A design effect measure for calibration weighting in single-stage samples 5. Discussion, limitations, and conclusions

We propose a new design effect that gauges the impact of calibration weighting adjustments on an estimated total in single-stage sampling. Two existing design effects are the Kish (1965) “design effect due to weighting” and one due to Spencer (2000). Both of these are inadequate to reflect efficiency gains due to calibration. The Kish deff MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaqGKbGaae yzaiaabAgacaqGMbaaaa@3C06@ is a reasonable measure if equal weighting is optimal or nearly so, but does not reveal efficiencies that may accrue from sampling with varying probabilities. The Spencer deff MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaqGKbGaae yzaiaabAgacaqGMbaaaa@3C06@ does signal whether the HT (or pwr) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaqGWbGaae 4DaiaabkhacaqGPaaaaa@3BF3@ estimator in varying probability sampling is more efficient than srs . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaqGZbGaae OCaiaabohacaqGUaaaaa@3BE7@ But, the Spencer deff MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaqGKbGaae yzaiaabAgacaqGMbaaaa@3C06@ does not reflect any gains from using calibration.

The proposed design effect measures the impact of both sampling with varying probabilities and of using a calibration estimator, like the GREG, that takes advantage of auxiliary information. As we demonstrate empirically, the proposed design effects do not penalize unequal weights when the relationship between the survey variable and calibration covariate is strong. We also demonstrated empirically that the correlation components in the Spencer measure and our proposed measure can be important in some situations. It is not overly difficult to calculate these components, and these should be incorporated when possible to avoid over estimates of the design effects. However, the high correlations between survey and auxiliary variables that we observed in our establishment pseudopopulation data may be unattainable for some surveys that lack auxiliary information. In cases where the auxiliary information is ineffective or is not used, the proposed measure approximates Kish’s deff . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaqGKbGaae yzaiaabAgacaqGMbGaaeOlaaaa@3CB7@ The measure presented here is applicable to single-stage sampling but can be extended to more complex sample designs, like cluster sampling.

Our measure uses the model underlying the general regression estimator to extend the Spencer measure. The survey variable, covariates, and weights are required to produce the design effect estimate. Since the variance (3.2) is approximately correct in large samples for all calibration estimators, our design effect should reflect the effects of many forms of commonly used weighting adjustment methods, including poststratification, raking, and the GREG estimator. Although design effects that do account for these adjustments can be computed directly from estimated variances, it is important for practitioners to understand that the existing Kish and Spencer deff s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaqGKbGaae yzaiaabAgacaqGMbacbaGaa8xgGiaabohaaaa@3DBF@ do not reflect any gains from those adjustments. The deff MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaqGKbGaae yzaiaabAgacaqGMbaaaa@3C06@ introduced in this paper, thus, serves as a corrective to that deficiency.

For practical consideration, the deff in (3.4) is available in the “deffH” function in the R “PracTools” package; see Valliant et al. (2015) for documentation and examples.

Acknowledgements

We thank the referees for their thorough reviews which improved the presentation. Any opinions expressed are those of the authors and do not reflect those of the Internal Revenue Service.

Appendix

Proposed design effect in single-stage sampling

The appendix sketches the derivation of the proposed deff . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaqGKbGaae yzaiaabAgacaqGMbGaaeOlaaaa@3CB7@ Most notation was defined in the previous sections of the paper. The average population one-draw probability is P ¯ = N 1 i = 1 N p i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWGqbGbae bacqGH9aqpcaWGobWaaWbaaSqabeaacqGHsislcaaIXaaaaOWaaabm aeaacaWGWbWaaSbaaSqaaiaadMgaaeqaaaqaaiaadMgacqGH9aqpca aIXaaabaGaamOtaaqdcqGHris5aOGaaiOlaaaa@454E@ Assume that the design satisfies P ¯ = N 1 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWGqbGbae bacqGH9aqpcaWGobWaaWbaaSqabeaacqGHsislcaaIXaaaaOGaaiOl aaaa@3DBC@ Consider the model y i = α + x i T β + ε i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG5bWaaS baaSqaaiaadMgaaeqaaOGaeyypa0JaeqySdeMaey4kaSIaaCiEamaa DaaaleaacaWGPbaabaGaamivaaaakiaahk7acqGHRaWkcqaH1oqzda WgaaWcbaGaamyAaaqabaGccaGGUaaaaa@46AA@ If the full finite population were available, then the least-squares population regression line would be

y i =A+ x i T B+ e i ,(A.1) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG5bWaaS baaSqaaiaadMgaaeqaaOGaeyypa0JaamyqaiabgUcaRiaahIhadaqh aaWcbaGaamyAaaqaaiaadsfaaaGccaWHcbGaey4kaSIaamyzamaaBa aaleaacaWGPbaabeaakiaacYcacaaMf8UaaGzbVlaaywW7caaMf8Ua aGzbVlaacIcacaqGbbGaaeOlaiaabgdacaGGPaaaaa@4FE6@

where A MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGbbaaaa@392B@ and B MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWHcbaaaa@3930@ are the values found by fitting an ordinary least squares regression line in the full finite population. That is, A = Y ¯ B X ¯ , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGbbGaey ypa0JabmywayaaraGaeyOeI0IaaCOqaiqahIfagaqeaiaacYcaaaa@3E88@ B = ( X T X ) 1 X T y , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWHcbGaey ypa0ZaaeWaaeaacaWHybWaaWbaaSqabeaacaWGubaaaOGaaCiwaaGa ayjkaiaawMcaamaaCaaaleqabaGaeyOeI0IaaGymaaaakiaahIfada ahaaWcbeqaaiaadsfaaaGccaWH5bGaaiilaaaa@4413@ where X MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWHybaaaa@3946@ is the N × p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGobGaey 41aqRaamiCaaaa@3C44@ population matrix of auxiliary variables, Y ¯ = N 1 i = 1 N y i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWGzbGbae bacqGH9aqpcaWGobWaaWbaaSqabeaacqGHsislcaaIXaaaaOWaaabm aeaacaWG5bWaaSbaaSqaaiaadMgaaeqaaaqaaiaadMgacqGH9aqpca aIXaaabaGaamOtaaqdcqGHris5aaaa@44A4@ is the population mean, and X ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWHybGbae baaaa@395E@ is the vector of population means of the x s . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG4bacba Gaa8xgGiaabohacaqGUaaaaa@3BCC@ The e i s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGLbWaaS baaSqaaiaadMgaaeqaaGqaaOGaa8xgGiaabohaaaa@3C2C@ are defined as the finite population residuals, e i = y i A x i T B , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGLbWaaS baaSqaaiaadMgaaeqaaOGaeyypa0JaamyEamaaBaaaleaacaWGPbaa beaakiabgkHiTiaadgeacqGHsislcaWH4bWaa0baaSqaaiaadMgaae aacaWGubaaaOGaaCOqaiaacYcaaaa@44B5@ and are not superpopulation model errors. Denote the population variance of the y s , e s , e 2 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG5bacba Gaa8xgGiaabohacaGGSaGaamyzaiaa=LbicaqGZbGaaiilaiaadwga daahaaWcbeqaaiaaikdaaaGccaGGSaaaaa@41A3@ and weights as σ y 2 , σ e 2 , σ e 2 2 , σ w 2 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaHdpWCda qhaaWcbaGaamyEaaqaaiaaikdaaaGccaGGSaGaeq4Wdm3aa0baaSqa aiaadwgaaeaacaaIYaaaaOGaaiilaiabeo8aZnaaDaaaleaacaWGLb WaaWbaaWqabeaacaaIYaaaaaWcbaGaaGOmaaaakiaacYcacqaHdpWC daqhaaWcbaGaam4DaaqaaiaaikdaaaGccaGGSaaaaa@4AC0@ e.g., σ y 2 = N 1 i = 1 N ( y i Y ¯ ) 2 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaHdpWCda qhaaWcbaGaamyEaaqaaiaaikdaaaGccqGH9aqpcaWGobWaaWbaaSqa beaacqGHsislcaaIXaaaaOWaaabmaeaadaqadaqaaiaadMhadaWgaa WcbaGaamyAaaqabaGccqGHsislceWGzbGbaebaaiaawIcacaGLPaaa daahaaWcbeqaaiaaikdaaaaabaGaamyAaiabg2da9iaaigdaaeaaca WGobaaniabggHiLdGccaGGSaaaaa@4C7B@ and the finite population correlations between the variables in the subscripts as ρ y p , ρ e w , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaHbpGCda WgaaWcbaGaamyEaiaadchaaeqaaOGaaiilaiabeg8aYnaaBaaaleaa caWGLbGaam4DaaqabaGccaGGSaaaaa@418A@ and ρ e 2 w . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaHbpGCda WgaaWcbaGaamyzamaaCaaameqabaGaaGOmaaaaliaadEhaaeqaaOGa aiOlaaaa@3DE8@ The GREG theoretical design-variance in with-replacement sampling is

Var ( T ^ GREG ) = n 1 i = 1 N p i ( e i / p i E U ) 2 = n 1 ( i = 1 N e i 2 / p i E U 2 ) , (A.2) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaafaqaaeOaca aabaGaaeOvaiaabggacaqGYbWaaeWaaeaaceWGubGbaKaadaWgaaWc baGaae4raiaabkfacaqGfbGaae4raaqabaaakiaawIcacaGLPaaaae aacqGH9aqpcaWGUbWaaWbaaSqabeaacqGHsislcaaIXaaaaOWaaabm aeaacaWGWbWaaSbaaSqaaiaadMgaaeqaaOWaaeWaaeaadaWcgaqaai aadwgadaWgaaWcbaGaamyAaaqabaaakeaacaWGWbWaaSbaaSqaaiaa dMgaaeqaaaaakiabgkHiTiaadweadaWgaaWcbaGaamyvaaqabaaaki aawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaaabaGaamyAaiabg2da 9iaaigdaaeaacaWGobaaniabggHiLdaakeaaaeaacqGH9aqpcaWGUb WaaWbaaSqabeaacqGHsislcaaIXaaaaOWaaeWaaeaadaaeWaqaamaa lyaabaGaamyzamaaDaaaleaacaWGPbaabaGaaGOmaaaaaOqaaiaadc hadaWgaaWcbaGaamyAaaqabaaaaOGaeyOeI0IaamyramaaDaaaleaa caWGvbaabaGaaGOmaaaaaeaacaWGPbGaeyypa0JaaGymaaqaaiaad6 eaa0GaeyyeIuoaaOGaayjkaiaawMcaaiaacYcaaaGaaGzbVlaaywW7 caaMf8UaaGzbVlaaywW7caaMf8UaaiikaiaacgeacaGGUaGaaGOmai aacMcaaaa@7750@

where E U = i = 1 N e i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGfbWaaS baaSqaaiaadwfaaeqaaOGaeyypa0ZaaabmaeaacaWGLbWaaSbaaSqa aiaadMgaaeqaaaqaaiaadMgacqGH9aqpcaaIXaaabaGaamOtaaqdcq GHris5aOGaaiOlaaaa@437E@ Using the model in (A.1) produces a design effect with several complex terms, many of which contain correlations that cannot be dropped as in Spencer’s approximation. The design effect can be simplified using an alternative formulation: u i = A + e i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG1bWaaS baaSqaaiaadMgaaeqaaOGaeyypa0JaamyqaiabgUcaRiaadwgadaWg aaWcbaGaamyAaaqabaGccaGGSaaaaa@3FEF@ where u i = y i x i T B . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG1bWaaS baaSqaaiaadMgaaeqaaOGaeyypa0JaamyEamaaBaaaleaacaWGPbaa beaakiabgkHiTiaahIhadaqhaaWcbaGaamyAaaqaaiaadsfaaaGcca WHcbGaaiOlaaaa@4314@ First, we rewrite the population total of the e i s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGLbWaaS baaSqaaiaadMgaaeqaaGqaaOGaa8xgGiaabohaaaa@3C2C@ as E U = i = 1 N e i = N U ¯ N A , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGfbWaaS baaSqaaiaadwfaaeqaaOGaeyypa0ZaaabmaeaacaWGLbWaaSbaaSqa aiaadMgaaeqaaaqaaiaadMgacqGH9aqpcaaIXaaabaGaamOtaaqdcq GHris5aOGaeyypa0JaamOtaiqadwfagaqeaiabgkHiTiaad6eacaWG bbGaaiilaaaa@48CD@ where U ¯ = N 1 i = 1 N u i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWGvbGbae bacqGH9aqpcaWGobWaaWbaaSqabeaacqGHsislcaaIXaaaaOWaaabm aeaacaWG1bWaaSbaaSqaaiaadMgaaeqaaaqaaiaadMgacqGH9aqpca aIXaaabaGaamOtaaqdcqGHris5aOGaaiOlaaaa@4558@ From this, E U 2 = ( N U ¯ ) 2 + ( N A ) 2 2 N 2 U ¯ A . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGfbWaa0 baaSqaaiaadwfaaeaacaaIYaaaaOGaeyypa0ZaaeWaaeaacaWGobGa bmyvayaaraaacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaOGaey 4kaSYaaeWaaeaacaWGobGaamyqaaGaayjkaiaawMcaamaaCaaaleqa baGaaGOmaaaakiabgkHiTiaaikdacaWGobWaaWbaaSqabeaacaaIYa aaaOGabmyvayaaraGaamyqaiaac6caaaa@4B13@ Second, using w i = ( n p i ) 1 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG3bWaaS baaSqaaiaadMgaaeqaaOGaeyypa0ZaaeWaaeaacaWGUbGaamiCamaa BaaaleaacaWGPbaabeaaaOGaayjkaiaawMcaamaaCaaaleqabaGaey OeI0IaaGymaaaakiaacYcaaaa@42AF@ or p i = ( n w i ) 1 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGWbWaaS baaSqaaiaadMgaaeqaaOGaeyypa0ZaaeWaaeaacaWGUbGaam4Damaa BaaaleaacaWGPbaabeaaaOGaayjkaiaawMcaamaaCaaaleqabaGaey OeI0IaaGymaaaakiaacYcaaaa@42AF@ we rewrite the component i = 1 N e i 2 / p i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaaeWaqaam aalyaabaGaamyzamaaDaaaleaacaWGPbaabaGaaGOmaaaaaOqaaiaa dchadaWgaaWcbaGaamyAaaqabaaaaaqaaiaadMgacqGH9aqpcaaIXa aabaGaamOtaaqdcqGHris5aaaa@42CE@ as

