A design effect measure for calibration weighting in single-stage samples
5. Discussion, limitations, and conclusionsA design effect measure for calibration weighting in single-stage samples
5. Discussion, limitations, and conclusions
We propose a new
design effect that gauges the impact of calibration weighting adjustments on an
estimated total in single-stage sampling. Two existing design effects are the
Kish (1965) “design effect due to weighting” and one due to Spencer (2000). Both
of these are inadequate to reflect efficiency gains due to calibration. The
Kish
deff
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaqGKbGaae
yzaiaabAgacaqGMbaaaa@3C06@
is a reasonable measure if equal
weighting is optimal or nearly so, but does not reveal efficiencies that may
accrue from sampling with varying probabilities. The Spencer
deff
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaqGKbGaae
yzaiaabAgacaqGMbaaaa@3C06@
does signal whether the HT (or
pwr)
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaqGWbGaae
4DaiaabkhacaqGPaaaaa@3BF3@
estimator in varying probability
sampling is more efficient than
srs
.
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaqGZbGaae
OCaiaabohacaqGUaaaaa@3BE7@
But, the Spencer
deff
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaqGKbGaae
yzaiaabAgacaqGMbaaaa@3C06@
does not reflect any gains from
using calibration.
The proposed
design effect measures the impact of both sampling with varying probabilities
and of using a calibration estimator, like the GREG , that takes advantage of
auxiliary information. As we demonstrate empirically, the proposed design
effects do not penalize unequal weights when the relationship between the
survey variable and calibration covariate is strong. We also demonstrated empirically
that the correlation components in the Spencer measure and our proposed measure
can be important in some situations. It is not overly difficult to calculate
these components, and these should be incorporated when possible to avoid over
estimates of the design effects. However, the high correlations between survey
and auxiliary variables that we observed in our establishment pseudopopulation
data may be unattainable for some surveys that lack auxiliary information. In
cases where the auxiliary information is ineffective or is not used, the
proposed measure approximates Kish’s
deff
.
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaqGKbGaae
yzaiaabAgacaqGMbGaaeOlaaaa@3CB7@
The measure presented here is
applicable to single-stage sampling but can be extended to more complex sample
designs, like cluster sampling.
Our measure uses
the model underlying the general regression estimator to extend the Spencer
measure. The survey variable, covariates, and weights are required to produce
the design effect estimate. Since the variance (3.2) is approximately correct
in large samples for all calibration estimators, our design effect should
reflect the effects of many forms of commonly used weighting adjustment
methods, including poststratification, raking, and the GREG estimator. Although
design effects that do account for these adjustments can be computed directly
from estimated variances, it is important for practitioners to understand that
the existing Kish and Spencer
deff
’
s
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaqGKbGaae
yzaiaabAgacaqGMbacbaGaa8xgGiaabohaaaa@3DBF@
do not reflect any gains from
those adjustments. The
deff
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaqGKbGaae
yzaiaabAgacaqGMbaaaa@3C06@
introduced in this paper, thus,
serves as a corrective to that deficiency.
For practical
consideration, the deff in (3.4) is available in the “deffH” function in the R “PracTools” package; see Valliant et al. (2015) for
documentation and examples.
Acknowledgements
We thank the
referees for their thorough reviews which improved the presentation. Any
opinions expressed are those of the authors and do not reflect those of the
Internal Revenue Service.
Appendix
Proposed design effect in single-stage sampling
The appendix
sketches the derivation of the proposed
deff
.
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaqGKbGaae
yzaiaabAgacaqGMbGaaeOlaaaa@3CB7@
Most notation was defined in the
previous sections of the paper. The average population one-draw probability is
P
¯
=
N
−
1
∑
i
=
1
N
p
i
.
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWGqbGbae
bacqGH9aqpcaWGobWaaWbaaSqabeaacqGHsislcaaIXaaaaOWaaabm
aeaacaWGWbWaaSbaaSqaaiaadMgaaeqaaaqaaiaadMgacqGH9aqpca
aIXaaabaGaamOtaaqdcqGHris5aOGaaiOlaaaa@454E@
Assume that the design satisfies
P
¯
=
N
−
1
.
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWGqbGbae
bacqGH9aqpcaWGobWaaWbaaSqabeaacqGHsislcaaIXaaaaOGaaiOl
aaaa@3DBC@
Consider the model
y
i
=
α
+
x
i
T
β
+
ε
i
.
