWGNbaacaGLOaGaayzkaaaaaa@3C63@
is a large negative value and the other groups
h
∈
G
\
{
g
}
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbba9Fa0P0RWFb9fq0FXxbbf9=e0dfrpm0dXdirVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiAaiabgI
Gioprr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae8Nb
XFKaaiixamaacmaabaGaam4zaaGaay5Eaiaaw2haaaaa@4932@
receive strategies that yield positive
D
(
s
,
h
)
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbba9Fa0P0RWFb9fq0FXxbbf9=e0dfrpm0dXdirVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiramaabm
aabaGaam4CaiaaiYcacaWGObaacaGLOaGaayzkaaaaaa@3C64@
values. The large negative
D
(
s
,
g
)
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbba9Fa0P0RWFb9fq0FXxbbf9=e0dfrpm0dXdirVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiramaabm
aabaGaam4CaiaaiYcacaWGNbaacaGLOaGaayzkaaaaaa@3C63@
is canceled out but group
g
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbba9Fa0P0RWFb9fq0FXxbbf9=e0dfrpm0dXdirVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4zaaaa@3863@
will have a very different behavior compared
to the other groups, and this complicates comparisons among groups. To prevent
the occurrence of such designs, we limit the absolute difference in the method
effect between two groups by the following constraint
max
g
,
h
∈
G
{
∑
s
∈
S
R
p
(
s
,
g
)
ρ
(
s
,
g
)
D
(
s
,
g
)
∑
s
∈
S
R
p
(
s
,
g
)
ρ
(
s
,
g
)
−
∑
s
∈
S
R
p
(
s
,
h
)
ρ
(
s
,
h
)
D
(
s
,
h
)
∑
s
∈
S
R
p
(
s
,
h
)
ρ
(
s
,
h
)
}
≤
M
.
(
2.7
)
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbba9Fa0P0RWFb9fq0FXxbbf9=e0dfrpm0dXdirVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaWaaCbeaeaaci
GGTbGaaiyyaiaacIhaaSqaaiaadEgacaaISaGaamiAaiabgIGioprr
1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae8NbXFeabe
aakmaacmaabaWaaSaaaeaadaaeqbqabSqaaiaadohacqGHiiIZcqWF
se=udaahaaadbeqaaiaadkfaaaaaleqaniabggHiLdGccaWGWbWaae
WaaeaacaWGZbGaaGilaiaadEgaaiaawIcacaGLPaaacqaHbpGCdaqa
daqaaiaadohacaaISaGaam4zaaGaayjkaiaawMcaaiaadseadaqada
qaaiaadohacaaISaGaam4zaaGaayjkaiaawMcaaaqaamaaqafabeWc
baGaam4CaiabgIGiolab=jr8tnaaCaaameqabaGaamOuaaaaaSqab0
GaeyyeIuoakiaadchadaqadaqaaiaadohacaaISaGaam4zaaGaayjk
aiaawMcaaiabeg8aYnaabmaabaGaam4CaiaaiYcacaWGNbaacaGLOa
GaayzkaaaaaiabgkHiTmaalaaabaWaaabuaeqaleaacaWGZbGaeyic
I4Sae8NeXp1aaWbaaWqabeaacaWGsbaaaaWcbeqdcqGHris5aOGaam
iCamaabmaabaGaam4CaiaaiYcacaWGObaacaGLOaGaayzkaaGaeqyW
di3aaeWaaeaacaWGZbGaaGilaiaadIgaaiaawIcacaGLPaaacaWGeb
WaaeWaaeaacaWGZbGaaGilaiaadIgaaiaawIcacaGLPaaaaeaadaae
qbqabSqaaiaadohacqGHiiIZcqWFse=udaahaaadbeqaaiaadkfaaa
aaleqaniabggHiLdGccaWGWbWaaeWaaeaacaWGZbGaaGilaiaadIga
aiaawIcacaGLPaaacqaHbpGCdaqadaqaaiaadohacaaISaGaamiAaa
GaayjkaiaawMcaaaaaaiaawUhacaGL9baacqGHKjYOcaWGnbGaaGOl
aiaaywW7caaMf8UaaGzbVlaaywW7caaMf8UaaiikaiaaikdacaGGUa
GaaG4naiaacMcaaaa@AFD5@
However, when
∑
s
∈
S
R
p
(
s
,
g
)
ρ
(
s
,
g
)
D
(
s
,
g
)
∑
s
∈
S
R
p
(
s
,
g
)
ρ
(
s
,
g
)
−
∑
s
∈
S
R
p
(
s
,
h
)
ρ
(
s
,
h
)
D
(
s
,
h
)
∑
s
∈
S
R
p
(
s
,
h
)
ρ
(
s
,
h
)
≤
M
(
2.8
)
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbba9Fa0P0RWFb9fq0FXxbbf9=e0dfrpm0dXdirVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaWaaSaaaeaada
aeqbqabSqaaiaadohacqGHiiIZtuuDJXwAK1uy0HwmaeHbfv3ySLgz
G0uy0Hgip5wzaGqbaiab=jr8tnaaCaaameqabaGaamOuaaaaaSqab0
GaeyyeIuoakiaadchadaqadaqaaiaadohacaaISaGaam4zaaGaayjk
aiaawMcaaiabeg8aYnaabmaabaGaam4CaiaaiYcacaWGNbaacaGLOa
GaayzkaaGaamiramaabmaabaGaam4CaiaaiYcacaWGNbaacaGLOaGa
ayzkaaaabaWaaabuaeqaleaacaWGZbGaeyicI4Sae8NeXp1aaWbaaW
qabeaacaWGsbaaaaWcbeqdcqGHris5aOGaamiCamaabmaabaGaam4C
aiaaiYcacaWGNbaacaGLOaGaayzkaaGaeqyWdi3aaeWaaeaacaWGZb
GaaGilaiaadEgaaiaawIcacaGLPaaaaaGaeyOeI0YaaSaaaeaadaae
qbqabSqaaiaadohacqGHiiIZcqWFse=udaahaaadbeqaaiaadkfaaa
aaleqaniabggHiLdGccaWGWbWaaeWaaeaacaWGZbGaaGilaiaadIga
aiaawIcacaGLPaaacqaHbpGCdaqadaqaaiaadohacaaISaGaamiAaa
GaayjkaiaawMcaaiaadseadaqadaqaaiaadohacaaISaGaamiAaaGa
ayjkaiaawMcaaaqaamaaqafabeWcbaGaam4CaiabgIGiolab=jr8tn
aaCaaameqabaGaamOuaaaaaSqab0GaeyyeIuoakiaadchadaqadaqa
aiaadohacaaISaGaamiAaaGaayjkaiaawMcaaiabeg8aYnaabmaaba
Gaam4CaiaaiYcacaWGObaacaGLOaGaayzkaaaaaiabgsMiJkaad2ea
caaMf8UaaGzbVlaaywW7caaMf8UaaGzbVlaacIcacaaIYaGaaiOlai
aaiIdacaGGPaaaaa@A400@
is included in the optimization
problem for each pair
(
g
,
h
)
∈
G
,
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbba9Fa0P0RWFb9fq0FXxbbf9=e0dfrpm0dXdirVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca
WGNbGaaGilaiaadIgaaiaawIcacaGLPaaacqGHiiIZtuuDJXwAK1uy
0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaiab=zq8hjaacYcaaaa@4910@
then (2.7) is automatically
satisfied. For practical reasons, i.e., a depletion of the sampling frame, we
also introduce a constraint on the maximum sample size
S
max
,
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbba9Fa0P0RWFb9fq0FXxbbf9=e0dfrpm0dXdirVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4uamaaBa
aaleaacaqGTbGaaeyyaiaabIhaaeqaaOGaaiilaaaa@3C04@
i.e.,
∑
s
,
g
N
g
p
(
s
,
g
)
≤
S
max
.
(
2.9
)
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbba9Fa0P0RWFb9fq0FXxbbf9=e0dfrpm0dXdirVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaWaaabuaeaaca
WGobWaaSbaaSqaaiaadEgaaeqaaaqaaiaadohacaaISaGaam4zaaqa
b0GaeyyeIuoakiaadchadaqadaqaaiaadohacaaISaGaam4zaaGaay
jkaiaawMcaaiabgsMiJkaadofadaWgaaWcbaGaaeyBaiaabggacaqG
4baabeaakiaai6cacaaMf8UaaGzbVlaaywW7caaMf8UaaGzbVlaacI
cacaaIYaGaaiOlaiaaiMdacaGGPaaaaa@54CF@
Additionally,
we require that at least one
p
(
s
,
g
)
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbba9Fa0P0RWFb9fq0FXxbbf9=e0dfrpm0dXdirVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiCamaabm
aabaGaam4CaiaaiYcacaWGNbaacaGLOaGaayzkaaaaaa@3C8F@
be strictly positive,
∑
s ∈
S
R
p
(
s , g
) > 0 , ∀ g ∈ G , ( 2.10 )
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbba9Fa0P0RWFb9fq0FXxbbf9=e0dfrpm0dXdirVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaWaaabuaeaaca
WGWbaaleaacaWGZbGaeyicI48efv3ySLgznfgDOfdaryqr1ngBPrgi
nfgDObYtUvgaiuaacqWFse=udaahaaadbeqaaiaadkfaaaaaleqani
abggHiLdGcdaqadaqaaiaadohacaaISaGaam4zaaGaayjkaiaawMca
aiaaysW7caqG+aGaaGjbVlaaicdacaGGSaGaeyiaIiIaam4zaiabgI
Giolab=zq8hjaaiYcacaaMf8UaaGzbVlaaywW7caaMf8UaaGzbVlaa
cIcacaaIYaGaaiOlaiaaigdacaaIWaGaaiykaaaa@64AC@
to avoid
computational errors such as division by zero in (2.8).
Objective function (2.4) together with constraints (2.1),
(2.5)
−
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lq=Je9
vqaqFeFr0xbba9Fa0P0RWFb9fq0FXxbbf9=e0dfrpm0dXdirVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaeyOeI0caaa@3864@
(2.10) form the multi-mode optimization
problem to minimize method effects against a benchmark through adaptive survey
designs. This problem is a nonconvex nonlinear problem.
Editorial policy
Survey Methodology publishes articles dealing with various aspects of statistical development relevant to a statistical agency, such as design issues in the context of practical constraints, use of different data sources and collection techniques, total survey error, survey evaluation, research in survey methodology, time series analysis, seasonal adjustment, demographic studies, data integration, estimation and data analysis methods, and general survey systems development. The emphasis is placed on the development and evaluation of specific methodologies as applied to data collection or the data themselves. All papers will be refereed. However, the authors retain full responsibility for the contents of their papers and opinions expressed are not necessarily those of the Editorial Board or of Statistics Canada.
Submission of Manuscripts
Survey Methodology is published twice a year in electronic format. Authors are invited to submit their articles in English or French in electronic form, preferably in Word to the Editor, (statcan.smj-rte.statcan@canada.ca , Statistics Canada, 150 Tunney’s Pasture Driveway, Ottawa, Ontario, Canada, K1A 0T6). For formatting instructions, please see the guidelines provided in the journal and on the web site (www.statcan.gc.ca/SurveyMethodology).
Note of appreciation
Canada owes the success of its statistical system to a long-standing partnership between Statistics Canada, the citizens of Canada, its businesses, governments and other institutions. Accurate and timely statistical information could not be produced without their continued co-operation and goodwill.
Standards of service to the public
Statistics Canada is committed to serving its clients in a prompt, reliable and courteous manner. To this end, the Agency has developed standards of service which its employees observe in serving its clients.
Copyright
Published by authority of the Minister responsible for Statistics Canada.
© Minister of Industry, 2015
Catalogue no. 12-001-X
Frequency: semi-annual
Ottawa
Report a problem on this page
Is something not working? Is there information outdated? Can't find what you're looking for?
Please contact us and let us know how we can help you.
Privacy notice
Date modified:
2017-09-20