i = 1 N e i 2 / p i = i = 1 N ( u i A ) 2 ( n w i ) 1 = n i = 1 N w i u i 2 + n A 2 i = 1 N w i 2 n A i = 1 N w i u i . (A.3) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaafaqaaeOaca aabaWaaabmaeaadaWcgaqaaiaadwgadaqhaaWcbaGaamyAaaqaaiaa ikdaaaaakeaacaWGWbWaaSbaaSqaaiaadMgaaeqaaaaaaeaacaWGPb Gaeyypa0JaaGymaaqaaiaad6eaa0GaeyyeIuoaaOqaaiabg2da9maa qadabaWaaSaaaeaadaqadaqaaiaadwhadaWgaaWcbaGaamyAaaqaba GccqGHsislcaWGbbaacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaa aaGcbaWaaeWaaeaacaWGUbGaam4DamaaBaaaleaacaWGPbaabeaaaO GaayjkaiaawMcaamaaCaaaleqabaGaeyOeI0IaaGymaaaaaaaabaGa amyAaiabg2da9iaaigdaaeaacaWGobaaniabggHiLdaakeaaaeaacq GH9aqpcaWGUbWaaabmaeaacaWG3bWaaSbaaSqaaiaadMgaaeqaaOGa amyDamaaDaaaleaacaWGPbaabaGaaGOmaaaaaeaacaWGPbGaeyypa0 JaaGymaaqaaiaad6eaa0GaeyyeIuoakiabgUcaRiaad6gacaWGbbWa aWbaaSqabeaacaaIYaaaaOWaaabmaeaacaWG3bWaaSbaaSqaaiaadM gaaeqaaaqaaiaadMgacqGH9aqpcaaIXaaabaGaamOtaaqdcqGHris5 aOGaeyOeI0IaaGOmaiaad6gacaWGbbWaaabmaeaacaWG3bWaaSbaaS qaaiaadMgaaeqaaOGaamyDamaaBaaaleaacaWGPbaabeaaaeaacaWG PbGaeyypa0JaaGymaaqaaiaad6eaa0GaeyyeIuoakiaac6caaaGaaG zbVlaaywW7caaMf8UaaGzbVlaaywW7caGGOaGaaiyqaiaac6cacaaI ZaGaaiykaaaa@8764@

Subtracting E U 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGfbWaa0 baaSqaaiaadwfaaeaacaaIYaaaaaaa@3AF2@ from (A.3) and dividing by n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGUbaaaa@3958@ gives

n 1 ( i = 1 N e i 2 / p i E U 2 ) = i = 1 N w i u i 2 n 1 ( N U ¯ ) 2 + A 2 ( i = 1 N w i n 1 N 2 ) + n 1 2 N 2 U ¯ A 2 A i = 1 N w i u i . (A.4) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFjpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaafaqaae4aca aabaGaamOBamaaCaaaleqabaGaeyOeI0IaaGymaaaakmaabmaabaWa aabmaeaadaWcgaqaaiaadwgadaqhaaWcbaGaamyAaaqaaiaaikdaaa aakeaacaWGWbWaaSbaaSqaaiaadMgaaeqaaaaaaeaacaWGPbGaeyyp a0JaaGymaaqaaiaad6eaa0GaeyyeIuoakiabgkHiTiaadweadaqhaa WcbaGaamyvaaqaaiaaikdaaaaakiaawIcacaGLPaaaaeaacqGH9aqp daaeWaqaaiaadEhadaWgaaWcbaGaamyAaaqabaGccaWG1bWaa0baaS qaaiaadMgaaeaacaaIYaaaaaqaaiaadMgacqGH9aqpcaaIXaaabaGa amOtaaqdcqGHris5aOGaeyOeI0IaamOBamaaCaaaleqabaGaeyOeI0 IaaGymaaaakmaabmaabaGaamOtaiqadwfagaqeaaGaayjkaiaawMca amaaCaaaleqabaGaaGOmaaaaaOqaaaqaaiabgUcaRiaaykW7caaMc8 UaamyqamaaCaaaleqabaGaaGOmaaaakmaabmaabaWaaabmaeaacaWG 3bWaaSbaaSqaaiaadMgaaeqaaaqaaiaadMgacqGH9aqpcaaIXaaaba GaamOtaaqdcqGHris5aOGaeyOeI0IaamOBamaaCaaaleqabaGaeyOe I0IaaGymaaaakiaad6eadaahaaWcbeqaaiaaikdaaaaakiaawIcaca GLPaaaaeaaaeaacqGHRaWkcaaMc8UaaGPaVlaad6gadaahaaWcbeqa aiabgkHiTiaaigdaaaGccaaIYaGaamOtamaaCaaaleqabaGaaGOmaa aakiqadwfagaqeaiaadgeacqGHsislcaaIYaGaamyqamaaqadabaGa am4DamaaBaaaleaacaWGPbaabeaakiaadwhadaWgaaWcbaGaamyAaa qabaaabaGaamyAaiabg2da9iaaigdaaeaacaWGobaaniabggHiLdGc caGGUaaaaiaaywW7caaMf8UaaGzbVlaaywW7caaMf8UaaGzbVlaacI cacaGGbbGaaiOlaiaaisdacaGGPaaaaa@97DD@

Following Spencer’s approach using the covariance substitutions, the first and fifth terms in (A.4) can be rewritten as i = 1 N w i u i 2 = N ρ u 2 w σ u 2 σ w + N W ¯ ( σ u 2 + U ¯ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaaeWaqaai aadEhadaWgaaWcbaGaamyAaaqabaGccaWG1bWaa0baaSqaaiaadMga aeaacaaIYaaaaOGaeyypa0JaamOtaiabeg8aYnaaBaaaleaacaWG1b WaaWbaaWqabeaacaaIYaaaaSGaam4DaaqabaGccqaHdpWCdaWgaaWc baGaamyDamaaCaaameqabaGaaGOmaaaaaSqabaGccqaHdpWCaSqaai aadMgacqGH9aqpcaaIXaaabaGaamOtaaqdcqGHris5aOWaaSbaaSqa aiaadEhaaeqaaOGaey4kaSIaamOtaiqadEfagaqeamaabmqabaGaeq 4Wdm3aa0baaSqaaiaadwhaaeaacaaIYaaaaOGaey4kaSIabmyvayaa raWaaWbaaSqabeaacaaIYaaaaaGccaGLOaGaayzkaaaaaa@5B2F@ and i = 1 N w i u i = N ρ u w σ u σ w + N W ¯ U ¯ . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaaeWaqaai aadEhadaWgaaWcbaGaamyAaaqabaGccaWG1bWaaSbaaSqaaiaadMga aeqaaaqaaiaadMgacqGH9aqpcaaIXaaabaGaamOtaaqdcqGHris5aO Gaeyypa0JaamOtaiabeg8aYnaaBaaaleaacaWG1bGaam4DaaqabaGc cqaHdpWCdaWgaaWcbaGaamyDaaqabaGccqaHdpWCdaWgaaWcbaGaam 4DaaqabaGccqGHRaWkcaWGobGabm4vayaaraGabmyvayaaraGaaiOl aaaa@5216@ Plugging these back into the variance (A.4) gives

n 1 ( i = 1 N e i 2 / p i E U 2 ) = N ρ u 2 w σ u 2 σ w + N W ¯ ( σ u 2 + U ¯ 2 ) n 1 ( N U ¯ ) 2 + N A 2 ( W ¯ n 1 N ) + 2 n 1 N 2 U ¯ A 2 A ( N ρ u w σ u σ w + N W ¯ U ¯ ) . (A.5) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFjpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaafaqaae4aca aabaGaamOBamaaCaaaleqabaGaeyOeI0IaaGymaaaakmaabmaabaWa aabmaeaadaWcgaqaaiaadwgadaqhaaWcbaGaamyAaaqaaiaaikdaaa aakeaacaWGWbWaaSbaaSqaaiaadMgaaeqaaaaaaeaacaWGPbGaeyyp a0JaaGymaaqaaiaad6eaa0GaeyyeIuoakiabgkHiTiaadweadaqhaa WcbaGaamyvaaqaaiaaikdaaaaakiaawIcacaGLPaaaaeaacqGH9aqp caWGobGaeqyWdi3aaSbaaSqaaiaadwhadaahaaadbeqaaiaaikdaaa WccaWG3baabeaakiabeo8aZnaaBaaaleaacaWG1bWaaWbaaWqabeaa caaIYaaaaaWcbeaakiabeo8aZnaaBaaaleaacaWG3baabeaakiabgU caRiaad6eaceWGxbGbaebadaqadaqaaiabeo8aZnaaDaaaleaacaWG 1baabaGaaGOmaaaakiabgUcaRiqadwfagaqeamaaCaaaleqabaGaaG OmaaaaaOGaayjkaiaawMcaaiabgkHiTiaad6gadaahaaWcbeqaaiab gkHiTiaaigdaaaGcdaqadaqaaiaad6eaceWGvbGbaebaaiaawIcaca GLPaaadaahaaWcbeqaaiaaikdaaaaakeaaaeaacqGHRaWkcaaMc8Ua aGPaVlaad6eacaWGbbWaaWbaaSqabeaacaaIYaaaaOWaaeWaaeaace WGxbGbaebacqGHsislcaWGUbWaaWbaaSqabeaacqGHsislcaaIXaaa aOGaamOtaaGaayjkaiaawMcaaaqaaaqaaiabgUcaRiaaykW7caaMc8 UaaGOmaiaad6gadaahaaWcbeqaaiabgkHiTiaaigdaaaGccaWGobWa aWbaaSqabeaacaaIYaaaaOGabmyvayaaraGaamyqaiabgkHiTiaaik dacaWGbbWaaeWaaeaacaWGobGaeqyWdi3aaSbaaSqaaiaadwhacaWG 3baabeaakiabeo8aZnaaBaaaleaacaWG1baabeaakiabeo8aZnaaBa aaleaacaWG3baabeaakiabgUcaRiaad6eaceWGxbGbaebaceWGvbGb aebaaiaawIcacaGLPaaacaGGUaaaaiaaywW7caaMf8UaaGzbVlaayw W7caaMf8UaaiikaiaacgeacaGGUaGaaGynaiaacMcaaaa@A265@

The variance of the pwr MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9pC0xbbf9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaeiCaiaabE hacaqGYbGaeyOeI0caaa@3C14@ estimator under simple random sampling with replacement, where p i = N 1 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGWbWaaS baaSqaaiaadMgaaeqaaOGaeyypa0JaamOtamaaCaaaleqabaGaeyOe I0IaaGymaaaakiaacYcaaaa@3EE6@ reduces to Var srswr ( T ^ pwr ) = N 2 σ y 2 / n . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaqGwbGaae yyaiaabkhadaWgaaWcbaGaae4CaiaabkhacaqGZbGaae4Daiaabkha aeqaaOWaaeWaaeaaceWGubGbaKaadaWgaaWcbaGaaeiCaiaabEhaca qGYbaabeaaaOGaayjkaiaawMcaaiabg2da9maalyaabaGaamOtamaa CaaaleqabaGaaGOmaaaakiabeo8aZnaaDaaaleaacaWG5baabaGaaG OmaaaaaOqaaiaad6gaaaGaaiOlaaaa@4DE2@ Taking the ratio of (A.5) to the pwr MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9pC0xbbf9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaeiCaiaabE hacaqGYbGaeyOeI0caaa@3C14@ variance gives the following design effect:

Deff H = Var GREG ( T ^ cal ) / Var srswr ( T ^ pwr ) = n W ¯ N ( σ u 2 σ y 2 ) + ( U ¯ A ) 2 σ y 2 ( n W ¯ N 1 ) + n σ w N σ y 2 ( ρ u 2 w σ u 2 2 A ρ u w σ u ) . (A.6) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaafaqaae4aca aabaGaaeiraiaabwgacaqGMbGaaeOzamaaBaaaleaacaWGibaabeaa aOqaaiabg2da9maalyaabaGaaeOvaiaabggacaqGYbWaaSbaaSqaai aabEeacaqGsbGaaeyraiaabEeaaeqaaOWaaeWaaeaaceWGubGbaKaa daWgaaWcbaGaae4yaiaabggacaqGSbaabeaaaOGaayjkaiaawMcaaa qaaiaabAfacaqGHbGaaeOCamaaBaaaleaacaqGZbGaaeOCaiaaboha caqG3bGaaeOCaaqabaGcdaqadaqaaiqadsfagaqcamaaBaaaleaaca qGWbGaae4DaiaabkhaaeqaaaGccaGLOaGaayzkaaaaaaqaaaqaaiab g2da9maalaaabaGaamOBaiqadEfagaqeaaqaaiaad6eaaaWaaeWaae aadaWcaaqaaiabeo8aZnaaDaaaleaacaWG1baabaGaaGOmaaaaaOqa aiabeo8aZnaaDaaaleaacaWG5baabaGaaGOmaaaaaaaakiaawIcaca GLPaaacqGHRaWkdaWcaaqaamaabmaabaGabmyvayaaraGaeyOeI0Ia amyqaaGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaOqaaiabeo 8aZnaaDaaaleaacaWG5baabaGaaGOmaaaaaaGcdaqadaqaamaalaaa baGaamOBaiqadEfagaqeaaqaaiaad6eaaaGaeyOeI0IaaGymaaGaay jkaiaawMcaaaqaaaqaaiabgUcaRmaalaaabaGaamOBaiabeo8aZnaa BaaaleaacaWG3baabeaaaOqaaiaad6eacqaHdpWCdaqhaaWcbaGaam yEaaqaaiaaikdaaaaaaOWaaeWaaeaacqaHbpGCdaWgaaWcbaGaamyD amaaCaaameqabaGaaGOmaaaaliaadEhaaeqaaOGaeq4Wdm3aaSbaaS qaaiaadwhadaahaaadbeqaaiaaikdaaaaaleqaaOGaeyOeI0IaaGOm aiaadgeacqaHbpGCdaWgaaWcbaGaamyDaiaadEhaaeqaaOGaeq4Wdm 3aaSbaaSqaaiaadwhaaeqaaaGccaGLOaGaayzkaaGaaiOlaaaacaaM f8UaaGzbVlaaywW7caaMf8UaaGzbVlaacIcacaGGbbGaaiOlaiaaiA dacaGGPaaaaa@9CDF@

Since u i = A + e i , U ¯ = A , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG1bWaaS baaSqaaiaadMgaaeqaaOGaeyypa0JaamyqaiabgUcaRiaadwgadaWg aaWcbaGaamyAaaqabaGccaGGSaGaaGjbVlqadwfagaqeaiabg2da9i aadgeacaGGSaaaaa@44EA@ (A.6) becomes

Deff H = n W ¯ N ( σ u 2 σ y 2 ) + n σ w N σ y 2 ( ρ u 2 w σ u 2 2 A ρ u w σ u ) . (A.7) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaqGebGaae yzaiaabAgacaqGMbWaaSbaaSqaaiaadIeaaeqaaOGaeyypa0ZaaSaa aeaacaWGUbGabm4vayaaraaabaGaamOtaaaadaqadaqaamaalaaaba Gaeq4Wdm3aa0baaSqaaiaadwhaaeaacaaIYaaaaaGcbaGaeq4Wdm3a a0baaSqaaiaadMhaaeaacaaIYaaaaaaaaOGaayjkaiaawMcaaiabgU caRmaalaaabaGaamOBaiabeo8aZnaaBaaaleaacaWG3baabeaaaOqa aiaad6eacqaHdpWCdaqhaaWcbaGaamyEaaqaaiaaikdaaaaaaOWaae WaaeaacqaHbpGCdaWgaaWcbaGaamyDamaaCaaameqabaGaaGOmaaaa liaadEhaaeqaaOGaeq4Wdm3aaSbaaSqaaiaadwhadaahaaadbeqaai aaikdaaaaaleqaaOGaeyOeI0IaaGOmaiaadgeacqaHbpGCdaWgaaWc baGaamyDaiaadEhaaeqaaOGaeq4Wdm3aaSbaaSqaaiaadwhaaeqaaa GccaGLOaGaayzkaaGaaiOlaiaaywW7caaMf8UaaGzbVlaaywW7caaM f8UaaiikaiaacgeacaGGUaGaaG4naiaacMcaaaa@72BF@

We estimate measure (A.7) with

deff H ( 1 + [ CV ( w ) ] 2 ) σ ^ u 2 σ ^ y 2 + n σ ^ w N σ ^ y 2 ( ρ ^ u 2 w σ ^ u 2 2 α ^ ρ ^ u w σ ^ u ) , (A.8) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaqGKbGaae yzaiaabAgacaqGMbWaaSbaaSqaaiaadIeaaeqaaOGaeyisIS7aaeWa aeaacaaIXaGaey4kaSYaamWaaeaacaqGdbGaaeOvamaabmaabaGaaC 4DaaGaayjkaiaawMcaaaGaay5waiaaw2faamaaCaaaleqabaGaaGOm aaaaaOGaayjkaiaawMcaamaalaaabaGafq4WdmNbaKaadaqhaaWcba GaamyDaaqaaiaaikdaaaaakeaacuaHdpWCgaqcamaaDaaaleaacaWG 5baabaGaaGOmaaaaaaGccqGHRaWkdaWcaaqaaiaad6gacuaHdpWCga qcamaaBaaaleaacaWG3baabeaaaOqaaiaad6eacuaHdpWCgaqcamaa DaaaleaacaWG5baabaGaaGOmaaaaaaGcdaqadaqaaiqbeg8aYzaaja WaaSbaaSqaaiaadwhadaahaaadbeqaaiaaikdaaaWccaWG3baabeaa kiqbeo8aZzaajaWaaSbaaSqaaiaadwhadaahaaadbeqaaiaaikdaaa aaleqaaOGaeyOeI0IaaGOmaiqbeg7aHzaajaGafqyWdiNbaKaadaWg aaWcbaGaamyDaiaadEhaaeqaaOGafq4WdmNbaKaadaWgaaWcbaGaam yDaaqabaaakiaawIcacaGLPaaacaGGSaGaaGzbVlaaywW7caaMf8Ua aGzbVlaacIcacaGGbbGaaiOlaiaaiIdacaGGPaaaaa@7944@

where the model parameter estimates are defined in Sections 2.3 and 3.

References

Brick, M., and Montaquila, J. (2009). Nonresponse. In Handbook of Statistics, Sample Surveys: Design, Methods and Application, (Eds., D. Pfeffermann and C.R. Rao), 29A, Amsterdam: Elsevier BV.

Chambers, J.M., Cleveland, W.S., Kleiner, B. and Tukey, P.A. (1983). Graphical Methods for Data Analysis. Pacific Grove CA: Wadsworth.

Deville, J.-C., and Särndal, C.-E. (1992). Calibration estimators in survey sampling. Journal of the American Statistical Association, 87, 376-382.

Deville, J.-C., Särndal, C.-E. and Sautory, O. (1993). Generalized raking procedures in survey sampling. Journal of the American Statistical Association, 88, 1013-1020.

Hansen, M.H., and Hurwitz, W.N. (1943). On the theory of sampling from a finite population. Annals of Mathematical Statistics, 14, 333-362.

Horvitz, D., and Thompson, D. (1952). A generalisation of sampling without replacement from a finite universe. Journal of the American Statistical Association, 47, 663-685.

Kalton, G., and Flores-Cervantes, A. (2003). Weighting methods. Journal of Official Statistics, 19 (2), 81-97.

Kish, L. (1965). Survey Sampling. New York: John Wiley & Sons, Inc.

Kish, L. (1990). Weighting: Why, when, and how? Proceedings of the Joint Statistical Meetings, Section on Survey Research Methods, American Statistical Association, 121-129.

Kish, L. (1992). Weighting for unequal Pi. Journal of Official Statistics, 8, 183-200.

Kott, P. (2009). Calibration weighting: Combining probability samples and linear prediction models. In Handbook of Statistics, Sample Surveys: Design, Methods and Application, (Eds., D. Pfeffermann and C.R. Rao), 29B, Amsterdam: Elsevier BV.

Lumley, T. (2012). Survey: Analysis of complex survey samples. R package version 3.28-2.

Park, I., and Lee, H. (2004). Design effects for the weighted mean and total estimators under complex survey sampling. Survey Methodology, 30, 2, 183-193.

Rao, J.N.K., and Scott, A.J. (1984). On chi-squared tests for multiway contingency tables with cell proportions estimated from survey data. Annals of Statistics, 12, 46-60.

Särndal, C.-E., and Lundström, S. (2005). Estimation in Surveys with Nonresponse. New York: John Wiley & Sons, Inc.

Särndal, C.-E., Swensson, B. and Wretman, J. (1992). Model Assisted Survey Sampling. New York: Springer: Berlin.

Spencer, B.D. (2000). An approximate design effect for unequal weighting when measurements may correlate with selection probabilities. Survey Methodology, 26, 2, 137-138.

Statistics of Income (2011). 2007 Charities & Tax-Exempt Microdata Files. Available at: http://www.irs.gov/uac/SOI-Tax-Stats-2007-Charities-&-Tax-Exempt-Microdata-Files.

Valliant, R., Dever, J.A. and Kreuter, F. (2013). Practical Tools for Designing and Weighting Survey Samples. New York: Springer.

Valliant, R., Dever, J.A. and Kreuter, F. (2015). PracTools: Tools for Designing and Weighting Survey Samples. R package version 0.2. http://CRAN.R-project.org/package=PracTools.

Date modified: