5. Determination of the optimal inclusion probabilities

Piero Demetrio Falorsi and Paolo Righi

Previous | Next

The vector of π ­ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabec8aWf rbhv2BYDwAHbacfaGaa8xRaaaa@3E7A@  values is determined by solving the following optimization problem:

{ Min ( k U π k c k ) AAV ( t ^ ( d r ) ) V ¯ ( d r ) ( d = 1 , , D ; r = 1 , , R ) 0 < π k 1 ( k = 1 , , N ) , ( 5.1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaaceaaba qbaeaaboGaaaqaaiaab2eacaqGPbGaaeOBamaabmqabaWaaabeaeaa cqaHapaCdaWgaaWcbaGaam4AaaqabaGccaWGJbWaaSbaaSqaaiaadU gaaeqaaaqaaiaadUgacqGHiiIZcaWGvbaabeqdcqGHris5aaGccaGL OaGaayzkaaaabaaabaGaaeyqaiaabgeacaqGwbWaaeWabeaaceWG0b GbaKaadaWgaaWcbaWaaeWabeaacaWGKbGaamOCaaGaayjkaiaawMca aaqabaaakiaawIcacaGLPaaacqGHKjYOceWGwbGbaebadaWgaaWcba WaaeWabeaacaWGKbGaamOCaaGaayjkaiaawMcaaaqabaaakeaadaqa deqaaiaadsgacqGH9aqpcaaIXaGaaiilaiablAciljaacYcacaWGeb Gaai4oaiaadkhacqGH9aqpcaaIXaGaaiilaiablAciljaacYcacaWG sbaacaGLOaGaayzkaaaabaGaaGimaiabgYda8iabec8aWnaaBaaale aacaWGRbaabeaakiabgsMiJkaaigdaaeaadaqadeqaaiaadUgacqGH 9aqpcaaIXaGaaiilaiablAciljaacYcacaWGobaacaGLOaGaayzkaa aaaaGaay5EaaGaaiilaiaaywW7caaMf8UaaGzbVlaaywW7caaMf8Ua aiikaiaaiwdacaGGUaGaaGymaiaacMcaaaa@806E@

where c k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadogada WgaaWcbaGaam4Aaaqabaaaaa@3AB2@  is the cost for collecting information from unit k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadUgaaa a@399E@  and V ¯ ( d r ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiqadAfaga qeamaaBaaaleaadaqadeqaaiaadsgacaWGYbaacaGLOaGaayzkaaaa beaaaaa@3D37@  is a fixed variance threshold corresponding to t ^ ( d r ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiqadshaga qcamaaBaaaleaadaqadeqaaiaadsgacaWGYbaacaGLOaGaayzkaaaa beaakiaac6caaaa@3E09@  System (5.1) minimizes the expected cost ensuring that the anticipated variances are bounded and that the inclusion probabilities lie between 0 and 1. If all the c k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadogada WgaaWcbaGaam4Aaaqabaaaaa@3AB2@  values are constants equal to 1, then the problem (5.1) minimizes the sample size. We note that in problem (5.1) the variances σ r k 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabeo8aZn aaDaaaleaacaWGYbGaam4Aaaqaaiaaikdaaaaaaa@3D41@  in AAV ( t ^ ( d r ) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaabgeaca qGbbGaaeOvamaabmqabaGabmiDayaajaWaaSbaaSqaamaabmqabaGa amizaiaadkhaaiaawIcacaGLPaaaaeqaaaGccaGLOaGaayzkaaaaaa@4142@  are treated as known; in practice they must be estimated. In Section 6, an empirical evaluation is conducted in order to study the sensitivity of the overall sample size with different estimated values of σ r k 2 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabeo8aZn aaDaaaleaacaWGYbGaam4AaaqaaiaaikdaaaGccaGGUaaaaa@3DFD@

To solve (5.1), we rearrange the inequality constraints to obtain

k U ( y ˜ r k 2 + σ r k 2 ) γ d k π k N H N V ¯ ( d r ) + k U ( y ˜ r k 2 + σ r k 2 ) γ d k + AAV 3 ( d r ) . ( 5.2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaaqababa WaaSaaaeaadaqadeqaaiqadMhagaacamaaDaaaleaacaWGYbGaam4A aaqaaiaaikdaaaGccqGHRaWkcqaHdpWCdaqhaaWcbaGaamOCaiaadU gaaeaacaaIYaaaaaGccaGLOaGaayzkaaGaeq4SdC2aaSbaaSqaaiaa dsgacaWGRbaabeaaaOqaaiabec8aWnaaBaaaleaacaWGRbaabeaaaa aabaGaam4AaiabgIGiolaadwfaaeqaniabggHiLdGccqGHKjYOdaWc aaqaaiaad6eacqGHsislcaWGibaabaGaamOtaaaaceWGwbGbaebada WgaaWcbaWaaeWabeaacaWGKbGaamOCaaGaayjkaiaawMcaaaqabaGc cqGHRaWkdaaeqaqaamaabmqabaGabmyEayaaiaWaa0baaSqaaiaadk hacaWGRbaabaGaaGOmaaaakiabgUcaRiabeo8aZnaaDaaaleaacaWG YbGaam4AaaqaaiaaikdaaaaakiaawIcacaGLPaaacqaHZoWzdaWgaa WcbaGaamizaiaadUgaaeqaaaqaaiaadUgacqGHiiIZcaWGvbaabeqd cqGHris5aOGaey4kaSIaaeyqaiaabgeacaqGwbWaaSbaaSqaaiaaio dadaqadeqaaiaadsgacaWGYbaacaGLOaGaayzkaaaabeaakiaac6ca caaMf8UaaGzbVlaaywW7caaMf8UaaGzbVlaacIcacaaI1aGaaiOlai aaikdacaGGPaaaaa@8170@

By fixing the values of AAV 3 ( d r ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaabgeaca qGbbGaaeOvamaaBaaaleaacaaIZaWaaeWabeaacaWGKbGaamOCaaGa ayjkaiaawMcaaaqabaaaaa@3F62@  appropriately, the optimization problem becomes a classical Linear Convex Separate Problem (LCSP; Boyd and Vanderberg 2004). Figure 5.1 depicts the flow chart of the algorithm (A prototype software implementing the algorithm is available at http://www.istat.it/it/strumenti/metodi-e-software/software.), which is organized into two nested loops: the Outer Loop (OL) and the Inner Loop (IL). The two loops are updated according to a fixed point algorithm scheme. The convergence under some approximations is shown in Appendix A2.

Figure 5.1 Algorithm flowchart

Figure 5.1 Algorithm flowchart

Description for Figure 5.1

Initialization. At iteration α = 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabeg7aHj abg2da9iaaicdaaaa@3C0D@  of the OL, set π ( α = 0 ) = { π ( α = 0 ) k = π ¯ ; k = 1 , , N } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaaCeaale qabaWaaeWabeaacqaHXoqycqGH9aqpcaaIWaaacaGLOaGaayzkaaaa aOGaaCiWdiabg2da9maacmaabaWaaWraaSqabeaadaqadeqaaiabeg 7aHjabg2da9iaaicdaaiaawIcacaGLPaaaaaGccaWGapWaaSbaaSqa aiaadUgaaeqaaOGaeyypa0JafqiWdaNbaebacaGG7aGaam4Aaiabg2 da9iaaigdacaGGSaGaeSOjGSKaaiilaiaad6eaaiaawUhacaGL9baa aaa@5381@  with 0 < π ¯ 1. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaaicdacq GH8aapcuaHapaCgaqeaiabgsMiJkaaigdacaGGUaaaaa@3F63@  A reasonable choice is π ¯ = 0.5. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiqbec8aWz aaraGaeyypa0JaaGimaiaac6cacaaI1aGaaiOlaaaa@3E66@  At iteration τ = 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabes8a0j abg2da9iaaicdaaaa@3C33@  of the Inner Loop, set π ( α τ = 0 ) = π ( α ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaaCeaale qabaWaaeWabeaacqaHXoqycqaHepaDcqGH9aqpcaaIWaaacaGLOaGa ayzkaaaaaOGaaCiWdiabg2da9maaCeaaleqabaWaaeWabeaacqaHXo qyaiaawIcacaGLPaaaaaGccaWHapGaaiOlaaaa@4745@  Fix the N MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaad6eaaa a@3981@  vector, ε , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaahw7aca GGSaaaaa@3A9F@  of small positive values.

Outer loop

  • Fixing the values for the Inner Loop. In accordance with expressions (A1.4), (A1.7) and (A1.8) given in Appendix A1, the following real scalar values are computed

    a ( d r ) k ( π ( α ) ) = δ k [ A ( π ( α ) ) ] 1 j U δ j y ˜ r j γ d j ( 1 π ( α ) j ) , ( 5.3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadggada WgaaWcbaWaaeWabeaacaWGKbGaamOCaaGaayjkaiaawMcaaiaadUga aeqaaOWaaeWabeaadaahbaWcbeqaamaabmqabaGaeqySdegacaGLOa GaayzkaaaaaOGaaCiWdaGaayjkaiaawMcaaiabg2da9iqahs7agaqb amaaBaaaleaacaWGRbaabeaakmaadmqabaGaaCyqamaabmqabaWaaW raaSqabeaadaqadeqaaiabeg7aHbGaayjkaiaawMcaaaaakiaahc8a aiaawIcacaGLPaaaaiaawUfacaGLDbaadaahaaWcbeqaaiabgkHiTi aaigdaaaGcdaaeqaqaaiaahs7adaWgaaWcbaGaamOAaaqabaGcceWG 5bGbaGaadaWgaaWcbaGaamOCaiaadQgaaeqaaOGaeq4SdC2aaSbaaS qaaiaadsgacaWGQbaabeaakmaabmqabaGaaGymaiabgkHiTmaaCeaa leqabaWaaeWabeaacqaHXoqyaiaawIcacaGLPaaaaaGccaWGapWaaS baaSqaaiaadQgaaeqaaaGccaGLOaGaayzkaaaaleaacaWGQbGaeyic I4Saamyvaaqab0GaeyyeIuoakiaacYcacaaMf8UaaGzbVlaaywW7ca aMf8UaaGzbVlaacIcacaaI1aGaaiOlaiaaiodacaGGPaaaaa@761F@

    b ( d r ) k ( π ( α ) ) = δ k [ A ( π ( α ) ) ] 1 δ k σ r k 2 γ d k ( 1 π ( α ) k ) , ( 5.4 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadkgada WgaaWcbaWaaeWabeaacaWGKbGaamOCaaGaayjkaiaawMcaaiaadUga aeqaaOWaaeWabeaadaahbaWcbeqaamaabmqabaGaeqySdegacaGLOa GaayzkaaaaaOGaaCiWdaGaayjkaiaawMcaaiabg2da9iqahs7agaqb amaaBaaaleaacaWGRbaabeaakmaadmqabaGaaCyqamaabmqabaWaaW raaSqabeaadaqadeqaaiabeg7aHbGaayjkaiaawMcaaaaakiaahc8a aiaawIcacaGLPaaaaiaawUfacaGLDbaadaahaaWcbeqaaiabgkHiTi aaigdaaaGccaWH0oWaaSbaaSqaaiaadUgaaeqaaOGaeq4Wdm3aa0ba aSqaaiaadkhacaWGRbaabaGaaGOmaaaakiabeo7aNnaaBaaaleaaca WGKbGaam4AaaqabaGcdaqadeqaaiaaigdacqGHsisldaahbaWcbeqa amaabmqabaGaeqySdegacaGLOaGaayzkaaaaaOGaeqiWda3aaSbaaS qaaiaadUgaaeqaaaGccaGLOaGaayzkaaGaaiilaiaaywW7caaMf8Ua aGzbVlaaywW7caaMf8UaaiikaiaaiwdacaGGUaGaaGinaiaacMcaaa a@72D3@

    c ( d r ) k ( π ( α ) ) = π k 2 δ k [ A ( π ( α ) ) ] 1 [ j U δ j δ j σ r j 2 γ d j ( 1 π ( α ) j ) 2 ] [ A ( π ( α ) ) ] 1 δ k . ( 5.5 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadogada WgaaWcbaWaaeWabeaacaWGKbGaamOCaaGaayjkaiaawMcaaiaadUga aeqaaOWaaeWabeaadaahbaWcbeqaamaabmqabaGaeqySdegacaGLOa GaayzkaaaaaOGaaCiWdaGaayjkaiaawMcaaiabg2da9iabec8aWnaa DaaaleaacaWGRbaabaGaaGOmaaaakiqahs7agaqbamaaBaaaleaaca WGRbaabeaakmaadmqabaGaaCyqamaabmqabaWaaWraaSqabeaadaqa deqaaiabeg7aHbGaayjkaiaawMcaaaaakiaahc8aaiaawIcacaGLPa aaaiaawUfacaGLDbaadaahaaWcbeqaaiabgkHiTiaaigdaaaGcdaWa daqaamaaqababaGaaCiTdmaaBaaaleaacaWGQbaabeaakiqahs7aga qbamaaBaaaleaacaWGQbaabeaakiabeo8aZnaaDaaaleaacaWGYbGa amOAaaqaaiaaikdaaaGccqaHZoWzdaWgaaWcbaGaamizaiaadQgaae qaaOWaaeWabeaacaaIXaGaeyOeI0YaaWraaSqabeaadaqadeqaaiab eg7aHbGaayjkaiaawMcaaaaakiabec8aWnaaBaaaleaacaWGQbaabe aaaOGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaeaacaWGQbGa eyicI4Saamyvaaqab0GaeyyeIuoaaOGaay5waiaaw2faamaadmqaba GaaCyqamaabmqabaWaaWraaSqabeaadaqadeqaaiabeg7aHbGaayjk aiaawMcaaaaakiaahc8aaiaawIcacaGLPaaaaiaawUfacaGLDbaada ahaaWcbeqaaiabgkHiTiaaigdaaaGccaWH0oWaaSbaaSqaaiaadUga aeqaaOGaaiOlaiaaywW7caGGOaGaaGynaiaac6cacaaI1aGaaiykaa aa@87EF@

  • Launch of the Inner Loop. The Inner Loop is executed until convergence.
  • Updating or exiting. If the vector π ( α + 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaaCeaale qabaWaaeWabeaacqaHXoqycqGHRaWkcaaIXaaacaGLOaGaayzkaaaa aOGaaCiWdaaa@3EF8@  is such that | π ( α + 1 ) π ( α ) | > ε , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaaemaaba WaaWraaSqabeaadaqadeqaaiabeg7aHjabgUcaRiaaigdaaiaawIca caGLPaaaaaGccaWHapGaeyOeI0YaaWraaSqabeaadaqadeqaaiabeg 7aHbGaayjkaiaawMcaaaaakiaahc8aaiaawEa7caGLiWoacqGH+aGp caWH1oGaaiilaaaa@4AAD@  then the Outer Loop is iterated by updating the vector π ( α ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaaCeaale qabaWaaeWabeaacqaHXoqyaiaawIcacaGLPaaaaaGccaWHapaaaa@3D5B@  with π ( α + 1 ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaaCeaale qabaWaaeWabeaacqaHXoqycqGHRaWkcaaIXaaacaGLOaGaayzkaaaa aOGaaCiWdiaac6caaaa@3FAA@  If | π ( α + 1 ) π ( α ) | ε , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaaemaaba WaaWraaSqabeaadaqadeqaaiabeg7aHjabgUcaRiaaigdaaiaawIca caGLPaaaaaGccaWHapGaeyOeI0YaaWraaSqabeaadaqadeqaaiabeg 7aHbGaayjkaiaawMcaaaaakiaahc8aaiaawEa7caGLiWoacqGHKjYO caWH1oGaaiilaaaa@4B5A@  then the Outer Loop closes and π ( α ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaaCeaale qabaWaaeWabeaacqaHXoqyaiaawIcacaGLPaaaaaGccaWHapaaaa@3D5B@  represents the optimal values solution to the problem of the system (5.1).

Inner Loop

  • Fixing the values for the LCSP. The following values are computed:

    A ( α τ ) AV 3 ( d r ) = k U ( 1 π ( α τ ) k ) a ( d r ) k ( π ( α ) ) [ 2 y ˜ r k γ d k π ( α τ ) k a ( d r ) k ( π ( α ) ) ] + k U ( 1 π ( α τ ) k ) [ 2 b ( d r ) k ( π ( α ) ) π ( α τ ) k c ( d r ) k ( π ( α ) ) ] . ( 5.6 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaauaabaqGcm aaaeaadaahbaWcbeqaamaabmqabaGaeqySdeMaeqiXdqhacaGLOaGa ayzkaaaaaOGaaeyqaiaabgeacaqGwbWaaSbaaSqaaiaaiodadaqade qaaiaadsgacaWGYbaacaGLOaGaayzkaaaabeaaaOqaaiabg2da9aqa amaaqababaWaaeWabeaacaaIXaGaeyOeI0YaaWraaSqabeaadaqade qaaiabeg7aHjabes8a0bGaayjkaiaawMcaaaaakiabec8aWnaaBaaa leaacaWGRbaabeaaaOGaayjkaiaawMcaaiaadggaaSqaaiaadUgacq GHiiIZcaWGvbaabeqdcqGHris5aOWaaSbaaSqaamaabmqabaGaamiz aiaadkhaaiaawIcacaGLPaaacaWGRbaabeaakmaabmqabaWaaWraaS qabeaadaqadeqaaiabeg7aHbGaayjkaiaawMcaaaaakiaahc8aaiaa wIcacaGLPaaadaWadeqaaiaaikdaceWG5bGbaGaadaWgaaWcbaGaam OCaiaadUgaaeqaaOGaeq4SdC2aaSbaaSqaaiaadsgacaWGRbaabeaa kiabgkHiTmaaCeaaleqabaWaaeWabeaacqaHXoqycqaHepaDaiaawI cacaGLPaaaaaGccqaHapaCdaWgaaWcbaGaam4AaaqabaGccaWGHbWa aSbaaSqaamaabmqabaGaamizaiaadkhaaiaawIcacaGLPaaacaWGRb aabeaakmaabmqabaWaaWraaSqabeaadaqadeqaaiabeg7aHbGaayjk aiaawMcaaaaakiaahc8aaiaawIcacaGLPaaaaiaawUfacaGLDbaaae aaaeaacqGHRaWkaeaadaaeqaqaamaabmqabaGaaGymaiabgkHiTmaa CeaaleqabaWaaeWabeaacqaHXoqycqaHepaDaiaawIcacaGLPaaaaa GccqaHapaCdaWgaaWcbaGaam4AaaqabaaakiaawIcacaGLPaaadaWa deqaaiaaikdacaWGIbWaaSbaaSqaamaabmqabaGaamizaiaadkhaai aawIcacaGLPaaacaWGRbaabeaakmaabmqabaWaaWraaSqabeaadaqa deqaaiabeg7aHbGaayjkaiaawMcaaaaakiaahc8aaiaawIcacaGLPa aacqGHsisldaahbaWcbeqaamaabmqabaGaeqySdeMaeqiXdqhacaGL OaGaayzkaaaaaOGaeqiWda3aaSbaaSqaaiaadUgaaeqaaOGaam4yam aaBaaaleaadaqadeqaaiaadsgacaWGYbaacaGLOaGaayzkaaGaam4A aaqabaGcdaqadeqaamaaCeaaleqabaWaaeWabeaacqaHXoqyaiaawI cacaGLPaaaaaGccaWHapaacaGLOaGaayzkaaaacaGLBbGaayzxaaGa aiOlaaWcbaGaam4AaiabgIGiolaadwfaaeqaniabggHiLdaaaOGaaG zbVlaaywW7caaMf8UaaiikaiaaiwdacaGGUaGaaGOnaiaacMcaaaa@BDBE@

    in accordance with expression (A1.7) in Appendix A1.

  • Solving the LCSP. Considering the A ( a τ ) AV 3 ( d r ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaaCeaale qabaWaaeWabeaacaWGHbGaeqiXdqhacaGLOaGaayzkaaaaaOGaaeyq aiaabgeacaqGwbWaaSbaaSqaaiaaiodadaqadeqaaiaadsgacaWGYb aacaGLOaGaayzkaaaabeaaaaa@43CF@  values as fixed, the π ( α τ + 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaaCeaale qabaWaaeWabeaacqaHXoqycqaHepaDcqGHRaWkcaaIXaaacaGLOaGa ayzkaaaaaOGaaCiWdaaa@40BD@  is obtained by solving, by a standard algorithm for a classical LCSP, the following optimization problem:

    { Min ( k U π ( α τ + 1 ) k c k ) k U ( y ˜ r k 2 + σ r k 2 ) γ d k π ( α τ + 1 ) k N H N V ¯ ( d r ) + k U ( y ˜ r k 2 + σ r k 2 ) γ d k + A ( α τ ) AV 3 ( d r ) 0 < π ( α τ + 1 ) k 1 ( k = 1 , , N ) . ( 5.7 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaaceaaba qbaeaaboqaaaqaaiaab2eacaqGPbGaaeOBamaabmqabaWaaabeaeaa daahbaWcbeqaamaabmqabaGaeqySdeMaeqiXdqNaey4kaSIaaGymaa GaayjkaiaawMcaaaaakiabec8aWnaaBaaaleaacaWGRbaabeaakiaa dogadaWgaaWcbaGaam4AaaqabaaabaGaam4AaiabgIGiolaadwfaae qaniabggHiLdaakiaawIcacaGLPaaaaeaadaaeqaqaamaalaaabaWa aeWabeaaceWG5bGbaGaadaqhaaWcbaGaamOCaiaadUgaaeaacaaIYa aaaOGaey4kaSIaeq4Wdm3aa0baaSqaaiaadkhacaWGRbaabaGaaGOm aaaaaOGaayjkaiaawMcaaiabeo7aNnaaBaaaleaacaWGKbGaam4Aaa qabaaakeaadaahbaWcbeqaamaabmqabaGaeqySdeMaeqiXdqNaey4k aSIaaGymaaGaayjkaiaawMcaaaaakiabec8aWnaaBaaaleaacaWGRb aabeaaaaaabaGaam4AaiabgIGiolaadwfaaeqaniabggHiLdGccqGH KjYOdaWcaaqaaiaad6eacqGHsislcaWGibaabaGaamOtaaaaceWGwb GbaebadaWgaaWcbaWaaeWabeaacaWGKbGaamOCaaGaayjkaiaawMca aaqabaGccqGHRaWkdaaeqaqaamaabmqabaGabmyEayaaiaWaa0baaS qaaiaadkhacaWGRbaabaGaaGOmaaaakiabgUcaRiabeo8aZnaaDaaa leaacaWGYbGaam4AaaqaaiaaikdaaaaakiaawIcacaGLPaaacqaHZo WzdaWgaaWcbaGaamizaiaadUgaaeqaaOGaey4kaSYaaWraaSqabeaa daqadeqaaiabeg7aHjabes8a0bGaayjkaiaawMcaaaaakiaabgeaca qGbbGaaeOvamaaBaaaleaacaaIZaWaaeWabeaacaWGKbGaamOCaaGa ayjkaiaawMcaaaqabaaabaGaam4AaiabgIGiolaadwfaaeqaniabgg HiLdaakeaacaaIWaGaeyipaWZaaWraaSqabeaadaqadeqaaiabeg7a Hjabes8a0jabgUcaRiaaigdaaiaawIcacaGLPaaaaaGccqaHapaCda WgaaWcbaGaam4AaaqabaGccqGHKjYOcaaIXaGaaGzbVlaaywW7caaM f8+aaeWabeaacaWGRbGaeyypa0JaaGymaiaacYcacqWIMaYscaGGSa GaamOtaaGaayjkaiaawMcaaaaaaiaawUhaaiaac6cacaaMf8UaaGzb VlaaywW7caGGOaGaaGynaiaac6cacaaI3aGaaiykaaaa@BB09@

  • Updating or exiting. If the vector π ( α τ + 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaaCeaale qabaWaaeWabeaacqaHXoqycqaHepaDcqGHRaWkcaaIXaaacaGLOaGa ayzkaaaaaOGaaCiWdaaa@40BD@  is such that | π ( α τ + 1 ) π ( α τ ) | > ε , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaaemaaba WaaWraaSqabeaadaqadeqaaiabeg7aHjabes8a0jabgUcaRiaaigda aiaawIcacaGLPaaaaaGccaWHapGaeyOeI0YaaWraaSqabeaadaqade qaaiabeg7aHjabes8a0bGaayjkaiaawMcaaaaakiaahc8aaiaawEa7 caGLiWoatCvAUfKttLearyWrPrgz5vhCGmfDKbacfaGae8Npa4JaaC yTdiaacYcaaaa@54E1@  then the Inner Loop is iterated by updating the vector π ( α τ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaaCeaale qabaWaaeWabeaacqaHXoqycqaHepaDaiaawIcacaGLPaaaaaGccaWH apaaaa@3F20@  with π ( α τ + 1 ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaaCeaale qabaWaaeWabeaacqaHXoqycqaHepaDcqGHRaWkcaaIXaaacaGLOaGa ayzkaaaaaOGaaCiWdiaac6caaaa@416E@  If | π ( α τ + 1 ) π ( α τ ) | ε MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaaemaaba WaaWraaSqabeaadaqadeqaaiabeg7aHjabes8a0jabgUcaRiaaigda aiaawIcacaGLPaaaaaGccaWHapGaeyOeI0YaaWraaSqabeaadaqade qaaiabeg7aHjabes8a0bGaayjkaiaawMcaaaaakiaahc8aaiaawEa7 caGLiWoacqGHKjYOcaWH1oaaaa@4E34@  then the Inner Loop closes and the updated vector π ( α + 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaaCeaale qabaWaaeWabeaacqaHXoqycqGHRaWkcaaIXaaacaGLOaGaayzkaaaa aOGaaCiWdaaa@3EF8@  for the Outer Loop is given by π ( α τ + 1 ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaaCeaale qabaWaaeWabeaacqaHXoqycqaHepaDcqGHRaWkcaaIXaaacaGLOaGa ayzkaaaaaOGaaCiWdiaac6caaaa@416F@

Remark 5.1. The problem of the system (5.7) can be solved by the algorithm proposed in Falorsi and Righi (2008, Section 3.1) which represents a slight modification of Chromy’s algorithm (1987), originally developed for multivariate optimal allocation in SSRSWOR designs and implemented in standard software tools (see for example the Mauss-R software available at: http://www3.istat.it/strumenti/metodi/software/campione/mauss_r/). Alternatively, the LCSP can be dealt with by the SAS procedure NLP as suggested by Choudhry et al. (2012).

Remark 5.2. The algorithm distinguishes the π ( ατ ) k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaaCeaale qabaWaaeWabeaacqaHXoqycqaHepaDaiaawIcacaGLPaaaaaGccqaH apaCdaWgaaWcbaGaam4Aaaqabaaaaa@40AD@  (updated in the Outer loop) from the π ( ατ ) k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaaCeaale qabaWaaeWabeaacqaHXoqycqaHepaDaiaawIcacaGLPaaaaaGccqaH apaCdaWgaaWcbaGaam4Aaaqabaaaaa@40AD@  (updated in the Inner loop). The innovation of the proposed algorithm lies precisely in this peculiarity. If this distinction between the inclusion probabilities is not made, i.e., π ( ατ ) = π ( α ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaaCeaale qabaWaaeWabeaacqaHXoqycqaHepaDaiaawIcacaGLPaaaaaGccaWH apGaeyypa0ZaaWraaSqabeaadaqadeqaaiabeg7aHbGaayjkaiaawM caaaaakiaahc8acaGGSaaaaa@4583@  we have observed in several experiments that the iterate solutions of the LCSP for each Outer Loop do not converge to a stationary point.

Remark 5.3. After the optimization phase, in which the π MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaahc8aaa a@39FA@  vector is defined as solution to problem of system (5.1), a calibration phase is performed (Falorsi and Righi 2008) to obtain calibrated inclusion probabilities, π cal k , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaaBeaale aacaqGJbGaaeyyaiaabYgaaeqaaOGaeqiWda3aaSbaaSqaaiaadUga aeqaaOGaaiilaaaa@3F31@  which modifies the optimal π MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaahc8aaa a@39FA@  vector marginally in order to satisfy kU π cal k δ k =n, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaaqababa WaaSraaSqaaiaabogacaqGHbGaaeiBaaqabaGccqaHapaCdaWgaaWc baGaam4AaaqabaGccaWH0oWaaSbaaSqaaiaadUgaaeqaaaqaaiaadU gacqGHiiIZcaWGvbaabeqdcqGHris5aOGaeyypa0JaaCOBaiaacYca aaa@48BA@  where n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaah6gaaa a@39A5@  is a vector of integer numbers. The use of the Generalized Iterative Proportional Fitting algorithm (Dykstra and Wollan 1987) ensures that all resulting calibrated inclusion probabilities are in the ( 0 , 1 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaajadaba GaaGimaiaacYcacaaIXaaacaGLOaGaayzxaaaaaa@3CC5@  interval.

Previous | Next

Date modified: