A design effect measure for calibration weighting in single-stage samples 3. Proposed design-effect measure

We extend Spencer’s (2000) approach in single-stage sampling to produce a new weighting design effect for a calibration estimator. While Spencer’s assumed y i = α + β p i + ε i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG5bWaaS baaSqaaiaadMgaaeqaaOGaeyypa0JaeqySdeMaey4kaSIaeqOSdiMa amiCamaaBaaaleaacaWGPbaabeaakiabgUcaRiabew7aLnaaBaaale aacaWGPbaabeaakiaacYcaaaa@4625@ we model y i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG5bWaaS baaSqaaiaadMgaaeqaaaaa@3A7D@ as y i = α + x i T β + ε i = x ˙ i T β ˙ + ε i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG5bWaaS baaSqaaiaadMgaaeqaaOGaeyypa0JaeqySdeMaey4kaSIaaCiEamaa DaaaleaacaWGPbaabaGaamivaaaakiaahk7acqGHRaWkcqaH1oqzda WgaaWcbaGaamyAaaqabaGccqGH9aqpceWH4bGbaiaadaqhaaWcbaGa amyAaaqaaiaadsfaaaGcceWHYoGbaiaacqGHRaWkcqaH1oqzdaWgaa WcbaGaamyAaaqabaGccaGGSaaaaa@4FAA@ where x ˙ i = [ 1 x i ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWH4bGbai aadaWgaaWcbaGaamyAaaqabaGccqGH9aqpdaWadaqaauaabeqabiaa aeaacaaIXaaabaGaaCiEamaaBaaaleaacaWGPbaabeaaaaaakiaawU facaGLDbaaaaa@4078@ and β ˙ = [ α β ] . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWHYoGbai aacqGH9aqpdaWadaqaauaabeqabiaaaeaacqaHXoqyaeaacaWHYoaa aaGaay5waiaaw2faaiaac6caaaa@4040@ Denote the full finite population estimators of α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaHXoqyaa a@3A04@ and β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWHYoaaaa@39A3@ by A = Y ¯ X ¯ B MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGbbGaey ypa0JabmywayaaraGaeyOeI0IabCiwayaaraGaaCOqaaaa@3DD8@ and B = ( X T X ) 1 X T Y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWHcbGaey ypa0ZaaeWaaeaacaWHybWaaWbaaSqabeaacaWGubaaaOGaaCiwaaGa ayjkaiaawMcaamaaCaaaleqabaGaeyOeI0IaaGymaaaakiaahIfada ahaaWcbeqaaiaadsfaaaGccaWHzbaaaa@4343@ where X MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWHybaaaa@3946@ is the N × p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGobGaey 41aqRaamiCaaaa@3C44@ matrix of auxiliaries for the N MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGobaaaa@3938@ units in the finite population and Y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWHzbaaaa@3947@ is the N MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9pC0xbbf9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOtaiabgk HiTaaa@3A15@ vector of y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG5baaaa@3963@ values. The finite population residuals are defined as e i = y i ( A + x i T B ) y i x ˙ i T B ˙ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGLbWaaS baaSqaaiaadMgaaeqaaOGaeyypa0JaamyEamaaBaaaleaacaWGPbaa beaakiabgkHiTmaabmaabaGaamyqaiabgUcaRiaahIhadaqhaaWcba GaamyAaaqaaiaadsfaaaGccaWHcbaacaGLOaGaayzkaaGaeyyyIORa amyEamaaBaaaleaacaWGPbaabeaakiabgkHiTiqahIhagaGaamaaDa aaleaacaWGPbaabaGaamivaaaakiqahkeagaGaaaaa@4E37@ where B ˙ = [ A B ] . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWHcbGbai aacqGH9aqpdaWadaqaauaabeqabiaaaeaacaWGbbaabaGaaCOqaaaa aiaawUfacaGLDbaacaGGUaaaaa@3E81@

Producing the design effect proposed below involves four steps: (1) constructing a linear approximation to the GREG estimator; (2) obtaining the design-variance of this linear approximation; (3) substituting model-based components into the GREG variance; and (4) taking the ratio of this model-assisted variance to the variance of the pwr MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9pC0xbbf9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaeiCaiaabE hacaqGYbGaeyOeI0caaa@3C24@ estimator of the total under srswr . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaqGZbGaae OCaiaabohacaqG3bGaaeOCaiaac6caaaa@3DE7@ Since steps ( 1 ) ( 4 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9pC0xbbf9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca aIXaaacaGLOaGaayzkaaGaeyOeI0YaaeWaaeaacaaI0aaacaGLOaGa ayzkaaaaaa@3DCD@ produce the theoretical design effect for an estimator, we add the final step: (5) plug-in sample-based estimates for each theoretical design effect component.

Step 1. A linearization of the GREG estimator (Expression 6.6.9 in Särndal et al. 1992) is

T ^ GREG T ^ HT y + ( T x T ^ HT x ) T B ˙ = T x T B ˙ + i s e i / π i ( 3.1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaafaqaaeOaca aabaGabmivayaajaWaaSbaaSqaaiaabEeacaqGsbGaaeyraiaabEea aeqaaaGcbaGaeSiuIiKabmivayaajaWaaSbaaSqaaiaabIeacaqGub GaamyEaaqabaGccqGHRaWkdaqadaqaaiaahsfadaWgaaWcbaGaamiE aaqabaGccqGHsislceWHubGbaKaadaWgaaWcbaGaaeisaiaabsfaca WG4baabeaaaOGaayjkaiaawMcaamaaCaaaleqabaGaamivaaaakiqa hkeagaGaaaqaaaqaaiabg2da9iaahsfadaqhaaWcbaGaamiEaaqaai aadsfaaaGcceWHcbGbaiaacqGHRaWkdaaeqaqaamaalyaabaGaamyz amaaBaaaleaacaWGPbaabeaaaOqaaiabec8aWnaaBaaaleaacaWGPb aabeaaaaaabaGaamyAaiabgIGiolaadohaaeqaniabggHiLdaaaOGa aGzbVlaaywW7caaMf8UaaGzbVlaaywW7caGGOaGaaG4maiaac6caca aIXaGaaiykaaaa@688B@

where i s e i / π i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaWcgaqaam aaqababaGaamyzamaaBaaaleaacaWGPbaabeaaaeaacaWGPbGaeyic I4Saam4Caaqab0GaeyyeIuoaaOqaaiabec8aWnaaBaaaleaacaWGPb aabeaaaaaaaa@42A2@ is the HT estimator of the population total of the e i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGLbWaaS baaSqaaiaadMgaaeqaaOGaaiilaaaa@3B23@ E U = i U e i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGfbWaaS baaSqaaiaadwfaaeqaaOGaeyypa0ZaaabeaeaacaWGLbWaaSbaaSqa aiaadMgaaeqaaaqaaiaadMgacqGHiiIZcaWGvbaabeqdcqGHris5aO GaaiOlaaaa@4329@ To obtain a simple variance formula in step 2, we treat the case of with-replacement sampling and replace i s e i / π i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaWcgaqaam aaqababaGaamyzamaaBaaaleaacaWGPbaabeaaaeaacaWGPbGaeyic I4Saam4Caaqab0GaeyyeIuoaaOqaaiabec8aWnaaBaaaleaacaWGPb aabeaaaaaaaa@42A2@ with the pwr MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9pC0xbbf9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaeiCaiaabE hacaqGYbGaeyOeI0caaa@3C24@ estimator n 1 i = 1 n e i / p i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaWcgaqaai aad6gadaahaaWcbeqaaiabgkHiTiaaigdaaaGcdaaeWaqaaiaadwga daWgaaWcbaGaamyAaaqabaaabaGaamyAaiabg2da9iaaigdaaeaaca WGUbaaniabggHiLdaakeaacaWGWbWaaSbaaSqaaiaadMgaaeqaaOGa aiOlaaaaaaa@45BF@ Next, define δ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaH0oazda WgaaWcbaGaamyAaaqabaaaaa@3B24@ to be the number of times that unit i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGPbaaaa@3953@ is selected for the sample. Since E π ( δ i ) = n p i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGfbWaaS baaSqaaiabec8aWbqabaGcdaqadaqaaiabes7aKnaaBaaaleaacaWG PbaabeaaaOGaayjkaiaawMcaaiabg2da9iaad6gacaWGWbWaaSbaaS qaaiaadMgaaeqaaOGaaiilaaaa@4436@ the second component in (3.1) has design-expectation E π ( n 1 i = 1 n e i / p i ) = E U . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGfbWaaS baaSqaaiabec8aWbqabaGcdaqadaqaamaalyaabaGaamOBamaaCaaa leqabaGaeyOeI0IaaGymaaaakmaaqadabaGaamyzamaaBaaaleaaca WGPbaabeaaaeaacaWGPbGaeyypa0JaaGymaaqaaiaad6gaa0Gaeyye IuoaaOqaaiaadchadaWgaaWcbaGaamyAaaqabaaaaaGccaGLOaGaay zkaaGaeyypa0JaamyramaaBaaaleaacaWGvbaabeaakiaac6caaaa@4CE5@

Step 2. From step 1 with the assumption of with-replacement sampling, T ^ GREG T x T B ˙ n 1 i = 1 n e i / p i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWGubGbaK aadaWgaaWcbaGaae4raiaabkfacaqGfbGaae4raaqabaGccqGHsisl caWHubWaa0baaSqaaiaadIhaaeaacaWGubaaaOGabCOqayaacaGaeS iuIi0aaSGbaeaacaWGUbWaaWbaaSqabeaacqGHsislcaaIXaaaaOWa aabmaeaacaWGLbWaaSbaaSqaaiaadMgaaeqaaaqaaiaadMgacqGH9a qpcaaIXaaabaGaamOBaaqdcqGHris5aaGcbaGaamiCamaaBaaaleaa caWGPbaabeaaaaGccaGGSaaaaa@4FFD@ with design-variance

Var π ( T ^ GREG T x T B ˙ U ) Var π ( n 1 i = 1 n e i / p i ) = n 1 i U p i ( e i / p i E U ) 2 . ( 3.2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaafaqaaeOaca aabaGaaeOvaiaabggacaqGYbWaaSbaaSqaaiabec8aWbqabaGcdaqa daqaaiqadsfagaqcamaaBaaaleaacaqGhbGaaeOuaiaabweacaqGhb aabeaakiabgkHiTiaahsfadaqhaaWcbaGaamiEaaqaaiaadsfaaaGc ceWHcbGbaiaadaWgaaWcbaGaamyvaaqabaaakiaawIcacaGLPaaaae aacqWIqjIqcaqGwbGaaeyyaiaabkhadaWgaaWcbaGaeqiWdahabeaa kmaabmaabaWaaSGbaeaacaWGUbWaaWbaaSqabeaacqGHsislcaaIXa aaaOWaaabmaeaacaWGLbWaaSbaaSqaaiaadMgaaeqaaaqaaiaadMga cqGH9aqpcaaIXaaabaGaamOBaaqdcqGHris5aaGcbaGaamiCamaaBa aaleaacaWGPbaabeaaaaaakiaawIcacaGLPaaaaeaaaeaacqGH9aqp caWGUbWaaWbaaSqabeaacqGHsislcaaIXaaaaOWaaabeaeaacaWGWb WaaSbaaSqaaiaadMgaaeqaaOWaaeWaaeaadaWcgaqaaiaadwgadaWg aaWcbaGaamyAaaqabaaakeaacaWGWbWaaSbaaSqaaiaadMgaaeqaaa aakiabgkHiTiaadweadaWgaaWcbaGaamyvaaqabaaakiaawIcacaGL PaaadaahaaWcbeqaaiaaikdaaaaabaGaamyAaiabgIGiolaadwfaae qaniabggHiLdGccaGGUaaaaiaaywW7caaMf8UaaGzbVlaaywW7caaM f8UaaiikaiaaiodacaGGUaGaaGOmaiaacMcaaaa@7DD8@

Steps 3 and 4. We follow Spencer’s approach and substitute model values in variance (3.2) to formulate a design-effect measure. However, we substitute in the model-based equivalent to e i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGLbWaaS baaSqaaiaadMgaaeqaaOGaaiilaaaa@3B23@ not y i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG5bWaaS baaSqaaiaadMgaaeqaaOGaaiOlaaaa@3B39@ Substituting the GREG residuals e i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGLbWaaS baaSqaaiaadMgaaeqaaaaa@3A69@ into the variance and taking its ratio to the variance of the pwr MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9pC0xbbf9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaeiCaiaabE hacaqGYbGaeyOeI0caaa@3C24@ estimator in simple random sampling with replacement, Var srswr ( T ^ srswr ) = N 2 σ y 2 / n , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaqGwbGaae yyaiaabkhadaWgaaWcbaGaae4CaiaabkhacaqGZbGaae4Daiaabkha aeqaaOWaaeWaaeaaceWGubGbaKaadaWgaaWcbaGaae4Caiaabkhaca qGZbGaae4DaiaabkhaaeqaaaGccaGLOaGaayzkaaGaeyypa0ZaaSGb aeaacaWGobWaaWbaaSqabeaacaaIYaaaaOGaeq4Wdm3aa0baaSqaai aadMhaaeaacaaIYaaaaaGcbaGaamOBaaaacaGGSaaaaa@4FCE@ where σ y 2 = N 1 i = 1 N ( y i Y ¯ ) 2 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaHdpWCda qhaaWcbaGaamyEaaqaaiaaikdaaaGccqGH9aqpcaWGobWaaWbaaSqa beaacqGHsislcaaIXaaaaOWaaabmaeaadaqadaqaaiaadMhadaWgaa WcbaGaamyAaaqabaGccqGHsislceWGzbGbaebaaiaawIcacaGLPaaa daahaaWcbeqaaiaaikdaaaaabaGaamyAaiabg2da9iaaigdaaeaaca WGobaaniabggHiLdGccaGGSaaaaa@4C7B@ will produce our approximate design effect due to unequal calibration weighting. We can simplify things greatly by defining u i = A + e i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG1bWaaS baaSqaaiaadMgaaeqaaOGaeyypa0JaamyqaiabgUcaRiaadwgadaWg aaWcbaGaamyAaaqabaGccaGGSaaaaa@3FEF@ where u i = y i x i T B , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG1bWaaS baaSqaaiaadMgaaeqaaOGaeyypa0JaamyEamaaBaaaleaacaWGPbaa beaakiabgkHiTiaahIhadaqhaaWcbaGaamyAaaqaaiaadsfaaaGcca WHcbGaaiilaaaa@4312@ which implies U ¯ = A + E ¯ U = A . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWGvbGbae bacqGH9aqpcaWGbbGaey4kaSIabmyrayaaraWaaSbaaSqaaiaadwfa aeqaaOGaeyypa0Jaamyqaiaac6caaaa@4075@ The resulting design effect (see Appendix) is

Deff H = n W ¯ N ( σ u 2 σ y 2 ) + n σ w N σ y 2 ( ρ u 2 w σ u 2 2 A ρ u w σ u ) ( 3.3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaqGebGaae yzaiaabAgacaqGMbWaaSbaaSqaaiaadIeaaeqaaOGaeyypa0ZaaSaa aeaacaWGUbGabm4vayaaraaabaGaamOtaaaadaqadaqaamaalaaaba Gaeq4Wdm3aa0baaSqaaiaadwhaaeaacaaIYaaaaaGcbaGaeq4Wdm3a a0baaSqaaiaadMhaaeaacaaIYaaaaaaaaOGaayjkaiaawMcaaiabgU caRmaalaaabaGaamOBaiabeo8aZnaaBaaaleaacaWG3baabeaaaOqa aiaad6eacqaHdpWCdaqhaaWcbaGaamyEaaqaaiaaikdaaaaaaOWaae WaaeaacqaHbpGCdaWgaaWcbaGaamyDamaaCaaameqabaGaaGOmaaaa liaadEhaaeqaaOGaeq4Wdm3aaSbaaSqaaiaadwhadaahaaadbeqaai aaikdaaaaaleqaaOGaeyOeI0IaaGOmaiaadgeacqaHbpGCdaWgaaWc baGaamyDaiaadEhaaeqaaOGaeq4Wdm3aaSbaaSqaaiaadwhaaeqaaa GccaGLOaGaayzkaaGaaGzbVlaaywW7caaMf8UaaGzbVlaaywW7caGG OaGaaG4maiaac6cacaaIZaGaaiykaaaa@7201@

where σ u 2 = N 1 i = 1 N ( u i U ¯ ) 2 , σ y 2 = N 1 i = 1 N ( y i Y ¯ ) 2 , ρ u 2 w MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaHdpWCda qhaaWcbaGaamyDaaqaaiaaikdaaaGccqGH9aqpcaWGobWaaWbaaSqa beaacqGHsislcaaIXaaaaOWaaabmaeaadaqadaqaaiaadwhadaWgaa WcbaGaamyAaaqabaGccqGHsislceWGvbGbaebaaiaawIcacaGLPaaa daahaaWcbeqaaiaaikdaaaaabaGaamyAaiabg2da9iaaigdaaeaaca WGobaaniabggHiLdGccaGGSaGaeq4Wdm3aa0baaSqaaiaadMhaaeaa caaIYaaaaOGaeyypa0JaamOtamaaCaaaleqabaGaeyOeI0IaaGymaa aakmaaqadabaWaaeWaaeaacaWG5bWaaSbaaSqaaiaadMgaaeqaaOGa eyOeI0IabmywayaaraaacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYa aaaaqaaiaadMgacqGH9aqpcaaIXaaabaGaamOtaaqdcqGHris5aOGa aiilaiabeg8aYnaaBaaaleaacaWG1bWaaWbaaWqabeaacaaIYaaaaS Gaam4Daaqabaaaaa@655C@ is the finite population correlation between u i 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG1bWaa0 baaSqaaiaadMgaaeaacaaIYaaaaaaa@3B36@ and w i , σ u 2 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG3bWaaS baaSqaaiaadMgaaeqaaOGaaiilaiabeo8aZnaaDaaaleaacaWG1bWa aWbaaWqabeaacaaIYaaaaaWcbaGaaGOmaaaaaaa@3FD0@ is the variance of u i 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG1bWaa0 baaSqaaiaadMgaaeaacaaIYaaaaaaa@3B36@ and ρ u w MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaHbpGCda WgaaWcbaGaamyDaiaadEhaaeqaaaaa@3C47@ is the correlation between u i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG1bWaaS baaSqaaiaadMgaaeqaaaaa@3A79@ and w i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG3bWaaS baaSqaaiaadMgaaeqaaOGaaiOlaaaa@3B37@

The first component in (3.3) is O ( 1 ) ; MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGpbWaae WaaeaacaaIXaaacaGLOaGaayzkaaGaai4oaaaa@3C3C@ the factor n W ¯ / N MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaWcgaqaai aad6gaceWGxbGbaebaaeaacaWGobaaaaaa@3B35@ is related to the Kish deff MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaqGKbGaae yzaiaabAgacaqGMbaaaa@3C06@ as described below. The factor σ u 2 / σ y 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaWcgaqaai abeo8aZnaaDaaaleaacaWG1baabaGaaGOmaaaaaOqaaiabeo8aZnaa DaaaleaacaWG5baabaGaaGOmaaaaaaaaaa@3FD5@ is an adjustment based on the effectiveness of the covariates in predicting y . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG5bGaai Olaaaa@3A15@ The second component in (3.3) is O ( n / N ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGpbWaae WaaeaadaWcgaqaaiaad6gaaeaacaWGobaaaaGaayjkaiaawMcaaaaa @3C9E@ and incorporates terms related to the strength of the relationship between the calibration covariates and the weights.

Note that the derivation of (3.3) assumes with-replacement (WR) sampling was used. Although without replacement (WOR) sampling is more common in practice, the WOR variance of an estimated total is complicated since it involves joint selection probabilities. The WR variance formula is simple enough to provide insights into the effect of calibration on a deff . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaqGKbGaae yzaiaabAgacaqGMbGaaeOlaaaa@3CB7@ In cases where there are gains in precision from using WOR sampling, an ad hoc finite population correction factor can be incorporated in (3.3), i.e., ( 1 n / N ) Deff H . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaqadaqaai aaigdacqGHsisldaWcgaqaaiaad6gaaeaacaWGobaaaaGaayjkaiaa wMcaaiaabseacaqGLbGaaeOzaiaabAgadaWgaaWcbaGaamisaaqaba GccaGGUaaaaa@42A8@

Step 5. To estimate (3.3), we use

deff H deff K ( w ) σ ^ u 2 σ ^ y 2 + n σ ^ w N σ ^ y 2 ( ρ ^ u 2 w σ ^ u 2 2 α ^ ρ ^ u w σ ^ u ) , ( 3.4 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaqGKbGaae yzaiaabAgacaqGMbWaaSbaaSqaaiaadIeaaeqaaOGaeyisISRaaeiz aiaabwgacaqGMbGaaeOzamaaBaaaleaacaWGlbaabeaakmaabmaaba GaaC4DaaGaayjkaiaawMcaamaalaaabaGafq4WdmNbaKaadaqhaaWc baGaamyDaaqaaiaaikdaaaaakeaacuaHdpWCgaqcamaaDaaaleaaca WG5baabaGaaGOmaaaaaaGccqGHRaWkdaWcaaqaaiaad6gacuaHdpWC gaqcamaaBaaaleaacaWG3baabeaaaOqaaiaad6eacuaHdpWCgaqcam aaDaaaleaacaWG5baabaGaaGOmaaaaaaGcdaqadaqaaiqbeg8aYzaa jaWaaSbaaSqaaiaadwhadaahaaadbeqaaiaaikdaaaWccaWG3baabe aakiqbeo8aZzaajaWaaSbaaSqaaiaadwhadaahaaadbeqaaiaaikda aaaaleqaaOGaeyOeI0IaaGOmaiqbeg7aHzaajaGafqyWdiNbaKaada WgaaWcbaGaamyDaiaadEhaaeqaaOGafq4WdmNbaKaadaWgaaWcbaGa amyDaaqabaaakiaawIcacaGLPaaacaGGSaGaaGzbVlaaywW7caaMf8 UaaGzbVlaacIcacaaIZaGaaiOlaiaaisdacaGGPaaaaa@7635@

where the model parameter estimate α ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacuaHXoqyga qcaaaa@3A14@ is obtained using survey-weighted least squares, σ ^ y 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacuaHdpWCga qcamaaDaaaleaacaWG5baabaGaaGOmaaaaaaa@3C1F@ was defined in Section 2.3, σ ^ u 2 = i s w i ( u ^ i u ¯ w ) 2 / i s w i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacuaHdpWCga qcamaaDaaaleaacaWG1baabaGaaGOmaaaakiabg2da9maalyaabaWa aabeaeaacaWG3bWaaSbaaSqaaiaadMgaaeqaaOWaaeWaaeaaceWG1b GbaKaadaWgaaWcbaGaamyAaaqabaGccqGHsislceWG1bGbaebadaWg aaWcbaGaam4DaaqabaaakiaawIcacaGLPaaadaahaaWcbeqaaiaaik daaaaabaGaamyAaiabgIGiolaadohaaeqaniabggHiLdaakeaadaae qaqaaiaadEhadaWgaaWcbaGaamyAaaqabaaabaGaamyAaiabgIGiol aadohaaeqaniabggHiLdaaaOGaaiilaaaa@5490@ u ¯ ^ w = i s w i u ^ i / i s w i , u ^ i = y i x i T β ^ , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWG1bGbae HbaKaadaWgaaWcbaGaam4DaaqabaGccqGH9aqpdaWcgaqaamaaqaba baGaam4DamaaBaaaleaacaWGPbaabeaakiqadwhagaqcamaaBaaale aacaWGPbaabeaaaeaacaWGPbGaeyicI4Saam4Caaqab0GaeyyeIuoa aOqaamaaqababaGaam4DamaaBaaaleaacaWGPbaabeaaaeaacaWGPb GaeyicI4Saam4Caaqab0GaeyyeIuoaaaGccaGGSaGabmyDayaajaWa aSbaaSqaaiaadMgaaeqaaOGaeyypa0JaamyEamaaBaaaleaacaWGPb aabeaakiabgkHiTiaahIhadaqhaaWcbaGaamyAaaqaaiaadsfaaaGc ceWHYoGbaKaacaGGSaaaaa@58B6@ and β ^ = ( X s T W X s ) 1 X s T W y s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWHYoGbaK aacqGH9aqpdaqadaqaaiaahIfadaqhaaWcbaGaam4Caaqaaiaadsfa aaGccaWHxbGaaCiwamaaBaaaleaacaWGZbaabeaaaOGaayjkaiaawM caamaaCaaaleqabaGaeyOeI0IaaGymaaaakiaahIfadaqhaaWcbaGa am4CaaqaaiaadsfaaaGccaWHxbGaaCyEamaaBaaaleaacaWGZbaabe aaaaa@49E8@ is the survey-weighted least-squares estimate of β , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWHYoGaai ilaaaa@3A53@ with W = diag ( w 1 , , w n ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWHxbGaey ypa0JaaeizaiaabMgacaqGHbGaae4zamaabmaabaGaam4DamaaBaaa leaacaaIXaaabeaakiaacYcacqWIMaYscaGGSaGaam4DamaaBaaale aacaWGUbaabeaaaOGaayjkaiaawMcaaiaacYcaaaa@46B9@ and other terms defined in Section 2.1.

If the correlations in (3.3) are negligible or the sampling fraction n / N MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaWcgaqaai aad6gaaeaacaWGobaaaaaa@3A41@ is small, the first term dominates and we obtain

Deff H n W ¯ N ( σ u 2 σ y 2 ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaqGebGaae yzaiaabAgacaqGMbWaaSbaaSqaaiaadIeaaeqaaOGaeyisIS7aaSaa aeaacaWGUbGabm4vayaaraaabaGaamOtaaaadaqadaqaamaalaaaba Gaeq4Wdm3aa0baaSqaaiaadwhaaeaacaaIYaaaaaGcbaGaeq4Wdm3a a0baaSqaaiaadMhaaeaacaaIYaaaaaaaaOGaayjkaiaawMcaaiaacY caaaa@4B11@

which can be estimated with

deff H deff K ( w ) σ ^ u 2 / σ ^ y 2 . ( 3.5 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaqGKbGaae yzaiaabAgacaqGMbWaaSbaaSqaaiaadIeaaeqaaOGaeyisISRaaeiz aiaabwgacaqGMbGaaeOzamaaBaaaleaacaWGlbaabeaakmaabmaaba GaaC4DaaGaayjkaiaawMcaamaalyaabaGafq4WdmNbaKaadaqhaaWc baGaamyDaaqaaiaaikdaaaaakeaacuaHdpWCgaqcamaaDaaaleaaca WG5baabaGaaGOmaaaaaaGccaGGUaGaaGzbVlaaywW7caaMf8UaaGzb VlaaywW7caGGOaGaaG4maiaac6cacaaI1aGaaiykaaaa@5982@

Note that in samples without calibration weight adjustments, we have u ^ i = y i x i T β ^ y i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWG1bGbaK aadaWgaaWcbaGaamyAaaqabaGccqGH9aqpcaWG5bWaaSbaaSqaaiaa dMgaaeqaaOGaeyOeI0IaaCiEamaaDaaaleaacaWGPbaabaGaamivaa aakiqahk7agaqcaiabgIKi7kaadMhadaWgaaWcbaGaamyAaaqabaaa aa@46BE@ and σ u 2 σ y 2 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaHdpWCda qhaaWcbaGaamyDaaqaaiaaikdaaaGccqGHijYUcqaHdpWCdaqhaaWc baGaamyEaaqaaiaaikdaaaGccaGGUaaaaa@422C@ In this case expression (3.5) becomes Deff H n W ¯ / N , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaqGebGaae yzaiaabAgacaqGMbWaaSbaaSqaaiaadIeaaeqaaOGaeyisIS7aaSGb aeaacaWGUbGabm4vayaaraaabaGaamOtaaaacaGGSaaaaa@421A@ which we estimate with Kish’s measure deff K = 1 + [ CV ( w ) ] 2 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaqGKbGaae yzaiaabAgacaqGMbWaaSbaaSqaaiaadUeaaeqaaOGaeyypa0JaaGym aiabgUcaRmaadmaabaGaae4qaiaabAfadaqadaqaaiaahEhaaiaawI cacaGLPaaaaiaawUfacaGLDbaadaahaaWcbeqaaiaaikdaaaGccaGG Uaaaaa@476E@ However, when the relationship between the calibration covariates x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWH4baaaa@3966@ and y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG5baaaa@3963@ is stronger, the variance σ u 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaHdpWCda qhaaWcbaGaamyDaaqaaiaaikdaaaaaaa@3C0B@ should be smaller than σ y 2 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaHdpWCda qhaaWcbaGaamyEaaqaaiaaikdaaaGccaGGUaaaaa@3CCB@ In this case, measure (3.5) is smaller than Kish’s estimate. Variable weights produced from calibration adjustments are thus not as “penalized” (shown by overly high design effects) as they would be using the Kish and Spencer measures. However, if we have “ineffective” calibration, or a weak relationship between x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWH4baaaa@3966@ and y , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG5bGaai ilaaaa@3A13@ then σ u 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaHdpWCda qhaaWcbaGaamyDaaqaaiaaikdaaaaaaa@3C0B@ can be greater than σ y 2 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaHdpWCda qhaaWcbaGaamyEaaqaaiaaikdaaaGccaGGSaaaaa@3CC9@ producing a design effect greater than one. The Spencer measure only accounts for an indirect relationship between x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWH4baaaa@3966@ and y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG5baaaa@3963@ if there was only one x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG4baaaa@3962@ and it was used to produce p i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGWbWaaS baaSqaaiaadMgaaeqaaOGaaiOlaaaa@3B30@ This is illustrated in Section 4. We also examine the extent to which the correlation components in our proposed design effect (3.3) are large enough to influence the exact measure. Calculation of (3.3) requires only the sample y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9pC0xbbf9=e0dfrpm0dXdirVu0=vr 0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyEaiabgk HiTaaa@3A40@ values, covariates, and calibration weights. This measure can, thus, be produced more quickly than measure (2.3), whose components are often available later in data processing after a variance estimation system is set up.

Date modified: