Filtrer les résultats par

Aide à la recherche
Currently selected filters that can be removed

Mot(s)-clé(s)

Année de publication

4 facets displayed. 0 facets selected.

Contenu

1 facets displayed. 0 facets selected.
Aide à l'ordre
entrées

Résultats

Tout (4)

Tout (4) ((4 résultats))

  • Articles et rapports : 12-001-X202200200012
    Description :

    Dans de nombreuses applications, les moyennes de population des petites régions géographiquement adjacentes présentent une variation spatiale. Si les variables auxiliaires disponibles ne tiennent pas suffisamment compte de la configuration spatiale, la variation résiduelle sera incluse dans les effets aléatoires. Par conséquent, l’hypothèse de distribution indépendante et identique sur les effets aléatoires du modèle Fay-Herriot échouera. De plus, des ressources limitées empêchent souvent l’inclusion de nombreuses sous-populations dans l’échantillon; il en résulte de petites régions non échantillonnées. Le problème peut être exacerbé au moment de prédire les moyennes de petites régions non échantillonnées à l’aide du modèle de Fay-Herriot ci-dessus, car les prévisions seront faites uniquement en fonction des variables auxiliaires. Pour remédier à ce problème, nous considérons les modèles spatiaux bayésiens à effets aléatoires qui peuvent prendre en compte de multiples régions non échantillonnées. Dans des conditions légères, nous déterminons si les distributions a posteriori de divers modèles spatiaux sont adaptées à une catégorie utile de densités a priori incompatibles avec les paramètres du modèle. L’efficacité de ces modèles spatiaux est évaluée à partir de données simulées et réelles. Plus précisément, nous examinons les prévisions du revenu médian des familles de quatre personnes à l’échelle de l’État fondées sur la « Current Population Survey » (enquête sur l’état de la population) de 1990 et le « Census for the United States of America » (recensement mené aux États-Unis d’Amérique) de 1980.

    Date de diffusion : 2022-12-15

  • Articles et rapports : 12-001-X201900100005
    Description :

    L’estimation sur petits domaines à l’aide de modèles au niveau du domaine peut parfois bénéficier de covariables observées sujettes à des erreurs aléatoires, par exemple des covariables qui sont elles-mêmes des estimations tirées d’une autre enquête. Sachant les estimations des variances de ces erreurs de mesure (échantillonnage) pour chaque petit domaine, on peut tenir compte de l’incertitude de ces covariables au moyen de modèles d’erreur de mesure (par exemple Ybarra et Lohr, 2008). Deux types de modèles d’erreur de mesure au niveau du domaine ont été examinés dans les publications traitant de l’estimation sur petits domaines. Le modèle fonctionnel d’erreur de mesure suppose que les valeurs sous-jacentes réelles des covariables avec erreur de mesure sont des quantités fixes mais inconnues. Le modèle structurel d’erreur de mesure suppose que ces valeurs réelles suivent un modèle, ce qui donne un modèle multivarié pour les covariables observées avec erreur et la variable dépendante initiale. Nous comparons ces deux modèles à la solution consistant à simplement ignorer l’erreur de mesure lorsqu’elle est présente (modèle naïf), en étudiant les conséquences pour les erreurs quadratiques moyennes de prédiction de l’utilisation d’un modèle incorrect avec différentes hypothèses sous-jacentes sur le modèle vrai. Les comparaisons réalisées au moyen de formules analytiques pour les erreurs quadratiques moyennes et en supposant que les paramètres du modèle sont connus donnent des résultats surprenants. Nous illustrons également les résultats à l’aide d’un modèle ajusté aux données du programme Small Area Income and Poverty Estimates (SAIPE, Estimations sur petits domaines du revenu et de la pauvreté) du U.S. Census Bureau.

    Date de diffusion : 2019-05-07

  • Articles et rapports : 12-001-X201500114161
    Description :

    Le modèle de Fay Herriot est un modèle au niveau du domaine d’usage très répandu pour l’estimation des moyennes de petit domaine. Ce modèle contient des effets aléatoires en dehors de la régression linéaire (fixe) basée sur les covariables au niveau du domaine. Les meilleurs prédicteurs linéaires sans biais empiriques des moyennes de petit domaine s’obtiennent en estimant les effets aléatoires de domaine, et ils peuvent être exprimés sous forme d’une moyenne pondérée des estimateurs directs propres aux domaines et d’estimateurs synthétiques de type régression. Dans certains cas, les données observées n’appuient pas l’inclusion des effets aléatoires de domaine dans le modèle. L’exclusion de ces effets de domaine aboutit à l’estimateur synthétique de type régression, autrement dit un poids nul est appliqué à l’estimateur direct. L’étude porte sur un estimateur à test préliminaire d’une moyenne de petit domaine obtenu après l’exécution d’un test pour déceler la présence d’effets aléatoires de domaine. Parallèlement, elle porte sur les meilleurs prédicteurs linéaires sans biais empiriques des moyennes de petit domaine qui donnent toujours des poids non nuls aux estimateurs directs dans tous les domaines, ainsi que certains estimateurs de rechange basés sur le test préliminaire. La procédure de test préliminaire est également utilisée pour définir de nouveaux estimateurs de l’erreur quadratique moyenne des estimateurs ponctuels des moyennes de petit domaine. Les résultats d’une étude par simulation limitée montrent que, si le nombre de domaines est petit, la procédure d’essai préliminaire mène à des estimateurs de l’erreur quadratique moyenne présentant un biais relatif absolu moyen considérablement plus faible que les estimateurs de l’erreur quadratique moyenne usuels, surtout quand la variance des effets aléatoires est faible comparativement aux variances d’échantillonnage.

    Date de diffusion : 2015-06-29

  • Articles et rapports : 12-001-X199200114497
    Description :

    Le présent article analyse une approche basée sur un modèle pour le redressement des données de la répétition générale du recensement de 1990, effectuée en 1988. Ces données ont été recueillies dans des régions d’essai au Missouri. L’objectif premier est d’élaborer des méthodes qui peuvent être utilisées pour modéliser les données de l’Enquête post-censitaire d’avril 1991, qui a fait suite au recensement de 1990, et pour lisser les estimations des facteurs de redressement tirés de l’enquête. Nous proposons dans le présent article une méthode hiérarchique de Bayes (HB) et une méthode empirique de Bayes (EB) qui satisfont à cet objectif. Les estimateurs qui résultent de ces deux méthodes semblent permettre d’améliorer de façon constante les estimations basées sur un système de double collecte et les estimateurs de régression lissés.

    Date de diffusion : 1992-06-15
Stats en bref (0)

Stats en bref (0) (0 résultat)

Aucun contenu disponible actuellement

Articles et rapports (4)

Articles et rapports (4) ((4 résultats))

  • Articles et rapports : 12-001-X202200200012
    Description :

    Dans de nombreuses applications, les moyennes de population des petites régions géographiquement adjacentes présentent une variation spatiale. Si les variables auxiliaires disponibles ne tiennent pas suffisamment compte de la configuration spatiale, la variation résiduelle sera incluse dans les effets aléatoires. Par conséquent, l’hypothèse de distribution indépendante et identique sur les effets aléatoires du modèle Fay-Herriot échouera. De plus, des ressources limitées empêchent souvent l’inclusion de nombreuses sous-populations dans l’échantillon; il en résulte de petites régions non échantillonnées. Le problème peut être exacerbé au moment de prédire les moyennes de petites régions non échantillonnées à l’aide du modèle de Fay-Herriot ci-dessus, car les prévisions seront faites uniquement en fonction des variables auxiliaires. Pour remédier à ce problème, nous considérons les modèles spatiaux bayésiens à effets aléatoires qui peuvent prendre en compte de multiples régions non échantillonnées. Dans des conditions légères, nous déterminons si les distributions a posteriori de divers modèles spatiaux sont adaptées à une catégorie utile de densités a priori incompatibles avec les paramètres du modèle. L’efficacité de ces modèles spatiaux est évaluée à partir de données simulées et réelles. Plus précisément, nous examinons les prévisions du revenu médian des familles de quatre personnes à l’échelle de l’État fondées sur la « Current Population Survey » (enquête sur l’état de la population) de 1990 et le « Census for the United States of America » (recensement mené aux États-Unis d’Amérique) de 1980.

    Date de diffusion : 2022-12-15

  • Articles et rapports : 12-001-X201900100005
    Description :

    L’estimation sur petits domaines à l’aide de modèles au niveau du domaine peut parfois bénéficier de covariables observées sujettes à des erreurs aléatoires, par exemple des covariables qui sont elles-mêmes des estimations tirées d’une autre enquête. Sachant les estimations des variances de ces erreurs de mesure (échantillonnage) pour chaque petit domaine, on peut tenir compte de l’incertitude de ces covariables au moyen de modèles d’erreur de mesure (par exemple Ybarra et Lohr, 2008). Deux types de modèles d’erreur de mesure au niveau du domaine ont été examinés dans les publications traitant de l’estimation sur petits domaines. Le modèle fonctionnel d’erreur de mesure suppose que les valeurs sous-jacentes réelles des covariables avec erreur de mesure sont des quantités fixes mais inconnues. Le modèle structurel d’erreur de mesure suppose que ces valeurs réelles suivent un modèle, ce qui donne un modèle multivarié pour les covariables observées avec erreur et la variable dépendante initiale. Nous comparons ces deux modèles à la solution consistant à simplement ignorer l’erreur de mesure lorsqu’elle est présente (modèle naïf), en étudiant les conséquences pour les erreurs quadratiques moyennes de prédiction de l’utilisation d’un modèle incorrect avec différentes hypothèses sous-jacentes sur le modèle vrai. Les comparaisons réalisées au moyen de formules analytiques pour les erreurs quadratiques moyennes et en supposant que les paramètres du modèle sont connus donnent des résultats surprenants. Nous illustrons également les résultats à l’aide d’un modèle ajusté aux données du programme Small Area Income and Poverty Estimates (SAIPE, Estimations sur petits domaines du revenu et de la pauvreté) du U.S. Census Bureau.

    Date de diffusion : 2019-05-07

  • Articles et rapports : 12-001-X201500114161
    Description :

    Le modèle de Fay Herriot est un modèle au niveau du domaine d’usage très répandu pour l’estimation des moyennes de petit domaine. Ce modèle contient des effets aléatoires en dehors de la régression linéaire (fixe) basée sur les covariables au niveau du domaine. Les meilleurs prédicteurs linéaires sans biais empiriques des moyennes de petit domaine s’obtiennent en estimant les effets aléatoires de domaine, et ils peuvent être exprimés sous forme d’une moyenne pondérée des estimateurs directs propres aux domaines et d’estimateurs synthétiques de type régression. Dans certains cas, les données observées n’appuient pas l’inclusion des effets aléatoires de domaine dans le modèle. L’exclusion de ces effets de domaine aboutit à l’estimateur synthétique de type régression, autrement dit un poids nul est appliqué à l’estimateur direct. L’étude porte sur un estimateur à test préliminaire d’une moyenne de petit domaine obtenu après l’exécution d’un test pour déceler la présence d’effets aléatoires de domaine. Parallèlement, elle porte sur les meilleurs prédicteurs linéaires sans biais empiriques des moyennes de petit domaine qui donnent toujours des poids non nuls aux estimateurs directs dans tous les domaines, ainsi que certains estimateurs de rechange basés sur le test préliminaire. La procédure de test préliminaire est également utilisée pour définir de nouveaux estimateurs de l’erreur quadratique moyenne des estimateurs ponctuels des moyennes de petit domaine. Les résultats d’une étude par simulation limitée montrent que, si le nombre de domaines est petit, la procédure d’essai préliminaire mène à des estimateurs de l’erreur quadratique moyenne présentant un biais relatif absolu moyen considérablement plus faible que les estimateurs de l’erreur quadratique moyenne usuels, surtout quand la variance des effets aléatoires est faible comparativement aux variances d’échantillonnage.

    Date de diffusion : 2015-06-29

  • Articles et rapports : 12-001-X199200114497
    Description :

    Le présent article analyse une approche basée sur un modèle pour le redressement des données de la répétition générale du recensement de 1990, effectuée en 1988. Ces données ont été recueillies dans des régions d’essai au Missouri. L’objectif premier est d’élaborer des méthodes qui peuvent être utilisées pour modéliser les données de l’Enquête post-censitaire d’avril 1991, qui a fait suite au recensement de 1990, et pour lisser les estimations des facteurs de redressement tirés de l’enquête. Nous proposons dans le présent article une méthode hiérarchique de Bayes (HB) et une méthode empirique de Bayes (EB) qui satisfont à cet objectif. Les estimateurs qui résultent de ces deux méthodes semblent permettre d’améliorer de façon constante les estimations basées sur un système de double collecte et les estimateurs de régression lissés.

    Date de diffusion : 1992-06-15
Revues et périodiques (0)

Revues et périodiques (0) (0 résultat)

Aucun contenu disponible actuellement

Date de modification :