6. Empirical evaluations

Piero Demetrio Falorsi and Paolo Righi

Previous | Next

Several simulations were carried out on real and simulated data sets to investigate the empirical properties of the proposed sampling strategy. Here, we show the results obtained for a single real data exercise, referred to the 1999 population of enterprises having a number of employed persons between 1 and 99, and belonging to Computer and related economic activities (2-digits of the Statistical classification of economic activities in the European Community rev.1, abbreviated as NACE). Three experiments were performed. Experiment (a) checked whether the allocation obtained by the proposed algorithm converged towards the solution of the standard Chromy’s algorithm for the SSRSWOR design. Experiment (b) compared the sample sizes of the standard SSRSWOR design with the Incomplete Stratified Sampling (ISS) design, in which the cross-classified strata were unplanned subpopulations; this experiment studied the risk of statistical burden due to repeated selection on different survey occasions. Finally, Experiment (c) measured the discrepancies between the expected Coefficients of Variation (CV) computed by the algorithm and the empirical CV obtained by a Monte Carlo simulation.

The c k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadogada WgaaWcbaGaam4Aaaqabaaaaa@3AB2@  values were, in all three experiments, uniformly set equal to 1. The Anticipated Variance according to the approximation proposed in Remark 4.1 was also calculated.

The population chosen for the experiments had a size of N = 10,392 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaad6eacq GH9aqpcaqGXaGaaeimaiaabYcacaqGZaGaaeyoaiaabkdaaaa@3EC4@  enterprises. The domains of interest identify two partitions of the target population: the geographical region, with 20 marginal domains (DOM1), and the economic activity group (3-digits of the NACE with 6 different groups) by size class (defined in terms of number of employed persons: 1 = 1 4 ; 2 = 5 9 ; 3 = 10 19 ; MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaaigdacq GH9aqpcaaIXaGaeyOeI0IaaGinaiaacUdacaaIYaGaeyypa0JaaGyn aiabgkHiTiaaiMdacaGG7aGaaG4maiabg2da9iaaigdacaaIWaGaey OeI0IaaGymaiaaiMdacaGG7aaaaa@48E6@   4 = 20 99 ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaabiaaba GaaGinaiabg2da9iaaikdacaaIWaGaeyOeI0IaaGyoaiaaiMdaaiaa wMcaaiaacYcaaaa@3FD2@  with 24 marginal domains (DOM2). The overall number of marginal domains was 44, while the number of cross-classified or multi-way strata with a not-zero population size was 360. The modal value of the population size distribution is 1, and 29.17% of the cross-classified strata have at most 2 units. This type of strata represents a critical issue in the context of standard stratified approaches. Indeed, for calculating unbiased variance estimates, these strata must be take-all strata (so that they do not contribute to the variance of the estimates), although the allocation rule would require fewer units and, in general, a non-integer number of sample units. The variables of interest were the labour cost and the value added, which are available for each population unit from an administrative data source. Typically both variables have highly skewed distributions.

The target estimates for all the empirical studies are the 88 totals at the domain level (2 variables by 44 marginal domains). In each experiment, the inclusion probabilities were determined by fixing the V ¯ ( d r ) = ( 0 .1 t ( d r ) ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiqadAfaga qeamaaBaaaleaadaqadeqaaiaadsgacaWGYbaacaGLOaGaayzkaaaa beaakiabg2da9maabmqabaGaaeimaiaab6cacaqGXaGaamiDamaaBa aaleaadaqadeqaaiaadsgacaWGYbaacaGLOaGaayzkaaaabeaaaOGa ayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaaa@476B@  in (5.1), which is equivalent to fixing the maximum accepted level of the percent CV of the domain level estimates at 10%.

Empirical study (a). The first experiment took into account the partition DOM1. These domains represented both planned domains and estimation domains. Since the planned domains defined a partition of the population of interest, they could also be considered as strata in the standard sampling designs. The predictive working model was given by

{ y rk = α d + u rk    k U d ( d=1,,20 ) E M ( u rk )=0,  E M ( u rk 2 )= σ rd 2    k U d ;  E M ( u rk , u rl )=0   kl ,(6.1) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaaceaaba qbaeaabkqaaaqaaiaadMhadaWgaaWcbaGaamOCaiaadUgaaeqaaOGa eyypa0JaeqySde2aaSbaaSqaaiaadsgaaeqaaOGaey4kaSIaamyDam aaBaaaleaacaWGYbGaam4AaaqabaGccaqGGaGaaeiiaiabgcGiIiaa bccacaWGRbGaeyicI4SaamyvamaaBaaaleaacaWGKbaabeaakmaabm qabaGaamizaiabg2da9iaaigdacaGGSaGaeSOjGSKaaiilaiaaikda caaIWaaacaGLOaGaayzkaaaabaGaamyramaaBaaaleaacaWGnbaabe aakmaabmqabaGaamyDamaaBaaaleaacaWGYbGaam4Aaaqabaaakiaa wIcacaGLPaaacqGH9aqpcaaIWaGaaiilaiaabccacaWGfbWaaSbaaS qaaiaad2eaaeqaaOWaaeWabeaacaWG1bWaa0baaSqaaiaadkhacaWG RbaabaGaaGOmaaaaaOGaayjkaiaawMcaaiabg2da9iabeo8aZnaaDa aaleaacaWGYbGaamizaaqaaiaaikdaaaGccaqGGaGaaeiiaiabgcGi IiaabccacaWGRbGaeyicI4SaamyvamaaBaaaleaacaWGKbaabeaaki aacUdacaqGGaGaamyramaaBaaaleaacaWGnbaabeaakmaabmqabaGa amyDamaaBaaaleaacaWGYbGaam4AaaqabaGccaGGSaGaamyDamaaBa aaleaacaWGYbGaamiBaaqabaaakiaawIcacaGLPaaacqGH9aqpcaaI WaGaaeiiaiaabccacqGHaiIicaqGGaGaam4AaiabgcMi5kaadYgaaa aacaGL7baacaaMf8UaaiilaiaaywW7caaMf8UaaGzbVlaacIcacaaI 2aGaaiOlaiaaigdacaGGPaaaaa@9021@

where α d MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabeg7aHn aaBaaaleaacaWGKbaabeaaaaa@3B62@  is a fixed effect and the superpopulation variances σ r d 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabeo8aZn aaDaaaleaacaWGYbGaamizaaqaaiaaikdaaaaaaa@3D3A@  were estimated by means of the residual variance of the predictive model in each region. The algorithm proposed in Section 5 was performed using three different initial values of the inclusion probabilities π ¯ , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiqbec8aWz aaraGaaiilaaaa@3B33@  equal to 0.01, 0.50 and 0.99 respectively. The initial inclusion probability values had no impact on the final solution, although it was achieved with a different number of iterations. We note that the overall number of inner loops was 17 for π ¯ = 0 .01 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiqbec8aWz aaraGaeyypa0Jaaeimaiaab6cacaqGWaGaaeymaiaac6caaaa@3F06@  The convergence was achieved with 13 inner loops for π ¯ = 0 .50 ; MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiqbec8aWz aaraGaeyypa0Jaaeimaiaab6cacaqG1aGaaeimaiaacUdaaaa@3F17@  14 inner loops were needed for π ¯ = 0 .99 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiqbec8aWz aaraGaeyypa0Jaaeimaiaab6cacaqG5aGaaeyoaiaac6caaaa@3F17@  However, after the ninth iteration, the three sampling sizes were quite similar (Figure 6.1). In the experiment, the overall sample sizes were 3,105 for the benchmark Chromy allocation and 3,110 for the method proposed here. However, the differences between the two sampling sizes at the domain level were fractional numbers that were always lower than 1, and with the absolute largest relative difference lower than 0.3%. This highlights that the proposed algorithm actually defines the same domain sampling sizes of those calculated by the benchmark allocation. With regards to convergence, the initial inclusion probability values have no impact on the final solution, although this is achieved with a different number of iterations.

Figure 6.1 Convergence of the algorithm with different initial inclusion probabilities in the empirical study (a)

Figure 6.1 Convergence of the algorithm with different initial inclusion probabilities in the empirical study (a)

Description for Figure 6.1

Similar results were obtained if the domains of interests were identified by the partition DOM2.

Empirical study (b). Let U d 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadwfada WgaaWcbaGaamizamaaBaaameaacaaIXaaabeaaaSqabaaaaa@3B90@  be a specific region ( d 1 = 1 , , 20 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaabmaaba GaamizamaaBaaaleaacaaIXaaabeaakiabg2da9iaaigdacaGGSaGa eSOjGSKaaiilaiaaikdacaaIWaaacaGLOaGaayzkaaaaaa@41CA@  of DOM1, and let U d 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadwfada WgaaWcbaGaamizamaaBaaameaacaaIYaaabeaaaSqabaaaaa@3B91@  (with d 2 = 1 , , 24 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaabiaaba GaamizamaaBaaaleaacaaIYaaabeaakiabg2da9iaaigdacaGGSaGa eSOjGSKaaiilaiaaikdacaaI0aaacaGLPaaaaaa@410E@  be a specific economic activity group by the enterprise size class of the partition DOM2. Two prediction models, M 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaad2eada WgaaWcbaGaaGymaaqabaaaaa@3A67@  and M 2 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaad2eada WgaaWcbaGaaGOmaaqabaGccaGGSaaaaa@3B22@  were used. Referring to the notation of the ANOVA models, M 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaad2eada WgaaWcbaGaaGymaaqabaaaaa@3A67@  is the saturated model given by

{ y rk = α d 1 + λ d 2 + ( αλ ) d 1 d 2 + u rk    k U d 1 U d 2 E M ( u rk )=0,  E M ( u rk 2 )= σ r( d 1 d 2 ) 2    k U d 1 U d 2 ;  E M ( u rk , u rl )=0   kl   , (6.2) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaaceaaba qbaeaabkqaaaqaaiaadMhadaWgaaWcbaGaamOCaiaadUgaaeqaaOGa eyypa0JaeqySde2aaSbaaSqaaiaadsgadaWgaaadbaGaaGymaaqaba aaleqaaOGaey4kaSIaeq4UdW2aaSbaaSqaaiaadsgadaWgaaadbaGa aGOmaaqabaaaleqaaOGaey4kaSYaaeWabeaacqaHXoqycqaH7oaBai aawIcacaGLPaaadaWgaaWcbaGaamizamaaBaaameaacaaIXaaabeaa liaadsgadaWgaaadbaGaaGOmaaqabaaaleqaaOGaey4kaSIaamyDam aaBaaaleaacaWGYbGaam4AaaqabaGccaqGGaGaaeiiaiabgcGiIiaa bccacaWGRbGaeyicI4SaamyvamaaBaaaleaacaWGKbWaaSbaaWqaai aaigdaaeqaaaWcbeaakiabgMIihlaadwfadaWgaaWcbaGaamizamaa BaaameaacaaIYaaabeaaaSqabaaakeaacaWGfbWaaSbaaSqaaiaad2 eaaeqaaOWaaeWabeaacaWG1bWaaSbaaSqaaiaadkhacaWGRbaabeaa aOGaayjkaiaawMcaaiabg2da9iaaicdacaGGSaGaaeiiaiaadweada WgaaWcbaGaamytaaqabaGcdaqadeqaaiaadwhadaqhaaWcbaGaamOC aiaadUgaaeaacaaIYaaaaaGccaGLOaGaayzkaaGaeyypa0Jaeq4Wdm 3aa0baaSqaaiaadkhadaqadeqaaiaadsgadaWgaaadbaGaaGymaaqa baWccaWGKbWaaSbaaWqaaiaaikdaaeqaaaWccaGLOaGaayzkaaaaba GaaGOmaaaakiaabccacaqGGaGaeyiaIiIaaeiiaiaadUgacqGHiiIZ caWGvbWaaSbaaSqaaiaadsgadaWgaaadbaGaaGymaaqabaaaleqaaO GaeyykICSaamyvamaaBaaaleaacaWGKbWaaSbaaWqaaiaaikdaaeqa aaWcbeaakiaacUdacaqGGaGaamyramaaBaaaleaacaWGnbaabeaakm aabmqabaGaamyDamaaBaaaleaacaWGYbGaam4AaaqabaGccaGGSaGa amyDamaaBaaaleaacaWGYbGaamiBaaqabaaakiaawIcacaGLPaaacq GH9aqpcaaIWaGaaeiiaiaabccacqGHaiIicaqGGaGaam4AaiabgcMi 5kaadYgaaaGaaeiiaiaabccacaGGSaaacaGL7baacaaMf8Uaaiikai aaiAdacaGGUaGaaGOmaiaacMcaaaa@A332@

in which α d 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabeg7aHn aaBaaaleaacaWGKbWaaSbaaWqaaiaaigdaaeqaaaWcbeaaaaa@3C55@  and λ d 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabeU7aSn aaBaaaleaacaWGKbWaaSbaaWqaaiaaikdaaeqaaaWcbeaaaaa@3C6B@  are the main effects, related to the domains U d 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadwfada WgaaWcbaGaamizamaaBaaameaacaaIXaaabeaaaSqabaaaaa@3B90@  and U d 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadwfada WgaaWcbaGaamizamaaBaaameaacaaIYaaabeaaaSqabaaaaa@3B91@  respectively and with ( α λ ) d 1 d 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaabmqaba GaeqySdeMaeq4UdWgacaGLOaGaayzkaaWaaSbaaSqaaiaadsgadaWg aaadbaGaaGymaaqabaWccaWGKbWaaSbaaWqaaiaaikdaaeqaaaWcbe aaaaa@4170@  as the interaction effect. The model variances σ r ( d 1 d 2 ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabeo8aZn aaDaaaleaacaWGYbWaaeWaaeaacaWGKbWaaSbaaWqaaiaaigdaaeqa aSGaamizamaaBaaameaacaaIYaaabeaaaSGaayjkaiaawMcaaaqaai aaikdaaaaaaa@4193@  were estimated by means of the ordinary least square method, by computing the variances of the residual terms at the U d 1 U d 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadwfada WgaaWcbaGaamizamaaBaaameaacaaIXaaabeaaaSqabaGccqGHPiYX caWGvbWaaSbaaSqaaiaadsgadaWgaaadbaGaaGOmaaqabaaaleqaaa aa@401B@  level. Model M 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaad2eada WgaaWcbaGaaGOmaaqabaaaaa@3A68@  is identical to model M 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaad2eada WgaaWcbaGaaGymaaqabaaaaa@3A67@  without the interaction factor. Table 6.1 shows the goodness of fit of the two models.

Table 6.1
Goodness of fit of the models used for the prediction
Table summary
This table displays the results of Goodness of fit of the models used for the prediction. The information is grouped by Model (appearing as row headers), Goodness of fit R 2 % MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqabeqabmGabiqaceqabeqadeqabqqaaOqaaiaadkfada ahaaWcbeqaaiaaikdaaaGccaGGLaaaaa@3D4E@ (appearing as column headers).
Model Goodness of fit R 2 % MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqabeqabmGabiqaceqabeqadeqabqqaaOqaaiaadkfada ahaaWcbeqaaiaaikdaaaGccaGGLaaaaa@3D4E@
Labour cost Value added
Model M 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaad2eada WgaaWcbaGaaGymaaqabaaaaa@3C8A@ (Expression 6.2) 68.1 64.1
Model M 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaad2eada WgaaWcbaGaaGOmaaqabaaaaa@3C8B@ (Expression 6.2 without interactions) 65.1 61.0

Three different allocations were considered for the SSRSWOR in the case of model M 1 : MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaad2eada WgaaWcbaGaaGymaaqabaGccaGG6aaaaa@3B2F@  (i) no stratum sample size constraint is given; (ii) at least 1 sample unit per stratum is required (to obtain unbiased point estimates); (iii) at least 2 sample units per stratum are required (to achieve unbiased variance estimates) for all strata having a population size of 2 or more enterprises. The first two allocations were rather theoretical since in all the business surveys conducted by the Italian National Statistical Institute, the selection of at least two units per stratum is required. The results of the experiment are shown in Table 6.2 below. Only the results for the case in which the initial inclusion probabilities were equal to π ¯ = 0 .50 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiqbec8aWz aaraGaeyypa0Jaaeimaiaab6cacaqG1aGaaeimaaaa@3E58@  are investigated herein; identical sample sizes were obtained with the other initial values of the inclusion probabilities, with a slightly slower convergence process. The three SSRSWOR designs have 716.6, 944 and 1,042 sample units respectively. The Incomplete stratified Sampling (ISS) design with model M 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaad2eada WgaaWcbaGaaGymaaqabaaaaa@3A67@  led to 936 units; while model M 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaad2eada WgaaWcbaGaaGOmaaqabaaaaa@3A68@  led to 991 units. The better result obtained by model M 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaad2eada WgaaWcbaGaaGymaaqabaaaaa@3A67@  with respect to model M 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaad2eada WgaaWcbaGaaGOmaaqabaaaaa@3A68@  was due to the fact that model M 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaad2eada WgaaWcbaGaaGymaaqabaaaaa@3A66@  had a better fit. Finally, the ISS designs helped tackling the statistical burden of respondent enterprises. Indeed, assuming that the inclusion probabilities remain fixed for the different survey occasions, their distributions may be used to assess the statistical burden in repeated surveys. Table 6.2 shows that the number of enterprises drawn with certainty in each survey occasion was 175 for the third SSRSWOR designs, while 30 and 40 enterprises were selected with certainty in the first and second ISS designs, respectively. Analysing the sizes (in terms of employed persons) of the enterprises included in the sample with certainty, the third SSRSWOR design had an average size equal to 20.6. In some cases, enterprises with 2 employed persons were included in the sample with certainty. Conversely, we observe that in the first and second ISS designs, the enterprises with minimum size had 17 and 16 employed persons respectively, and an average size larger than 40 units.

Table 6.2
Sample sizes and distribution of the enterprises included in the sample with certainty, for different sampling designs
Table summary
This table displays the results of Sample sizes and distribution of the enterprises included in the sample with certainty. The information is grouped by Sampling design (appearing as row headers), Sample size, Enterprises selected with certainty, Number and Number of employed (appearing as column headers).
Sampling design Sample size Enterprises selected with certainty
Number Number of employed
Average Minimum
Standard Stratified with M 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaad2eada WgaaWcbaGaaGymaaqabaaaaa@3C89@ model No stratum sample size constraint 716.6 10 47.0 23.0
At least 1 sample unit per stratum 944.0 119 24.0 2.0
At least 2 sample units per stratum 1,042.0 175 20.6 2.0
Incomplete Stratified Sampling with M 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaad2eada WgaaWcbaGaaGymaaqabaaaaa@3C89@ model 936.0 30 50.1 17.0
Incomplete Stratified Sampling with M 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaad2eada WgaaWcbaGaaGOmaaqabaaaaa@3C8A@ model without interactions 991.0 40 42.9 16.0

Finally, to assess the solution’s sensitivity, the experiment was repeated artificially and the prediction values of y ˜ r k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiqadMhaga acamaaBaaaleaacaWGYbGaam4Aaaqabaaaaa@3BCE@  and σ ˜ r k 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiqbeo8aZz aaiaWaa0baaSqaaiaadkhacaWGRbaabaGaaGOmaaaaaaa@3D50@  in the optimization problem (5.1) were changed. In particular, we increased the prediction values of σ ˜ r k 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiqbeo8aZz aaiaWaa0baaSqaaiaadkhacaWGRbaabaGaaGOmaaaaaaa@3D50@  by 20% and 120% respectively, and decreased by 20% the y ˜ r k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiqadMhaga acamaaBaaaleaacaWGYbGaam4Aaaqabaaaaa@3BCE@  values predicted by model M 1 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaad2eada WgaaWcbaGaaGymaaqabaGccaGGUaaaaa@3B23@  As expected, the sample sizes increased, but the SSRSWOR design with at least 1 sample unit per stratum and the first ISS design roughly defined the same sample sizes (Table 6.3).

Table 6.3
Sample sizes with modified expected values of the predictions of model (4.1)
Table summary
This table displays the results of Sample sizes with modified expected values of the predictions of model (4.1). The information is grouped by Sampling design (appearing as row headers), Sample size (appearing as column headers).
Sampling design Sample size
σ ˜ r k 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqabeqabmGabiqaceqabeqadeqabqqaaOqaaiqbeo8aZz aaiaWaa0baaSqaaiaadkhacaWGRbaabaGaaGOmaaaaaaa@3F7C@ increased by 20% σ ˜ r k 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqabeqabmGabiqaceqabeqadeqabqqaaOqaaiqbeo8aZz aaiaWaa0baaSqaaiaadkhacaWGRbaabaGaaGOmaaaaaaa@3F7C@ increased by 120% y ˜ r k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqabeqabmGabiqaceqabeqadeqabqqaaOqaaiqadMhaga acamaaBaaaleaacaWGYbGaam4Aaaqabaaaaa@3DFA@ decreased by 20%
SSRSWOR with M 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaad2eada WgaaWcbaGaaGymaaqabaaaaa@3C89@ model No stratum sample size constraint 821.0 1,269.0 993.8
At least 1 sample unit per stratum 1,035.0 1,472.0 1,206.0
At least 2 sample units per stratum 1,125.0 1,536.0 1,283.0
ISS design with M 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaad2eada WgaaWcbaGaaGymaaqabaaaaa@3C89@ model 1,039.7 1,460.9 1,207.5

Empirical study (c). The heteroschedastic linear prediction model M 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaad2eada WgaaWcbaGaaG4maaqabaaaaa@3A69@  was used:

{ y r k = α r + φ r x k + u r k E M ( u r k ) = 0 , E M ( u r k 2 ) = σ r k 2 = σ r 2 x k k U ; E M ( ε r k , ε r l ) = 0 k l , ( 6.3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaaceaaea qabeaacaWG5bWaaSbaaSqaaiaadkhacaWGRbaabeaakiabg2da9iab eg7aHnaaBaaaleaacaWGYbaabeaakiabgUcaRiabeA8aQnaaBaaale aacaWGYbaabeaakiaaykW7caWG4bWaaSbaaSqaaiaadUgaaeqaaOGa ey4kaSIaamyDamaaBaaaleaacaWGYbGaam4AaaqabaGccaaMc8UaaG PaVlaaykW7caaMc8UaaGPaVdqaaiaadweadaWgaaWcbaGaamytaaqa baGccaGGOaGaamyDamaaBaaaleaacaWGYbGaam4AaaqabaGccaGGPa Gaeyypa0JaaGimaiaaykW7caGGSaGaaGPaVlaaykW7caaMc8Uaamyr amaaBaaaleaacaWGnbaabeaakiaacIcacaWG1bWaa0baaSqaaiaadk hacaWGRbaabaGaaGOmaaaakiaacMcacqGH9aqpcqaHdpWCdaqhaaWc baGaamOCaiaadUgaaeaacaaIYaaaaOGaeyypa0Jaeq4Wdm3aa0baaS qaaiaadkhaaeaacaaIYaaaaOGaaGPaVlaadIhadaqhaaWcbaGaam4A aaqaaaaakiaaykW7caaMc8UaeyiaIiIaam4AaiabgIGiolaadwfaca GG7aGaaGPaVlaaykW7caWGfbWaaSbaaSqaaiaad2eaaeqaaOGaaiik aiabew7aLnaaBaaaleaacaWGYbGaam4AaaqabaGccaGGSaGaeqyTdu 2aaSbaaSqaaiaadkhacaWGSbaabeaakiaacMcacqGH9aqpcaaIWaGa aGPaVlaaykW7cqGHaiIicaWGRbGaeyiyIKRaamiBaaaacaGL7baaca GGSaGaaGzbVlaaywW7caaMf8UaaiikaiaaiAdacaGGUaGaaG4maiaa cMcaaaa@A064@

where x k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadIhada WgaaWcbaGaam4Aaaqabaaaaa@3AC7@  is the number of employed persons in the k th MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadUgada ahaaWcbeqaaiaabshacaqGObaaaaaa@3BAD@  enterprise, and α r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabeg7aHn aaBaaaleaacaWGYbaabeaaaaa@3B70@  and φ r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabeA8aQn aaBaaaleaacaWGYbaabeaaaaa@3B8E@  are the regression parameters. Note that the number of employed persons is available in the sampling frame in Italy.

Two different model variance estimates were carried out:

(a) σ ˜ r k 2 = 1 / N ( X = x k ) k U ( X = x k ) ( y r k A r F r   x k ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiqbeo8aZz aaiaWaa0baaSqaaiaadkhacaWGRbaabaGaaGOmaaaakiabg2da9maa lyaabaGaaGymaaqaaiaad6eadaWgaaWcbaWaaeWabeaacaWGybGaey ypa0JaamiEamaaBaaameaacaWGRbaabeaaaSGaayjkaiaawMcaaaqa baaaaOWaaabeaeaadaqadeqaaiaadMhadaWgaaWcbaGaamOCaiaadU gaaeqaaOGaeyOeI0IaaeyqamaaBaaaleaacaWGYbaabeaakiabgkHi TiaabAeadaWgaaWcbaGaamOCaaqabaGccaqGGaGaamiEamaaBaaale aacaWGRbaabeaaaOGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaa aeaacaWGRbGaeyicI4SaamyvamaaBaaameaadaqadeqaaiaadIfacq GH9aqpcaWG4bWaaSbaaeaacaWGRbaabeaaaiaawIcacaGLPaaaaeqa aaWcbeqdcqGHris5aaaa@5EBA@  and (b) σ ˜ r k 2 = σ ˜ r 2 x k , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiqbeo8aZz aaiaWaa0baaSqaaiaadkhacaWGRbaabaGaaGOmaaaakiabg2da9iqb eo8aZzaaiaWaa0baaSqaaiaadkhaaeaacaaIYaaaaOGaamiEamaaBa aaleaacaWGRbaabeaakiaacYcaaaa@44EF@  in which σ ˜ r 2 = 1 / ( N 2 ) k U [ ( y r k A r F r   x k ) / x k ] 2 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiqbeo8aZz aaiaWaa0baaSqaaiaadkhaaeaacaaIYaaaaOGaeyypa0ZaaSGbaeaa caaIXaaabaWaaeWabeaacaWGobGaeyOeI0IaaGOmaaGaayjkaiaawM caaaaadaaeqaqaamaadmqabaWaaSGbaeaadaqadeqaaiaadMhadaWg aaWcbaGaamOCaiaadUgaaeqaaOGaeyOeI0IaaeyqamaaBaaaleaaca WGYbaabeaakiabgkHiTiaabAeadaWgaaWcbaGaamOCaaqabaGccaqG GaGaamiEamaaBaaaleaacaWGRbaabeaaaOGaayjkaiaawMcaaaqaai aadIhadaWgaaWcbaGaam4AaaqabaaaaaGccaGLBbGaayzxaaWaaWba aSqabeaacaaIYaaaaaqaaiaadUgacqGHiiIZcaWGvbaabeqdcqGHri s5aOGaaiilaaaa@5A68@  where U ( X = x ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadwfada WgaaWcbaWaaeWabeaacaWGybGaeyypa0JaamiEaaGaayjkaiaawMca aaqabaaaaa@3E1E@  is the population of enterprises, of size N ( X = x ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaad6eada WgaaWcbaWaaeWabeaacaWGybGaeyypa0JaamiEaaGaayjkaiaawMca aaqabaGccaGGSaaaaa@3ED1@  for which the variable X MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadIfaaa a@398B@  assumes the value x ; MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadIhaca GG7aaaaa@3A6A@   A r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaabgeada WgaaWcbaGaamOCaaqabaaaaa@3A95@  and F r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaabAeada WgaaWcbaGaamOCaaqabaaaaa@3A9A@  are the weighted least square estimates for the complete enumerated population of α r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabeg7aHn aaBaaaleaacaWGYbaabeaaaaa@3B70@  and φ r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabeA8aQn aaBaaaleaacaWGYbaabeaaaaa@3B8E@  respectively. The sum of the estimated model variances obtained with method (a) is smaller than that obtained with method (b). This was reflected in the computed sample sizes. The first allocation defined an overall sample size of 927 units, while the sample size of the second allocation was 951. Successively, 1,000 samples were drawn for both allocations and the ratios RCV ( t ^ ( d r ) ) = ECV ( t ^ ( d r ) ) / SCV ( t ^ ( d r ) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaabkfaca qGdbGaaeOvamaabmqabaGabmiDayaajaWaaSbaaSqaamaabmqabaGa amizaiaadkhaaiaawIcacaGLPaaaaeqaaaGccaGLOaGaayzkaaGaey ypa0ZaaSGbaeaacaqGfbGaae4qaiaabAfadaqadeqaaiqadshagaqc amaaBaaaleaadaqadeqaaiaadsgacaWGYbaacaGLOaGaayzkaaaabe aaaOGaayjkaiaawMcaaaqaaiaabofacaqGdbGaaeOvamaabmqabaGa bmiDayaajaWaaSbaaSqaamaabmqabaGaamizaiaadkhaaiaawIcaca GLPaaaaeqaaaGccaGLOaGaayzkaaaaaaaa@53B3@  were calculated, with ECV ( t ^ ( d r ) ) = [ AAV ( t ^ ( d r ) ) / t ^ ( d r ) ] 100 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaabweaca qGdbGaaeOvamaabmqabaGabmiDayaajaWaaSbaaSqaamaabmqabaGa amizaiaadkhaaiaawIcacaGLPaaaaeqaaaGccaGLOaGaayzkaaGaey ypa0ZaamWabeaadaWcgaqaamaakaaabaGaaeyqaiaabgeacaqGwbWa aeWabeaaceWG0bGbaKaadaWgaaWcbaWaaeWabeaacaWGKbGaamOCaa GaayjkaiaawMcaaaqabaaakiaawIcacaGLPaaaaSqabaaakeaaceWG 0bGbaKaadaWgaaWcbaWaaeWabeaacaWGKbGaamOCaaGaayjkaiaawM caaaqabaaaaaGccaGLBbGaayzxaaGaaGymaiaaicdacaaIWaaaaa@53E8@  as the expected CV (%) and

SCV ( t ^ ( d r ) ) = 100 ( 1 / I ) [ i = 1 I t ^ ( d r ) i ( 1 / I ) i = 1 I t ^ ( d r ) i ] 2 / ( 1 / I ) i = 1 I t ^ ( d r ) i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaabofaca qGdbGaaeOvamaabmqabaGabmiDayaajaWaaSbaaSqaamaabmqabaGa amizaiaadkhaaiaawIcacaGLPaaaaeqaaaGccaGLOaGaayzkaaGaey ypa0JaaGymaiaaicdacaaIWaWaaSGbaeaadaGcaaqaamaabmqabaWa aSGbaeaacaaIXaaabaGaamysaaaaaiaawIcacaGLPaaadaWadaqaam aaqadabaGabmiDayaajaWaa0baaSqaamaabmqabaGaamizaiaadkha aiaawIcacaGLPaaaaeaacaWGPbaaaaqaaiaadMgacqGH9aqpcaaIXa aabaGaamysaaqdcqGHris5aOGaeyOeI0YaaeWabeaadaWcgaqaaiaa igdaaeaacaWGjbaaaaGaayjkaiaawMcaamaaqadabaGabmiDayaaja Waa0baaSqaamaabmqabaGaamizaiaadkhaaiaawIcacaGLPaaaaeaa caWGPbaaaaqaaiaadMgacqGH9aqpcaaIXaaabaGaamysaaqdcqGHri s5aaGccaGLBbGaayzxaaWaaWbaaSqabeaacaaIYaaaaaqabaaakeaa daqadeqaamaalyaabaGaaGymaaqaaiaadMeaaaaacaGLOaGaayzkaa WaaabmaeaaceWG0bGbaKaadaqhaaWcbaWaaeWabeaacaWGKbGaamOC aaGaayjkaiaawMcaaaqaaiaadMgaaaaabaGaamyAaiabg2da9iaaig daaeaacaWGjbaaniabggHiLdaaaaaa@7317@

as the simulated (or empirical) CV, obtained as a result of the simulation, having denoted with t ^ ( d r ) i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiqadshaga qcamaaDaaaleaadaqadeqaaiaadsgacaWGYbaacaGLOaGaayzkaaaa baGaamyAaaaaaaa@3E3C@  the HT estimate in the i th MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadMgada ahaaWcbeqaaiaabshacaqGObaaaaaa@3BAB@  iteration and I = 1,000 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadMeacq GH9aqpcaqGXaGaaeilaiaabcdacaqGWaGaaeimaiaab6caaaa@3EAF@  For the sake of brevity, only the the main results of allocation (b) are shown in Figure 6.2, for DOM1 and DOM2 respectively, and both variables of interest. Examining the figure on the left, we emphasize that the simulation generally produces a simulated CV that is smaller than expected, with an RCV ratio larger than 1 for both variables. One exception occurs, for the value added in one domain of DOM1.

Figure 6.2 RCVs by population size for labour cost and value added

Figure 6.2 RCVs by population size for labour cost and value added

Description for Figure 6.2

RCV lower than 1 may be explained by the increase of the domain sample sizes, due to the calibration step. We note that in general, these discrepancies are observed in domains with a small population size; thus, the calibration step may have a non-negligible impact. The figure on the right shows more articulated and conflicting empirical evidence. First, we note that the RCV are often larger or very close to 1. Nevertheless, in three domains, the value added variable has simulated CV’s equal to 11.5%, 12.0% and 12.3%. In these rare cases, and in some others (labour cost in two domains), the discrepancies are coherent with the findings of Deville and Tillé (2005) on the empirical properties of variance approximation for balanced sampling.

Previous | Next

Date modified: