A design effect measure for calibration weighting in single-stage samples
3. Proposed design-effect measureA design effect measure for calibration weighting in single-stage samples
3. Proposed design-effect measure
We extend
Spencer’s (2000) approach in single-stage sampling to produce a new weighting
design effect for a calibration estimator. While Spencer’s assumed
y
i
=
α
+
β
p
i
+
ε
i
,
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG5bWaaS
baaSqaaiaadMgaaeqaaOGaeyypa0JaeqySdeMaey4kaSIaeqOSdiMa
amiCamaaBaaaleaacaWGPbaabeaakiabgUcaRiabew7aLnaaBaaale
aacaWGPbaabeaakiaacYcaaaa@4625@
we model
y
i
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG5bWaaS
baaSqaaiaadMgaaeqaaaaa@3A7D@
as
y
i
=
α
+
x
i
T
β
+
ε
i
=
x
˙
i
T
β
˙
+
ε
i
,
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG5bWaaS
baaSqaaiaadMgaaeqaaOGaeyypa0JaeqySdeMaey4kaSIaaCiEamaa
DaaaleaacaWGPbaabaGaamivaaaakiaahk7acqGHRaWkcqaH1oqzda
WgaaWcbaGaamyAaaqabaGccqGH9aqpceWH4bGbaiaadaqhaaWcbaGa
amyAaaqaaiaadsfaaaGcceWHYoGbaiaacqGHRaWkcqaH1oqzdaWgaa
WcbaGaamyAaaqabaGccaGGSaaaaa@4FAA@
where
x
˙
i
=
[
1
x
i
]
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWH4bGbai
aadaWgaaWcbaGaamyAaaqabaGccqGH9aqpdaWadaqaauaabeqabiaa
aeaacaaIXaaabaGaaCiEamaaBaaaleaacaWGPbaabeaaaaaakiaawU
facaGLDbaaaaa@4078@
and
β
˙
=
[
α
β
]
.
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWHYoGbai
aacqGH9aqpdaWadaqaauaabeqabiaaaeaacqaHXoqyaeaacaWHYoaa
aaGaay5waiaaw2faaiaac6caaaa@4040@
Denote the full finite population
estimators of
α
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaHXoqyaa
a@3A04@
and
β
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWHYoaaaa@39A3@
by
A
=
Y
¯
−
X
¯
B
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGbbGaey
ypa0JabmywayaaraGaeyOeI0IabCiwayaaraGaaCOqaaaa@3DD8@
and
B
=
(
X
T
X
)
−
1
X
T
Y
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWHcbGaey
ypa0ZaaeWaaeaacaWHybWaaWbaaSqabeaacaWGubaaaOGaaCiwaaGa
ayjkaiaawMcaamaaCaaaleqabaGaeyOeI0IaaGymaaaakiaahIfada
ahaaWcbeqaaiaadsfaaaGccaWHzbaaaa@4343@
where
X
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWHybaaaa@3946@
is the
N
×
p
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGobGaey
41aqRaamiCaaaa@3C44@
matrix of auxiliaries for the
N
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGobaaaa@3938@
units in the finite population
and
Y
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWHzbaaaa@3947@
is the
N
−
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9pC0xbbf9=e0dfrpm0dXdirVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOtaiabgk
HiTaaa@3A15@
vector of
y
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG5baaaa@3963@
values. The finite population
residuals are defined as
e
i
=
y
i
−
(
A
+
x
i
T
B
)
≡
y
i
−
x
˙
i
T
B
˙
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGLbWaaS
baaSqaaiaadMgaaeqaaOGaeyypa0JaamyEamaaBaaaleaacaWGPbaa
beaakiabgkHiTmaabmaabaGaamyqaiabgUcaRiaahIhadaqhaaWcba
GaamyAaaqaaiaadsfaaaGccaWHcbaacaGLOaGaayzkaaGaeyyyIORa
amyEamaaBaaaleaacaWGPbaabeaakiabgkHiTiqahIhagaGaamaaDa
aaleaacaWGPbaabaGaamivaaaakiqahkeagaGaaaaa@4E37@
where
B
˙
=
[
A
B
]
.
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWHcbGbai
aacqGH9aqpdaWadaqaauaabeqabiaaaeaacaWGbbaabaGaaCOqaaaa
aiaawUfacaGLDbaacaGGUaaaaa@3E81@
Producing the
design effect proposed below involves four steps: (1) constructing a linear
approximation to the GREG estimator; (2) obtaining the design-variance of this
linear approximation; (3) substituting model-based components into the GREG
variance; and (4) taking the ratio of this model-assisted variance to the
variance of the
pwr
−
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9pC0xbbf9=e0dfrpm0dXdirVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaeiCaiaabE
hacaqGYbGaeyOeI0caaa@3C24@
estimator of the total under
srswr
.
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaqGZbGaae
OCaiaabohacaqG3bGaaeOCaiaac6caaaa@3DE7@
Since steps
(
1
)
−
(
4
)
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9pC0xbbf9=e0dfrpm0dXdirVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca
aIXaaacaGLOaGaayzkaaGaeyOeI0YaaeWaaeaacaaI0aaacaGLOaGa
ayzkaaaaaa@3DCD@
produce the theoretical design
effect for an estimator, we add the final step: (5) plug-in sample-based
estimates for each theoretical design effect component.
Step 1 . A linearization of the GREG estimator (Expression 6.6.9 in
Särndal et al. 1992) is
T
^
GREG
≐
T
^
HT
y
+
(
T
x
−
T
^
HT
x
)
T
B
˙
=
T
x
T
B
˙
+
∑
i
∈
s
e
i
/
π
i
(
3.1
)
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaafaqaaeOaca
aabaGabmivayaajaWaaSbaaSqaaiaabEeacaqGsbGaaeyraiaabEea
aeqaaaGcbaGaeSiuIiKabmivayaajaWaaSbaaSqaaiaabIeacaqGub
GaamyEaaqabaGccqGHRaWkdaqadaqaaiaahsfadaWgaaWcbaGaamiE
aaqabaGccqGHsislceWHubGbaKaadaWgaaWcbaGaaeisaiaabsfaca
WG4baabeaaaOGaayjkaiaawMcaamaaCaaaleqabaGaamivaaaakiqa
hkeagaGaaaqaaaqaaiabg2da9iaahsfadaqhaaWcbaGaamiEaaqaai
aadsfaaaGcceWHcbGbaiaacqGHRaWkdaaeqaqaamaalyaabaGaamyz
amaaBaaaleaacaWGPbaabeaaaOqaaiabec8aWnaaBaaaleaacaWGPb
aabeaaaaaabaGaamyAaiabgIGiolaadohaaeqaniabggHiLdaaaOGa
aGzbVlaaywW7caaMf8UaaGzbVlaaywW7caGGOaGaaG4maiaac6caca
aIXaGaaiykaaaa@688B@
where
∑
i
∈
s
e
i
/
π
i
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaWcgaqaam
aaqababaGaamyzamaaBaaaleaacaWGPbaabeaaaeaacaWGPbGaeyic
I4Saam4Caaqab0GaeyyeIuoaaOqaaiabec8aWnaaBaaaleaacaWGPb
aabeaaaaaaaa@42A2@
is the HT estimator of the
population total of the
e
i
,
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGLbWaaS
baaSqaaiaadMgaaeqaaOGaaiilaaaa@3B23@
E
U
=
∑
i
∈
U
e
i
.
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGfbWaaS
baaSqaaiaadwfaaeqaaOGaeyypa0ZaaabeaeaacaWGLbWaaSbaaSqa
aiaadMgaaeqaaaqaaiaadMgacqGHiiIZcaWGvbaabeqdcqGHris5aO
GaaiOlaaaa@4329@
To obtain a simple variance
formula in step 2, we treat the case of with-replacement sampling and replace
∑
i
∈
s
e
i
/
π
i
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaWcgaqaam
aaqababaGaamyzamaaBaaaleaacaWGPbaabeaaaeaacaWGPbGaeyic
I4Saam4Caaqab0GaeyyeIuoaaOqaaiabec8aWnaaBaaaleaacaWGPb
aabeaaaaaaaa@42A2@
with the
pwr
−
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9pC0xbbf9=e0dfrpm0dXdirVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaeiCaiaabE
hacaqGYbGaeyOeI0caaa@3C24@
estimator
n
−
1
∑
i
=
1
n
e
i
/
p
i
.
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaWcgaqaai
aad6gadaahaaWcbeqaaiabgkHiTiaaigdaaaGcdaaeWaqaaiaadwga
daWgaaWcbaGaamyAaaqabaaabaGaamyAaiabg2da9iaaigdaaeaaca
WGUbaaniabggHiLdaakeaacaWGWbWaaSbaaSqaaiaadMgaaeqaaOGa
aiOlaaaaaaa@45BF@
Next, define
δ
i
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaH0oazda
WgaaWcbaGaamyAaaqabaaaaa@3B24@
to be the number of times that
unit
i
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGPbaaaa@3953@
is selected for the sample. Since
E
π
(
δ
i
)
=
n
p
i
,
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGfbWaaS
baaSqaaiabec8aWbqabaGcdaqadaqaaiabes7aKnaaBaaaleaacaWG
PbaabeaaaOGaayjkaiaawMcaaiabg2da9iaad6gacaWGWbWaaSbaaS
qaaiaadMgaaeqaaOGaaiilaaaa@4436@
the second component in (3.1) has
design-expectation
E
π
(
n
−
1
∑
i
=
1
n
e
i
/
p
i
)
=
E
U
.
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGfbWaaS
baaSqaaiabec8aWbqabaGcdaqadaqaamaalyaabaGaamOBamaaCaaa
leqabaGaeyOeI0IaaGymaaaakmaaqadabaGaamyzamaaBaaaleaaca
WGPbaabeaaaeaacaWGPbGaeyypa0JaaGymaaqaaiaad6gaa0Gaeyye
IuoaaOqaaiaadchadaWgaaWcbaGaamyAaaqabaaaaaGccaGLOaGaay
zkaaGaeyypa0JaamyramaaBaaaleaacaWGvbaabeaakiaac6caaaa@4CE5@
Step 2 . From step 1 with the assumption of with-replacement sampling,
T
^
GREG
−
T
x
T
B
˙
≐
n
−
1
∑
i
=
1
n
e
i
/
p
i
,
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWGubGbaK
aadaWgaaWcbaGaae4raiaabkfacaqGfbGaae4raaqabaGccqGHsisl
caWHubWaa0baaSqaaiaadIhaaeaacaWGubaaaOGabCOqayaacaGaeS
iuIi0aaSGbaeaacaWGUbWaaWbaaSqabeaacqGHsislcaaIXaaaaOWa
aabmaeaacaWGLbWaaSbaaSqaaiaadMgaaeqaaaqaaiaadMgacqGH9a
qpcaaIXaaabaGaamOBaaqdcqGHris5aaGcbaGaamiCamaaBaaaleaa
caWGPbaabeaaaaGccaGGSaaaaa@4FFD@
with design-variance
Var
π
(
T
^
GREG
−
T
x
T
B
˙
U
)
≐
Var
π
(
n
−
1
∑
i
=
1
n
e
i
/
p
i
)
=
n
−
1
∑
i
∈
U
p
i
(
e
i
/
p
i
−
E
U
)
2
.
(
3.2
)
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaafaqaaeOaca
aabaGaaeOvaiaabggacaqGYbWaaSbaaSqaaiabec8aWbqabaGcdaqa
daqaaiqadsfagaqcamaaBaaaleaacaqGhbGaaeOuaiaabweacaqGhb
aabeaakiabgkHiTiaahsfadaqhaaWcbaGaamiEaaqaaiaadsfaaaGc
ceWHcbGbaiaadaWgaaWcbaGaamyvaaqabaaakiaawIcacaGLPaaaae
aacqWIqjIqcaqGwbGaaeyyaiaabkhadaWgaaWcbaGaeqiWdahabeaa
kmaabmaabaWaaSGbaeaacaWGUbWaaWbaaSqabeaacqGHsislcaaIXa
aaaOWaaabmaeaacaWGLbWaaSbaaSqaaiaadMgaaeqaaaqaaiaadMga
cqGH9aqpcaaIXaaabaGaamOBaaqdcqGHris5aaGcbaGaamiCamaaBa
aaleaacaWGPbaabeaaaaaakiaawIcacaGLPaaaaeaaaeaacqGH9aqp
caWGUbWaaWbaaSqabeaacqGHsislcaaIXaaaaOWaaabeaeaacaWGWb
WaaSbaaSqaaiaadMgaaeqaaOWaaeWaaeaadaWcgaqaaiaadwgadaWg
aaWcbaGaamyAaaqabaaakeaacaWGWbWaaSbaaSqaaiaadMgaaeqaaa
aakiabgkHiTiaadweadaWgaaWcbaGaamyvaaqabaaakiaawIcacaGL
PaaadaahaaWcbeqaaiaaikdaaaaabaGaamyAaiabgIGiolaadwfaae
qaniabggHiLdGccaGGUaaaaiaaywW7caaMf8UaaGzbVlaaywW7caaM
f8UaaiikaiaaiodacaGGUaGaaGOmaiaacMcaaaa@7DD8@
Steps 3 and 4 . We follow Spencer’s approach and substitute model values in variance (3.2)
to formulate a design-effect measure. However, we substitute in the model-based
equivalent to
e
i
,
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGLbWaaS
baaSqaaiaadMgaaeqaaOGaaiilaaaa@3B23@
not
y
i
.
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG5bWaaS
baaSqaaiaadMgaaeqaaOGaaiOlaaaa@3B39@
Substituting the GREG residuals
e
i
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGLbWaaS
baaSqaaiaadMgaaeqaaaaa@3A69@
into the variance and taking its
ratio to the variance of the
pwr
−
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9pC0xbbf9=e0dfrpm0dXdirVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaeiCaiaabE
hacaqGYbGaeyOeI0caaa@3C24@
estimator in simple random
sampling with replacement,
Var
srswr
(
T
^
srswr
)
=
N
2
σ
y
2
/
n
,
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaqGwbGaae
yyaiaabkhadaWgaaWcbaGaae4CaiaabkhacaqGZbGaae4Daiaabkha
aeqaaOWaaeWaaeaaceWGubGbaKaadaWgaaWcbaGaae4Caiaabkhaca
qGZbGaae4DaiaabkhaaeqaaaGccaGLOaGaayzkaaGaeyypa0ZaaSGb
aeaacaWGobWaaWbaaSqabeaacaaIYaaaaOGaeq4Wdm3aa0baaSqaai
aadMhaaeaacaaIYaaaaaGcbaGaamOBaaaacaGGSaaaaa@4FCE@
where
σ
y
2
=
N
−
1
∑
i
=
1
N
(
y
i
−
Y
¯
)
2
,
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaHdpWCda
qhaaWcbaGaamyEaaqaaiaaikdaaaGccqGH9aqpcaWGobWaaWbaaSqa
beaacqGHsislcaaIXaaaaOWaaabmaeaadaqadaqaaiaadMhadaWgaa
WcbaGaamyAaaqabaGccqGHsislceWGzbGbaebaaiaawIcacaGLPaaa
daahaaWcbeqaaiaaikdaaaaabaGaamyAaiabg2da9iaaigdaaeaaca
WGobaaniabggHiLdGccaGGSaaaaa@4C7B@
will produce our approximate
design effect due to unequal calibration weighting. We can simplify things
greatly by defining
u
i
=
A
+
e
i
,
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG1bWaaS
baaSqaaiaadMgaaeqaaOGaeyypa0JaamyqaiabgUcaRiaadwgadaWg
aaWcbaGaamyAaaqabaGccaGGSaaaaa@3FEF@
where
u
i
=
y
i
−
x
i
T
B
,
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG1bWaaS
baaSqaaiaadMgaaeqaaOGaeyypa0JaamyEamaaBaaaleaacaWGPbaa
beaakiabgkHiTiaahIhadaqhaaWcbaGaamyAaaqaaiaadsfaaaGcca
WHcbGaaiilaaaa@4312@
which implies
U
¯
=
A
+
E
¯
U
=
A
.
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWGvbGbae
bacqGH9aqpcaWGbbGaey4kaSIabmyrayaaraWaaSbaaSqaaiaadwfa
aeqaaOGaeyypa0Jaamyqaiaac6caaaa@4075@
The resulting design effect (see
Appendix) is
Deff
H
=
n
W
¯
N
(
σ
u
2
σ
y
2
)
+
n
σ
w
N
σ
y
2
(
ρ
u
2
w
σ
u
2
−
2
A
ρ
u
w
σ
u
)
(
3.3
)
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaqGebGaae
yzaiaabAgacaqGMbWaaSbaaSqaaiaadIeaaeqaaOGaeyypa0ZaaSaa
aeaacaWGUbGabm4vayaaraaabaGaamOtaaaadaqadaqaamaalaaaba
Gaeq4Wdm3aa0baaSqaaiaadwhaaeaacaaIYaaaaaGcbaGaeq4Wdm3a
a0baaSqaaiaadMhaaeaacaaIYaaaaaaaaOGaayjkaiaawMcaaiabgU
caRmaalaaabaGaamOBaiabeo8aZnaaBaaaleaacaWG3baabeaaaOqa
aiaad6eacqaHdpWCdaqhaaWcbaGaamyEaaqaaiaaikdaaaaaaOWaae
WaaeaacqaHbpGCdaWgaaWcbaGaamyDamaaCaaameqabaGaaGOmaaaa
liaadEhaaeqaaOGaeq4Wdm3aaSbaaSqaaiaadwhadaahaaadbeqaai
aaikdaaaaaleqaaOGaeyOeI0IaaGOmaiaadgeacqaHbpGCdaWgaaWc
baGaamyDaiaadEhaaeqaaOGaeq4Wdm3aaSbaaSqaaiaadwhaaeqaaa
GccaGLOaGaayzkaaGaaGzbVlaaywW7caaMf8UaaGzbVlaaywW7caGG
OaGaaG4maiaac6cacaaIZaGaaiykaaaa@7201@
where
σ
u
2
=
N
−
1
∑
i
=
1
N
(
u
i
−
U
¯
)
2
,
σ
y
2
=
N
−
1
∑
i
=
1
N
(
y
i
−
Y
¯
)
2
,
ρ
u
2
w
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaHdpWCda
qhaaWcbaGaamyDaaqaaiaaikdaaaGccqGH9aqpcaWGobWaaWbaaSqa
beaacqGHsislcaaIXaaaaOWaaabmaeaadaqadaqaaiaadwhadaWgaa
WcbaGaamyAaaqabaGccqGHsislceWGvbGbaebaaiaawIcacaGLPaaa
daahaaWcbeqaaiaaikdaaaaabaGaamyAaiabg2da9iaaigdaaeaaca
WGobaaniabggHiLdGccaGGSaGaeq4Wdm3aa0baaSqaaiaadMhaaeaa
caaIYaaaaOGaeyypa0JaamOtamaaCaaaleqabaGaeyOeI0IaaGymaa
aakmaaqadabaWaaeWaaeaacaWG5bWaaSbaaSqaaiaadMgaaeqaaOGa
eyOeI0IabmywayaaraaacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYa
aaaaqaaiaadMgacqGH9aqpcaaIXaaabaGaamOtaaqdcqGHris5aOGa
aiilaiabeg8aYnaaBaaaleaacaWG1bWaaWbaaWqabeaacaaIYaaaaS
Gaam4Daaqabaaaaa@655C@
is the finite population
correlation between
u
i
2
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG1bWaa0
baaSqaaiaadMgaaeaacaaIYaaaaaaa@3B36@
and
w
i
,
σ
u
2
2
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG3bWaaS
baaSqaaiaadMgaaeqaaOGaaiilaiabeo8aZnaaDaaaleaacaWG1bWa
aWbaaWqabeaacaaIYaaaaaWcbaGaaGOmaaaaaaa@3FD0@
is the variance of
u
i
2
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG1bWaa0
baaSqaaiaadMgaaeaacaaIYaaaaaaa@3B36@
and
ρ
u
w
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaHbpGCda
WgaaWcbaGaamyDaiaadEhaaeqaaaaa@3C47@
is the correlation between
u
i
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG1bWaaS
baaSqaaiaadMgaaeqaaaaa@3A79@
and
w
i
.
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG3bWaaS
baaSqaaiaadMgaaeqaaOGaaiOlaaaa@3B37@
The first
component in (3.3) is
O
(
1
)
;
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGpbWaae
WaaeaacaaIXaaacaGLOaGaayzkaaGaai4oaaaa@3C3C@
the factor
n
W
¯
/
N
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaWcgaqaai
aad6gaceWGxbGbaebaaeaacaWGobaaaaaa@3B35@
is related to the Kish
deff
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaqGKbGaae
yzaiaabAgacaqGMbaaaa@3C06@
as described below. The factor
σ
u
2
/
σ
y
2
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaWcgaqaai
abeo8aZnaaDaaaleaacaWG1baabaGaaGOmaaaaaOqaaiabeo8aZnaa
DaaaleaacaWG5baabaGaaGOmaaaaaaaaaa@3FD5@
is an adjustment based on the
effectiveness of the covariates in predicting
y
.
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG5bGaai
Olaaaa@3A15@
The second component in (3.3) is
O
(
n
/
N
)
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGpbWaae
WaaeaadaWcgaqaaiaad6gaaeaacaWGobaaaaGaayjkaiaawMcaaaaa
@3C9E@
and incorporates terms related to
the strength of the relationship between the calibration covariates and the
weights.
Note that the
derivation of (3.3) assumes with-replacement (WR) sampling was used. Although
without replacement (WOR) sampling is more common in practice, the WOR variance
of an estimated total is complicated since it involves joint selection
probabilities. The WR variance formula is simple enough to provide insights
into the effect of calibration on a
deff
.
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaqGKbGaae
yzaiaabAgacaqGMbGaaeOlaaaa@3CB7@
In cases where there are gains in
precision from using WOR sampling, an ad hoc finite population correction
factor can be incorporated in (3.3), i.e.,
(
1
−
n
/
N
)
Deff
H
.
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaqadaqaai
aaigdacqGHsisldaWcgaqaaiaad6gaaeaacaWGobaaaaGaayjkaiaa
wMcaaiaabseacaqGLbGaaeOzaiaabAgadaWgaaWcbaGaamisaaqaba
GccaGGUaaaaa@42A8@
Step 5. To estimate (3.3), we use
deff
H
≈
deff
K
(
w
)
σ
^
u
2
σ
^
y
2
+
n
σ
^
w
N
σ
^
y
2
(
ρ
^
u
2
w
σ
^
u
2
−
2
α
^
ρ
^
u
w
σ
^
u
)
,
(
3.4
)
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaqGKbGaae
yzaiaabAgacaqGMbWaaSbaaSqaaiaadIeaaeqaaOGaeyisISRaaeiz
aiaabwgacaqGMbGaaeOzamaaBaaaleaacaWGlbaabeaakmaabmaaba
GaaC4DaaGaayjkaiaawMcaamaalaaabaGafq4WdmNbaKaadaqhaaWc
baGaamyDaaqaaiaaikdaaaaakeaacuaHdpWCgaqcamaaDaaaleaaca
WG5baabaGaaGOmaaaaaaGccqGHRaWkdaWcaaqaaiaad6gacuaHdpWC
gaqcamaaBaaaleaacaWG3baabeaaaOqaaiaad6eacuaHdpWCgaqcam
aaDaaaleaacaWG5baabaGaaGOmaaaaaaGcdaqadaqaaiqbeg8aYzaa
jaWaaSbaaSqaaiaadwhadaahaaadbeqaaiaaikdaaaWccaWG3baabe
aakiqbeo8aZzaajaWaaSbaaSqaaiaadwhadaahaaadbeqaaiaaikda
aaaaleqaaOGaeyOeI0IaaGOmaiqbeg7aHzaajaGafqyWdiNbaKaada
WgaaWcbaGaamyDaiaadEhaaeqaaOGafq4WdmNbaKaadaWgaaWcbaGa
amyDaaqabaaakiaawIcacaGLPaaacaGGSaGaaGzbVlaaywW7caaMf8
UaaGzbVlaacIcacaaIZaGaaiOlaiaaisdacaGGPaaaaa@7635@
where the
model parameter estimate
α
^
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacuaHXoqyga
qcaaaa@3A14@
is obtained using survey-weighted
least squares,
σ
^
y
2
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacuaHdpWCga
qcamaaDaaaleaacaWG5baabaGaaGOmaaaaaaa@3C1F@
was defined in Section 2.3,
σ
^
u
2
=
∑
i
∈
s
w
i
(
u
^
i
−
u
¯
w
)
2
/
∑
i
∈
s
w
i
,
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacuaHdpWCga
qcamaaDaaaleaacaWG1baabaGaaGOmaaaakiabg2da9maalyaabaWa
aabeaeaacaWG3bWaaSbaaSqaaiaadMgaaeqaaOWaaeWaaeaaceWG1b
GbaKaadaWgaaWcbaGaamyAaaqabaGccqGHsislceWG1bGbaebadaWg
aaWcbaGaam4DaaqabaaakiaawIcacaGLPaaadaahaaWcbeqaaiaaik
daaaaabaGaamyAaiabgIGiolaadohaaeqaniabggHiLdaakeaadaae
qaqaaiaadEhadaWgaaWcbaGaamyAaaqabaaabaGaamyAaiabgIGiol
aadohaaeqaniabggHiLdaaaOGaaiilaaaa@5490@
u
¯
^
w
=
∑
i
∈
s
w
i
u
^
i
/
∑
i
∈
s
w
i
,
u
^
i
=
y
i
−
x
i
T
β
^
,
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWG1bGbae
HbaKaadaWgaaWcbaGaam4DaaqabaGccqGH9aqpdaWcgaqaamaaqaba
baGaam4DamaaBaaaleaacaWGPbaabeaakiqadwhagaqcamaaBaaale
aacaWGPbaabeaaaeaacaWGPbGaeyicI4Saam4Caaqab0GaeyyeIuoa
aOqaamaaqababaGaam4DamaaBaaaleaacaWGPbaabeaaaeaacaWGPb
GaeyicI4Saam4Caaqab0GaeyyeIuoaaaGccaGGSaGabmyDayaajaWa
aSbaaSqaaiaadMgaaeqaaOGaeyypa0JaamyEamaaBaaaleaacaWGPb
aabeaakiabgkHiTiaahIhadaqhaaWcbaGaamyAaaqaaiaadsfaaaGc
ceWHYoGbaKaacaGGSaaaaa@58B6@
and
β
^
=
(
X
s
T
W
X
s
)
−
1
X
s
T
W
y
s
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWHYoGbaK
aacqGH9aqpdaqadaqaaiaahIfadaqhaaWcbaGaam4Caaqaaiaadsfa
aaGccaWHxbGaaCiwamaaBaaaleaacaWGZbaabeaaaOGaayjkaiaawM
caamaaCaaaleqabaGaeyOeI0IaaGymaaaakiaahIfadaqhaaWcbaGa
am4CaaqaaiaadsfaaaGccaWHxbGaaCyEamaaBaaaleaacaWGZbaabe
aaaaa@49E8@
is the survey-weighted
least-squares estimate of
β
,
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWHYoGaai
ilaaaa@3A53@
with
W
=
diag
(
w
1
,
…
,
w
n
)
,
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWHxbGaey
ypa0JaaeizaiaabMgacaqGHbGaae4zamaabmaabaGaam4DamaaBaaa
leaacaaIXaaabeaakiaacYcacqWIMaYscaGGSaGaam4DamaaBaaale
aacaWGUbaabeaaaOGaayjkaiaawMcaaiaacYcaaaa@46B9@
and other terms defined in Section
2.1.
If the
correlations in (3.3) are negligible or the sampling fraction
n
/
N
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaWcgaqaai
aad6gaaeaacaWGobaaaaaa@3A41@
is small, the first term
dominates and we obtain
Deff
H
≈
n
W
¯
N
(
σ
u
2
σ
y
2
)
,
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaqGebGaae
yzaiaabAgacaqGMbWaaSbaaSqaaiaadIeaaeqaaOGaeyisIS7aaSaa
aeaacaWGUbGabm4vayaaraaabaGaamOtaaaadaqadaqaamaalaaaba
Gaeq4Wdm3aa0baaSqaaiaadwhaaeaacaaIYaaaaaGcbaGaeq4Wdm3a
a0baaSqaaiaadMhaaeaacaaIYaaaaaaaaOGaayjkaiaawMcaaiaacY
caaaa@4B11@
which can be
estimated with
deff
H
≈
deff
K
(
w
)
σ
^
u
2
/
σ
^
y
2
.
(
3.5
)
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaqGKbGaae
yzaiaabAgacaqGMbWaaSbaaSqaaiaadIeaaeqaaOGaeyisISRaaeiz
aiaabwgacaqGMbGaaeOzamaaBaaaleaacaWGlbaabeaakmaabmaaba
GaaC4DaaGaayjkaiaawMcaamaalyaabaGafq4WdmNbaKaadaqhaaWc
baGaamyDaaqaaiaaikdaaaaakeaacuaHdpWCgaqcamaaDaaaleaaca
WG5baabaGaaGOmaaaaaaGccaGGUaGaaGzbVlaaywW7caaMf8UaaGzb
VlaaywW7caGGOaGaaG4maiaac6cacaaI1aGaaiykaaaa@5982@
Note that in
samples without calibration weight adjustments, we have
u
^
i
=
y
i
−
x
i
T
β
^
≈
y
i
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWG1bGbaK
aadaWgaaWcbaGaamyAaaqabaGccqGH9aqpcaWG5bWaaSbaaSqaaiaa
dMgaaeqaaOGaeyOeI0IaaCiEamaaDaaaleaacaWGPbaabaGaamivaa
aakiqahk7agaqcaiabgIKi7kaadMhadaWgaaWcbaGaamyAaaqabaaa
aa@46BE@
and
σ
u
2
≈
σ
y
2
.
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaHdpWCda
qhaaWcbaGaamyDaaqaaiaaikdaaaGccqGHijYUcqaHdpWCdaqhaaWc
baGaamyEaaqaaiaaikdaaaGccaGGUaaaaa@422C@
In this case expression (3.5)
becomes
Deff
H
≈
n
W
¯
/
N
,
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaqGebGaae
yzaiaabAgacaqGMbWaaSbaaSqaaiaadIeaaeqaaOGaeyisIS7aaSGb
aeaacaWGUbGabm4vayaaraaabaGaamOtaaaacaGGSaaaaa@421A@
which we estimate with Kish’s
measure
deff
K
=
1
+
[
CV
(
w
)
]
2
.
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaqGKbGaae
yzaiaabAgacaqGMbWaaSbaaSqaaiaadUeaaeqaaOGaeyypa0JaaGym
aiabgUcaRmaadmaabaGaae4qaiaabAfadaqadaqaaiaahEhaaiaawI
cacaGLPaaaaiaawUfacaGLDbaadaahaaWcbeqaaiaaikdaaaGccaGG
Uaaaaa@476E@
However, when the relationship
between the calibration covariates
x
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWH4baaaa@3966@
and
y
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG5baaaa@3963@
is stronger, the variance
σ
u
2
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaHdpWCda
qhaaWcbaGaamyDaaqaaiaaikdaaaaaaa@3C0B@
should be smaller than
σ
y
2
.
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaHdpWCda
qhaaWcbaGaamyEaaqaaiaaikdaaaGccaGGUaaaaa@3CCB@
In this case, measure (3.5) is
smaller than Kish’s estimate. Variable weights produced from calibration
adjustments are thus not as “penalized” (shown by overly high design effects)
as they would be using the Kish and Spencer measures. However, if we have
“ineffective” calibration, or a weak relationship between
x
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWH4baaaa@3966@
and
y
,
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG5bGaai
ilaaaa@3A13@
then
σ
u
2
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaHdpWCda
qhaaWcbaGaamyDaaqaaiaaikdaaaaaaa@3C0B@
can be greater than
σ
y
2
,
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaHdpWCda
qhaaWcbaGaamyEaaqaaiaaikdaaaGccaGGSaaaaa@3CC9@
producing a design effect greater
than one. The Spencer measure only accounts for an indirect relationship
between
x
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWH4baaaa@3966@
and
y
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG5baaaa@3963@
if there was only one
x
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG4baaaa@3962@
and it was used to produce
p
i
.
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9
Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGWbWaaS
baaSqaaiaadMgaaeqaaOGaaiOlaaaa@3B30@
This is illustrated in Section 4.
We also examine the extent to which the correlation components in our proposed
design effect (3.3) are large enough to influence the exact measure. Calculation
of (3.3) requires only the sample
y
−
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x
e9q8qqvqFr0dXdbrVc=b0P0xb9pC0xbbf9=e0dfrpm0dXdirVu0=vr
0=vr0=fdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyEaiabgk
HiTaaa@3A40@
values, covariates, and
calibration weights. This measure can, thus, be produced more quickly than
measure (2.3), whose components are often available later in data processing
after a variance estimation system is set up.
Editorial policy
Survey Methodology publishes articles dealing with various aspects of statistical development relevant to a statistical agency, such as design issues in the context of practical constraints, use of different data sources and collection techniques, total survey error, survey evaluation, research in survey methodology, time series analysis, seasonal adjustment, demographic studies, data integration, estimation and data analysis methods, and general survey systems development. The emphasis is placed on the development and evaluation of specific methodologies as applied to data collection or the data themselves. All papers will be refereed. However, the authors retain full responsibility for the contents of their papers and opinions expressed are not necessarily those of the Editorial Board or of Statistics Canada.
Submission of Manuscripts
Survey Methodology is published twice a year in electronic format. Authors are invited to submit their articles in English or French in electronic form, preferably in Word to the Editor, (statcan.smj-rte.statcan@canada.ca , Statistics Canada, 150 Tunney’s Pasture Driveway, Ottawa, Ontario, Canada, K1A 0T6). For formatting instructions, please see the guidelines provided in the journal and on the web site (www.statcan.gc.ca/SurveyMethodology).
Note of appreciation
Canada owes the success of its statistical system to a long-standing partnership between Statistics Canada, the citizens of Canada, its businesses, governments and other institutions. Accurate and timely statistical information could not be produced without their continued co-operation and goodwill.
Standards of service to the public
Statistics Canada is committed to serving its clients in a prompt, reliable and courteous manner. To this end, the Agency has developed standards of service which its employees observe in serving its clients.
Copyright
Published by authority of the Minister responsible for Statistics Canada.
© Minister of Industry, 2015
Catalogue no. 12-001-X
Frequency: semi-annual
Ottawa
Date modified:
2017-09-20