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG5bWaaS
baaSqaaiaadMgaaeqaaOGaeyypa0JaeqySdeMaey4kaSIaaCiEamaa
DaaaleaacaWGPbaabaGaamivaaaakiaahk7acqGHRaWkcqaH1oqzda
WgaaWcbaGaamyAaaqabaGccaGGUaaaaa@46AA@
If the full finite population
were available, then the least-squares population regression line would be
y
i
= A +
x
i
T
B +
e
i
, ( A .1 )
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG5bWaaS
baaSqaaiaadMgaaeqaaOGaeyypa0JaamyqaiabgUcaRiaahIhadaqh
aaWcbaGaamyAaaqaaiaadsfaaaGccaWHcbGaey4kaSIaamyzamaaBa
aaleaacaWGPbaabeaakiaacYcacaaMf8UaaGzbVlaaywW7caaMf8Ua
aGzbVlaacIcacaqGbbGaaeOlaiaabgdacaGGPaaaaa@4FE6@
where
A
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGbbaaaa@392B@
and
B
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWHcbaaaa@3930@
are the values found by fitting
an ordinary least squares regression line in the full finite population. That
is,
A
=
Y
¯
−
B
X
¯
,
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGbbGaey
ypa0JabmywayaaraGaeyOeI0IaaCOqaiqahIfagaqeaiaacYcaaaa@3E88@
B
=
(
X
T
X
)
−
1
X
T
y
,
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWHcbGaey
ypa0ZaaeWaaeaacaWHybWaaWbaaSqabeaacaWGubaaaOGaaCiwaaGa
ayjkaiaawMcaamaaCaaaleqabaGaeyOeI0IaaGymaaaakiaahIfada
ahaaWcbeqaaiaadsfaaaGccaWH5bGaaiilaaaa@4413@
where
X
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWHybaaaa@3946@
is the
N
×
p
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGobGaey
41aqRaamiCaaaa@3C44@
population matrix of auxiliary
variables,
Y
¯
=
N
−
1
∑
i
=
1
N
y
i
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWGzbGbae
bacqGH9aqpcaWGobWaaWbaaSqabeaacqGHsislcaaIXaaaaOWaaabm
aeaacaWG5bWaaSbaaSqaaiaadMgaaeqaaaqaaiaadMgacqGH9aqpca
aIXaaabaGaamOtaaqdcqGHris5aaaa@44A4@
is the population mean, and
X
¯
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWHybGbae
baaaa@395E@
is the vector of population means
of the
x
’
s
.
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG4bacba
Gaa8xgGiaabohacaqGUaaaaa@3BCC@
The
e
i
’
s
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGLbWaaS
baaSqaaiaadMgaaeqaaGqaaOGaa8xgGiaabohaaaa@3C2C@
are defined as the finite
population residuals,
e
i
=
y
i
−
A
−
x
i
T
B
,
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGLbWaaS
baaSqaaiaadMgaaeqaaOGaeyypa0JaamyEamaaBaaaleaacaWGPbaa
beaakiabgkHiTiaadgeacqGHsislcaWH4bWaa0baaSqaaiaadMgaae
aacaWGubaaaOGaaCOqaiaacYcaaaa@44B5@
and are not superpopulation model
errors. Denote the population variance of the
y
’
s
,
e
’
s
,
e
2
,
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG5bacba
Gaa8xgGiaabohacaGGSaGaamyzaiaa=LbicaqGZbGaaiilaiaadwga
daahaaWcbeqaaiaaikdaaaGccaGGSaaaaa@41A3@
and weights as
σ
y
2
,
σ
e
2
,
σ
e
2
2
,
σ
w
2
,
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaHdpWCda
qhaaWcbaGaamyEaaqaaiaaikdaaaGccaGGSaGaeq4Wdm3aa0baaSqa
aiaadwgaaeaacaaIYaaaaOGaaiilaiabeo8aZnaaDaaaleaacaWGLb
WaaWbaaWqabeaacaaIYaaaaaWcbaGaaGOmaaaakiaacYcacqaHdpWC
daqhaaWcbaGaam4DaaqaaiaaikdaaaGccaGGSaaaaa@4AC0@
e.g.,
σ
y
2
=
N
−
1
∑
i
=
1
N
(
y
i
−
Y
¯
)
2
,
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaHdpWCda
qhaaWcbaGaamyEaaqaaiaaikdaaaGccqGH9aqpcaWGobWaaWbaaSqa
beaacqGHsislcaaIXaaaaOWaaabmaeaadaqadaqaaiaadMhadaWgaa
WcbaGaamyAaaqabaGccqGHsislceWGzbGbaebaaiaawIcacaGLPaaa
daahaaWcbeqaaiaaikdaaaaabaGaamyAaiabg2da9iaaigdaaeaaca
WGobaaniabggHiLdGccaGGSaaaaa@4C7B@
and the finite population
correlations between the variables in the subscripts as
ρ
y
p
,
ρ
e
w
,
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaHbpGCda
WgaaWcbaGaamyEaiaadchaaeqaaOGaaiilaiabeg8aYnaaBaaaleaa
caWGLbGaam4DaaqabaGccaGGSaaaaa@418A@
and
ρ
e
2
w
.
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaHbpGCda
WgaaWcbaGaamyzamaaCaaameqabaGaaGOmaaaaliaadEhaaeqaaOGa
aiOlaaaa@3DE8@
The GREG theoretical
design-variance in with-replacement sampling is
Var
(
T
^
GREG
)
=
n
−
1
∑
i
=
1
N
p
i
(
e
i
/
p
i
−
E
U
)
2
=
n
−
1
(
∑
i
=
1
N
e
i
2
/
p
i
−
E
U
2
)
,
( A .2 )
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaafaqaaeOaca
aabaGaaeOvaiaabggacaqGYbWaaeWaaeaaceWGubGbaKaadaWgaaWc
baGaae4raiaabkfacaqGfbGaae4raaqabaaakiaawIcacaGLPaaaae
aacqGH9aqpcaWGUbWaaWbaaSqabeaacqGHsislcaaIXaaaaOWaaabm
aeaacaWGWbWaaSbaaSqaaiaadMgaaeqaaOWaaeWaaeaadaWcgaqaai
aadwgadaWgaaWcbaGaamyAaaqabaaakeaacaWGWbWaaSbaaSqaaiaa
dMgaaeqaaaaakiabgkHiTiaadweadaWgaaWcbaGaamyvaaqabaaaki
aawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaaabaGaamyAaiabg2da
9iaaigdaaeaacaWGobaaniabggHiLdaakeaaaeaacqGH9aqpcaWGUb
WaaWbaaSqabeaacqGHsislcaaIXaaaaOWaaeWaaeaadaaeWaqaamaa
lyaabaGaamyzamaaDaaaleaacaWGPbaabaGaaGOmaaaaaOqaaiaadc
hadaWgaaWcbaGaamyAaaqabaaaaOGaeyOeI0IaamyramaaDaaaleaa
caWGvbaabaGaaGOmaaaaaeaacaWGPbGaeyypa0JaaGymaaqaaiaad6
eaa0GaeyyeIuoaaOGaayjkaiaawMcaaiaacYcaaaGaaGzbVlaaywW7
caaMf8UaaGzbVlaaywW7caaMf8UaaiikaiaacgeacaGGUaGaaGOmai
aacMcaaaa@7750@
where
E
U
=
∑
i
=
1
N
e
i
.
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGfbWaaS
baaSqaaiaadwfaaeqaaOGaeyypa0ZaaabmaeaacaWGLbWaaSbaaSqa
aiaadMgaaeqaaaqaaiaadMgacqGH9aqpcaaIXaaabaGaamOtaaqdcq
GHris5aOGaaiOlaaaa@437E@
Using the model in (A.1) produces
a design effect with several complex terms, many of which contain correlations
that cannot be dropped as in Spencer’s approximation. The design effect can be
simplified using an alternative formulation:
u
i
=
A
+
e
i
,
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG1bWaaS
baaSqaaiaadMgaaeqaaOGaeyypa0JaamyqaiabgUcaRiaadwgadaWg
aaWcbaGaamyAaaqabaGccaGGSaaaaa@3FEF@
where
u
i
=
y
i
−
x
i
T
B
.
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG1bWaaS
baaSqaaiaadMgaaeqaaOGaeyypa0JaamyEamaaBaaaleaacaWGPbaa
beaakiabgkHiTiaahIhadaqhaaWcbaGaamyAaaqaaiaadsfaaaGcca
WHcbGaaiOlaaaa@4314@
First, we rewrite the population
total of the
e
i
’
s
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGLbWaaS
baaSqaaiaadMgaaeqaaGqaaOGaa8xgGiaabohaaaa@3C2C@
as
E
U
=
∑
i
=
1
N
e
i
=
N
U
¯
−
N
A
,
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGfbWaaS
baaSqaaiaadwfaaeqaaOGaeyypa0ZaaabmaeaacaWGLbWaaSbaaSqa
aiaadMgaaeqaaaqaaiaadMgacqGH9aqpcaaIXaaabaGaamOtaaqdcq
GHris5aOGaeyypa0JaamOtaiqadwfagaqeaiabgkHiTiaad6eacaWG
bbGaaiilaaaa@48CD@
where
U
¯
=
N
−
1
∑
i
=
1
N
u
i
.
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWGvbGbae
bacqGH9aqpcaWGobWaaWbaaSqabeaacqGHsislcaaIXaaaaOWaaabm
aeaacaWG1bWaaSbaaSqaaiaadMgaaeqaaaqaaiaadMgacqGH9aqpca
aIXaaabaGaamOtaaqdcqGHris5aOGaaiOlaaaa@4558@
From this,
E
U
2
=
(
N
U
¯
)
2
+
(
N
A
)
2
−
2
N
2
U
¯
A
.
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGfbWaa0
baaSqaaiaadwfaaeaacaaIYaaaaOGaeyypa0ZaaeWaaeaacaWGobGa
bmyvayaaraaacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaOGaey
4kaSYaaeWaaeaacaWGobGaamyqaaGaayjkaiaawMcaamaaCaaaleqa
baGaaGOmaaaakiabgkHiTiaaikdacaWGobWaaWbaaSqabeaacaaIYa
aaaOGabmyvayaaraGaamyqaiaac6caaaa@4B13@
Second, using
w
i
=
(
n
p
i
)
−
1
,
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG3bWaaS
baaSqaaiaadMgaaeqaaOGaeyypa0ZaaeWaaeaacaWGUbGaamiCamaa
BaaaleaacaWGPbaabeaaaOGaayjkaiaawMcaamaaCaaaleqabaGaey
OeI0IaaGymaaaakiaacYcaaaa@42AF@
or
p
i
=
(
n
w
i
)
−
1
,
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGWbWaaS
baaSqaaiaadMgaaeqaaOGaeyypa0ZaaeWaaeaacaWGUbGaam4Damaa
BaaaleaacaWGPbaabeaaaOGaayjkaiaawMcaamaaCaaaleqabaGaey
OeI0IaaGymaaaakiaacYcaaaa@42AF@
we rewrite the component
∑
i
=
1
N
e
i
2
/
p
i
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaaeWaqaam
aalyaabaGaamyzamaaDaaaleaacaWGPbaabaGaaGOmaaaaaOqaaiaa
dchadaWgaaWcbaGaamyAaaqabaaaaaqaaiaadMgacqGH9aqpcaaIXa
aabaGaamOtaaqdcqGHris5aaaa@42CE@
as
∑
i
=
1
N
e
i
2
/
p
i
=
∑
i
=
1
N
(
u
i
−
A
)
2
(
n
w
i
)
−
1
=
n
∑
i
=
1
N
w
i
u
i
2
+
n
A
2
∑
i
=
1
N
w
i
−
2
n
A
∑
i
=
1
N
w
i
u
i
.
( A .3 )
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaafaqaaeOaca
aabaWaaabmaeaadaWcgaqaaiaadwgadaqhaaWcbaGaamyAaaqaaiaa
ikdaaaaakeaacaWGWbWaaSbaaSqaaiaadMgaaeqaaaaaaeaacaWGPb
Gaeyypa0JaaGymaaqaaiaad6eaa0GaeyyeIuoaaOqaaiabg2da9maa
qadabaWaaSaaaeaadaqadaqaaiaadwhadaWgaaWcbaGaamyAaaqaba
GccqGHsislcaWGbbaacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaa
aaGcbaWaaeWaaeaacaWGUbGaam4DamaaBaaaleaacaWGPbaabeaaaO
GaayjkaiaawMcaamaaCaaaleqabaGaeyOeI0IaaGymaaaaaaaabaGa
amyAaiabg2da9iaaigdaaeaacaWGobaaniabggHiLdaakeaaaeaacq
GH9aqpcaWGUbWaaabmaeaacaWG3bWaaSbaaSqaaiaadMgaaeqaaOGa
amyDamaaDaaaleaacaWGPbaabaGaaGOmaaaaaeaacaWGPbGaeyypa0
JaaGymaaqaaiaad6eaa0GaeyyeIuoakiabgUcaRiaad6gacaWGbbWa
aWbaaSqabeaacaaIYaaaaOWaaabmaeaacaWG3bWaaSbaaSqaaiaadM
gaaeqaaaqaaiaadMgacqGH9aqpcaaIXaaabaGaamOtaaqdcqGHris5
aOGaeyOeI0IaaGOmaiaad6gacaWGbbWaaabmaeaacaWG3bWaaSbaaS
qaaiaadMgaaeqaaOGaamyDamaaBaaaleaacaWGPbaabeaaaeaacaWG
PbGaeyypa0JaaGymaaqaaiaad6eaa0GaeyyeIuoakiaac6caaaGaaG
zbVlaaywW7caaMf8UaaGzbVlaaywW7caGGOaGaaiyqaiaac6cacaaI
ZaGaaiykaaaa@8764@
Subtracting
E
U
2
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGfbWaa0
baaSqaaiaadwfaaeaacaaIYaaaaaaa@3AF2@
from (A.3) and dividing by
n
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGUbaaaa@3958@
gives
n
−
1
(
∑
i
=
1
N
e
i
2
/
p
i
−
E
U
2
)
=
∑
i
=
1
N
w
i
u
i
2
−
n
−
1
(
N
U
¯
)
2
+
A
2
(
∑
i
=
1
N
w
i
−
n
−
1
N
2
)
+
n
−
1
2
N
2
U
¯
A
−
2
A
∑
i
=
1
N
w
i
u
i
.
( A .4 )
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFjpeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaafaqaae4aca
aabaGaamOBamaaCaaaleqabaGaeyOeI0IaaGymaaaakmaabmaabaWa
aabmaeaadaWcgaqaaiaadwgadaqhaaWcbaGaamyAaaqaaiaaikdaaa
aakeaacaWGWbWaaSbaaSqaaiaadMgaaeqaaaaaaeaacaWGPbGaeyyp
a0JaaGymaaqaaiaad6eaa0GaeyyeIuoakiabgkHiTiaadweadaqhaa
WcbaGaamyvaaqaaiaaikdaaaaakiaawIcacaGLPaaaaeaacqGH9aqp
daaeWaqaaiaadEhadaWgaaWcbaGaamyAaaqabaGccaWG1bWaa0baaS
qaaiaadMgaaeaacaaIYaaaaaqaaiaadMgacqGH9aqpcaaIXaaabaGa
amOtaaqdcqGHris5aOGaeyOeI0IaamOBamaaCaaaleqabaGaeyOeI0
IaaGymaaaakmaabmaabaGaamOtaiqadwfagaqeaaGaayjkaiaawMca
amaaCaaaleqabaGaaGOmaaaaaOqaaaqaaiabgUcaRiaaykW7caaMc8
UaamyqamaaCaaaleqabaGaaGOmaaaakmaabmaabaWaaabmaeaacaWG
3bWaaSbaaSqaaiaadMgaaeqaaaqaaiaadMgacqGH9aqpcaaIXaaaba
GaamOtaaqdcqGHris5aOGaeyOeI0IaamOBamaaCaaaleqabaGaeyOe
I0IaaGymaaaakiaad6eadaahaaWcbeqaaiaaikdaaaaakiaawIcaca
GLPaaaaeaaaeaacqGHRaWkcaaMc8UaaGPaVlaad6gadaahaaWcbeqa
aiabgkHiTiaaigdaaaGccaaIYaGaamOtamaaCaaaleqabaGaaGOmaa
aakiqadwfagaqeaiaadgeacqGHsislcaaIYaGaamyqamaaqadabaGa
am4DamaaBaaaleaacaWGPbaabeaakiaadwhadaWgaaWcbaGaamyAaa
qabaaabaGaamyAaiabg2da9iaaigdaaeaacaWGobaaniabggHiLdGc
caGGUaaaaiaaywW7caaMf8UaaGzbVlaaywW7caaMf8UaaGzbVlaacI
cacaGGbbGaaiOlaiaaisdacaGGPaaaaa@97DD@
Following
Spencer’s approach using the covariance substitutions, the first and fifth
terms in (A.4) can be rewritten as
∑
i
=
1
N
w
i
u
i
2
=
N
ρ
u
2
w
σ
u
2
σ
w
+
N
W
¯
(
σ
u
2
+
U
¯
2
)
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaaeWaqaai
aadEhadaWgaaWcbaGaamyAaaqabaGccaWG1bWaa0baaSqaaiaadMga
aeaacaaIYaaaaOGaeyypa0JaamOtaiabeg8aYnaaBaaaleaacaWG1b
WaaWbaaWqabeaacaaIYaaaaSGaam4DaaqabaGccqaHdpWCdaWgaaWc
baGaamyDamaaCaaameqabaGaaGOmaaaaaSqabaGccqaHdpWCaSqaai
aadMgacqGH9aqpcaaIXaaabaGaamOtaaqdcqGHris5aOWaaSbaaSqa
aiaadEhaaeqaaOGaey4kaSIaamOtaiqadEfagaqeamaabmqabaGaeq
4Wdm3aa0baaSqaaiaadwhaaeaacaaIYaaaaOGaey4kaSIabmyvayaa
raWaaWbaaSqabeaacaaIYaaaaaGccaGLOaGaayzkaaaaaa@5B2F@
and
∑
i
=
1
N
w
i
u
i
=
N
ρ
u
w
σ
u
σ
w
+
N
W
¯
U
¯
.
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaaeWaqaai
aadEhadaWgaaWcbaGaamyAaaqabaGccaWG1bWaaSbaaSqaaiaadMga
aeqaaaqaaiaadMgacqGH9aqpcaaIXaaabaGaamOtaaqdcqGHris5aO
Gaeyypa0JaamOtaiabeg8aYnaaBaaaleaacaWG1bGaam4DaaqabaGc
cqaHdpWCdaWgaaWcbaGaamyDaaqabaGccqaHdpWCdaWgaaWcbaGaam
4DaaqabaGccqGHRaWkcaWGobGabm4vayaaraGabmyvayaaraGaaiOl
aaaa@5216@
Plugging these back into the
variance (A.4) gives
n
−
1
(
∑
i
=
1
N
e
i
2
/
p
i
−
E
U
2
)
=
N
ρ
u
2
w
σ
u
2
σ
w
+
N
W
¯
(
σ
u
2
+
U
¯
2
)
−
n
−
1
(
N
U
¯
)
2
+
N
A
2
(
W
¯
−
n
−
1
N
)
+
2
n
−
1
N
2
U
¯
A
−
2
A
(
N
ρ
u
w
σ
u
σ
w
+
N
W
¯
U
¯
)
.
( A .5 )
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFjpeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaafaqaae4aca
aabaGaamOBamaaCaaaleqabaGaeyOeI0IaaGymaaaakmaabmaabaWa
aabmaeaadaWcgaqaaiaadwgadaqhaaWcbaGaamyAaaqaaiaaikdaaa
aakeaacaWGWbWaaSbaaSqaaiaadMgaaeqaaaaaaeaacaWGPbGaeyyp
a0JaaGymaaqaaiaad6eaa0GaeyyeIuoakiabgkHiTiaadweadaqhaa
WcbaGaamyvaaqaaiaaikdaaaaakiaawIcacaGLPaaaaeaacqGH9aqp
caWGobGaeqyWdi3aaSbaaSqaaiaadwhadaahaaadbeqaaiaaikdaaa
WccaWG3baabeaakiabeo8aZnaaBaaaleaacaWG1bWaaWbaaWqabeaa
caaIYaaaaaWcbeaakiabeo8aZnaaBaaaleaacaWG3baabeaakiabgU
caRiaad6eaceWGxbGbaebadaqadaqaaiabeo8aZnaaDaaaleaacaWG
1baabaGaaGOmaaaakiabgUcaRiqadwfagaqeamaaCaaaleqabaGaaG
OmaaaaaOGaayjkaiaawMcaaiabgkHiTiaad6gadaahaaWcbeqaaiab
gkHiTiaaigdaaaGcdaqadaqaaiaad6eaceWGvbGbaebaaiaawIcaca
GLPaaadaahaaWcbeqaaiaaikdaaaaakeaaaeaacqGHRaWkcaaMc8Ua
aGPaVlaad6eacaWGbbWaaWbaaSqabeaacaaIYaaaaOWaaeWaaeaace
WGxbGbaebacqGHsislcaWGUbWaaWbaaSqabeaacqGHsislcaaIXaaa
aOGaamOtaaGaayjkaiaawMcaaaqaaaqaaiabgUcaRiaaykW7caaMc8
UaaGOmaiaad6gadaahaaWcbeqaaiabgkHiTiaaigdaaaGccaWGobWa
aWbaaSqabeaacaaIYaaaaOGabmyvayaaraGaamyqaiabgkHiTiaaik
dacaWGbbWaaeWaaeaacaWGobGaeqyWdi3aaSbaaSqaaiaadwhacaWG
3baabeaakiabeo8aZnaaBaaaleaacaWG1baabeaakiabeo8aZnaaBa
aaleaacaWG3baabeaakiabgUcaRiaad6eaceWGxbGbaebaceWGvbGb
aebaaiaawIcacaGLPaaacaGGUaaaaiaaywW7caaMf8UaaGzbVlaayw
W7caaMf8UaaiikaiaacgeacaGGUaGaaGynaiaacMcaaaa@A265@
The variance
of the
pwr
−
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9pC0xbbf9=e0dfrpm0dXdirVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaeiCaiaabE
hacaqGYbGaeyOeI0caaa@3C14@
estimator under simple random
sampling with replacement, where
p
i
=
N
−
1
,
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGWbWaaS
baaSqaaiaadMgaaeqaaOGaeyypa0JaamOtamaaCaaaleqabaGaeyOe
I0IaaGymaaaakiaacYcaaaa@3EE6@
reduces to
Var
srswr
(
T
^
pwr
)
=
N
2
σ
y
2
/
n
.
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaqGwbGaae
yyaiaabkhadaWgaaWcbaGaae4CaiaabkhacaqGZbGaae4Daiaabkha
aeqaaOWaaeWaaeaaceWGubGbaKaadaWgaaWcbaGaaeiCaiaabEhaca
qGYbaabeaaaOGaayjkaiaawMcaaiabg2da9maalyaabaGaamOtamaa
CaaaleqabaGaaGOmaaaakiabeo8aZnaaDaaaleaacaWG5baabaGaaG
OmaaaaaOqaaiaad6gaaaGaaiOlaaaa@4DE2@
Taking the ratio of (A.5) to the
pwr
−
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9pC0xbbf9=e0dfrpm0dXdirVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaeiCaiaabE
hacaqGYbGaeyOeI0caaa@3C14@
variance gives the following
design effect:
Deff
H
=
Var
GREG
(
T
^
cal
)
/
Var
srswr
(
T
^
pwr
)
=
n
W
¯
N
(
σ
u
2
σ
y
2
)
+
(
U
¯
−
A
)
2
σ
y
2
(
n
W
¯
N
−
1
)
+
n
σ
w
N
σ
y
2
(
ρ
u
2
w
σ
u
2
−
2
A
ρ
u
w
σ
u
)
.
( A .6 )
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaafaqaae4aca
aabaGaaeiraiaabwgacaqGMbGaaeOzamaaBaaaleaacaWGibaabeaa
aOqaaiabg2da9maalyaabaGaaeOvaiaabggacaqGYbWaaSbaaSqaai
aabEeacaqGsbGaaeyraiaabEeaaeqaaOWaaeWaaeaaceWGubGbaKaa
daWgaaWcbaGaae4yaiaabggacaqGSbaabeaaaOGaayjkaiaawMcaaa
qaaiaabAfacaqGHbGaaeOCamaaBaaaleaacaqGZbGaaeOCaiaaboha
caqG3bGaaeOCaaqabaGcdaqadaqaaiqadsfagaqcamaaBaaaleaaca
qGWbGaae4DaiaabkhaaeqaaaGccaGLOaGaayzkaaaaaaqaaaqaaiab
g2da9maalaaabaGaamOBaiqadEfagaqeaaqaaiaad6eaaaWaaeWaae
aadaWcaaqaaiabeo8aZnaaDaaaleaacaWG1baabaGaaGOmaaaaaOqa
aiabeo8aZnaaDaaaleaacaWG5baabaGaaGOmaaaaaaaakiaawIcaca
GLPaaacqGHRaWkdaWcaaqaamaabmaabaGabmyvayaaraGaeyOeI0Ia
amyqaaGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaOqaaiabeo
8aZnaaDaaaleaacaWG5baabaGaaGOmaaaaaaGcdaqadaqaamaalaaa
baGaamOBaiqadEfagaqeaaqaaiaad6eaaaGaeyOeI0IaaGymaaGaay
jkaiaawMcaaaqaaaqaaiabgUcaRmaalaaabaGaamOBaiabeo8aZnaa
BaaaleaacaWG3baabeaaaOqaaiaad6eacqaHdpWCdaqhaaWcbaGaam
yEaaqaaiaaikdaaaaaaOWaaeWaaeaacqaHbpGCdaWgaaWcbaGaamyD
amaaCaaameqabaGaaGOmaaaaliaadEhaaeqaaOGaeq4Wdm3aaSbaaS
qaaiaadwhadaahaaadbeqaaiaaikdaaaaaleqaaOGaeyOeI0IaaGOm
aiaadgeacqaHbpGCdaWgaaWcbaGaamyDaiaadEhaaeqaaOGaeq4Wdm
3aaSbaaSqaaiaadwhaaeqaaaGccaGLOaGaayzkaaGaaiOlaaaacaaM
f8UaaGzbVlaaywW7caaMf8UaaGzbVlaacIcacaGGbbGaaiOlaiaaiA
dacaGGPaaaaa@9CDF@
Since
u
i
=
A
+
e
i
,
U
¯
=
A
,
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG1bWaaS
baaSqaaiaadMgaaeqaaOGaeyypa0JaamyqaiabgUcaRiaadwgadaWg
aaWcbaGaamyAaaqabaGccaGGSaGaaGjbVlqadwfagaqeaiabg2da9i
aadgeacaGGSaaaaa@44EA@
(A.6) becomes
Deff
H
=
n
W
¯
N
(
σ
u
2
σ
y
2
)
+
n
σ
w
N
σ
y
2
(
ρ
u
2
w
σ
u
2
−
2
A
ρ
u
w
σ
u
)
.
( A .7 )
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaqGebGaae
yzaiaabAgacaqGMbWaaSbaaSqaaiaadIeaaeqaaOGaeyypa0ZaaSaa
aeaacaWGUbGabm4vayaaraaabaGaamOtaaaadaqadaqaamaalaaaba
Gaeq4Wdm3aa0baaSqaaiaadwhaaeaacaaIYaaaaaGcbaGaeq4Wdm3a
a0baaSqaaiaadMhaaeaacaaIYaaaaaaaaOGaayjkaiaawMcaaiabgU
caRmaalaaabaGaamOBaiabeo8aZnaaBaaaleaacaWG3baabeaaaOqa
aiaad6eacqaHdpWCdaqhaaWcbaGaamyEaaqaaiaaikdaaaaaaOWaae
WaaeaacqaHbpGCdaWgaaWcbaGaamyDamaaCaaameqabaGaaGOmaaaa
liaadEhaaeqaaOGaeq4Wdm3aaSbaaSqaaiaadwhadaahaaadbeqaai
aaikdaaaaaleqaaOGaeyOeI0IaaGOmaiaadgeacqaHbpGCdaWgaaWc
baGaamyDaiaadEhaaeqaaOGaeq4Wdm3aaSbaaSqaaiaadwhaaeqaaa
GccaGLOaGaayzkaaGaaiOlaiaaywW7caaMf8UaaGzbVlaaywW7caaM
f8UaaiikaiaacgeacaGGUaGaaG4naiaacMcaaaa@72BF@
We estimate
measure (A.7) with
deff
H
≈
(
1
+
[
CV
(
w
)
]
2
)
σ
^
u
2
σ
^
y
2
+
n
σ
^
w
N
σ
^
y
2
(
ρ
^
u
2
w
σ
^
u
2
−
2
α
^
ρ
^
u
w
σ
^
u
)
,
( A .8 )
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaqGKbGaae
yzaiaabAgacaqGMbWaaSbaaSqaaiaadIeaaeqaaOGaeyisIS7aaeWa
aeaacaaIXaGaey4kaSYaamWaaeaacaqGdbGaaeOvamaabmaabaGaaC
4DaaGaayjkaiaawMcaaaGaay5waiaaw2faamaaCaaaleqabaGaaGOm
aaaaaOGaayjkaiaawMcaamaalaaabaGafq4WdmNbaKaadaqhaaWcba
GaamyDaaqaaiaaikdaaaaakeaacuaHdpWCgaqcamaaDaaaleaacaWG
5baabaGaaGOmaaaaaaGccqGHRaWkdaWcaaqaaiaad6gacuaHdpWCga
qcamaaBaaaleaacaWG3baabeaaaOqaaiaad6eacuaHdpWCgaqcamaa
DaaaleaacaWG5baabaGaaGOmaaaaaaGcdaqadaqaaiqbeg8aYzaaja
WaaSbaaSqaaiaadwhadaahaaadbeqaaiaaikdaaaWccaWG3baabeaa
kiqbeo8aZzaajaWaaSbaaSqaaiaadwhadaahaaadbeqaaiaaikdaaa
aaleqaaOGaeyOeI0IaaGOmaiqbeg7aHzaajaGafqyWdiNbaKaadaWg
aaWcbaGaamyDaiaadEhaaeqaaOGafq4WdmNbaKaadaWgaaWcbaGaam
yDaaqabaaakiaawIcacaGLPaaacaGGSaGaaGzbVlaaywW7caaMf8Ua
aGzbVlaacIcacaGGbbGaaiOlaiaaiIdacaGGPaaaaa@7944@
where the
model parameter estimates are defined in Sections 2.3 and 3.
References
Brick, M., and Montaquila, J. (2009). Nonresponse. In Handbook of Statistics , Sample Surveys: Design, Methods and
Application, (Eds., D. Pfeffermann and C.R. Rao), 29A, Amsterdam:
Elsevier BV.
Chambers, J.M., Cleveland, W.S., Kleiner, B. and Tukey,
P.A. (1983). Graphical Methods for Data
Analysis . Pacific Grove CA: Wadsworth.
Deville, J.-C.,
and Särndal, C.-E.
(1992). Calibration estimators in survey sampling. Journal of the American Statistical Association , 87, 376-382.
Deville, J.-C.,
Särndal, C.-E. and Sautory, O. (1993). Generalized raking
procedures in survey sampling. Journal of
the American Statistical Association , 88, 1013-1020.
Hansen, M.H., and Hurwitz, W.N. (1943). On the theory of
sampling from a finite population. Annals of Mathematical Statistics ,
14, 333-362.
Horvitz, D., and Thompson, D. (1952). A generalisation of sampling without replacement
from a finite universe. Journal of the American Statistical Association, 47, 663-685.
Kalton, G., and Flores-Cervantes, A. (2003). Weighting methods. Journal of Official Statistics , 19
(2), 81-97.
Kish, L. (1965). Survey
Sampling. New York: John Wiley & Sons, Inc.
Kish, L. (1990). Weighting: Why, when, and how? Proceedings of the Joint Statistical
Meetings, Section on Survey Research Methods, American Statistical
Association, 121-129.
Kish, L. (1992). Weighting for unequal Pi. Journal of
Official Statistics, 8, 183-200.
Kott, P. (2009). Calibration weighting: Combining
probability samples and linear prediction models. In Handbook of Statistics , Sample
Surveys: Design, Methods and Application, (Eds., D. Pfeffermann and
C.R. Rao), 29B, Amsterdam: Elsevier BV.
Lumley, T. (2012). Survey: Analysis of complex survey
samples. R package version 3.28-2.
Park, I., and Lee, H. (2004). Design effects for the weighted
mean and total estimators under complex survey sampling. Survey Methodology , 30, 2, 183-193.
Rao, J.N.K., and Scott, A.J. (1984). On chi-squared tests
for multiway contingency tables with cell proportions estimated from survey data. Annals of Statistics , 12, 46-60.
Särndal, C.-E., and Lundström, S. (2005). Estimation in
Surveys with Nonresponse. New York: John Wiley & Sons, Inc.
Särndal, C.-E., Swensson, B. and Wretman, J. (1992). Model
Assisted Survey Sampling. New York: Springer: Berlin.
Spencer, B.D. (2000). An approximate design effect for unequal
weighting when measurements may correlate with selection probabilities. Survey
Methodology, 26, 2, 137-138.
Statistics of Income (2011). 2007 Charities &
Tax-Exempt Microdata Files. Available at: http://www.irs.gov/uac/SOI-Tax-Stats-2007-Charities-&-Tax-Exempt-Microdata-Files.
Valliant, R., Dever, J.A. and Kreuter, F. (2013). Practical Tools for Designing and Weighting
Survey Samples . New York: Springer.
Valliant, R., Dever, J.A. and Kreuter, F. (2015).
PracTools: Tools for Designing and Weighting Survey Samples. R package version 0.2. http://CRAN.R-project.org/package=PracTools.
Editorial policy
Survey Methodology publishes articles dealing with various aspects of statistical development relevant to a statistical agency, such as design issues in the context of practical constraints, use of different data sources and collection techniques, total survey error, survey evaluation, research in survey methodology, time series analysis, seasonal adjustment, demographic studies, data integration, estimation and data analysis methods, and general survey systems development. The emphasis is placed on the development and evaluation of specific methodologies as applied to data collection or the data themselves. All papers will be refereed. However, the authors retain full responsibility for the contents of their papers and opinions expressed are not necessarily those of the Editorial Board or of Statistics Canada.
Submission of Manuscripts
Survey Methodology is published twice a year in electronic format. Authors are invited to submit their articles in English or French in electronic form, preferably in Word to the Editor, (statcan.smj-rte.statcan@canada.ca , Statistics Canada, 150 Tunney’s Pasture Driveway, Ottawa, Ontario, Canada, K1A 0T6). For formatting instructions, please see the guidelines provided in the journal and on the web site (www.statcan.gc.ca/SurveyMethodology).
Note of appreciation
Canada owes the success of its statistical system to a long-standing partnership between Statistics Canada, the citizens of Canada, its businesses, governments and other institutions. Accurate and timely statistical information could not be produced without their continued co-operation and goodwill.
Standards of service to the public
Statistics Canada is committed to serving its clients in a prompt, reliable and courteous manner. To this end, the Agency has developed standards of service which its employees observe in serving its clients.
Copyright
Published by authority of the Minister responsible for Statistics Canada.
© Minister of Industry, 2015
Catalogue no. 12-001-X
Frequency: semi-annual
Ottawa
Date modified:
2017-09-20