Inference and foundations

Filter results by

Search Help
Currently selected filters that can be removed

Keyword(s)

Geography

1 facets displayed. 0 facets selected.

Survey or statistical program

2 facets displayed. 0 facets selected.

Content

1 facets displayed. 0 facets selected.
Sort Help
entries

Results

All (105)

All (105) (60 to 70 of 105 results)

  • Surveys and statistical programs – Documentation: 12-002-X20040027035
    Description:

    As part of the processing of the National Longitudinal Survey of Children and Youth (NLSCY) cycle 4 data, historical revisions have been made to the data of the first 3 cycles, either to correct errors or to update the data. During processing, particular attention was given to the PERSRUK (Person Identifier) and the FIELDRUK (Household Identifier). The same level of attention has not been given to the other identifiers that are included in the data base, the CHILDID (Person identifier) and the _IDHD01 (Household identifier). These identifiers have been created for the public files and can also be found in the master files by default. The PERSRUK should be used to link records between files and the FIELDRUK to determine the household when using the master files.

    Release date: 2004-10-05

  • Articles and reports: 11-522-X20020016708
    Description:

    In this paper, we discuss the analysis of complex health survey data by using multivariate modelling techniques. Main interests are in various design-based and model-based methods that aim at accounting for the design complexities, including clustering, stratification and weighting. Methods covered include generalized linear modelling based on pseudo-likelihood and generalized estimating equations, linear mixed models estimated by restricted maximum likelihood, and hierarchical Bayes techniques using Markov Chain Monte Carlo (MCMC) methods. The methods will be compared empirically, using data from an extensive health interview and examination survey conducted in Finland in 2000 (Health 2000 Study).

    The data of the Health 2000 Study were collected using personal interviews, questionnaires and clinical examinations. A stratified two-stage cluster sampling design was used in the survey. The sampling design involved positive intra-cluster correlation for many study variables. For a closer investigation, we selected a small number of study variables from the health interview and health examination phases. In many cases, the different methods produced similar numerical results and supported similar statistical conclusions. Methods that failed to account for the design complexities sometimes led to conflicting conclusions. We also discuss the application of the methods in this paper by using standard statistical software products.

    Release date: 2004-09-13

  • Articles and reports: 11-522-X20020016717
    Description:

    In the United States, the National Health and Nutrition Examination Survey (NHANES) is linked to the National Health Interview Survey (NHIS) at the primary sampling unit level (the same counties, but not necessarily the same persons, are in both surveys). The NHANES examines about 5,000 persons per year, while the NHIS samples about 100,000 persons per year. In this paper, we present and develop properties of models that allow NHIS and administrative data to be used as auxiliary information for estimating quantities of interest in the NHANES. The methodology, related to Fay-Herriot (1979) small-area models and to calibration estimators in Deville and Sarndal (1992), accounts for the survey designs in the error structure.

    Release date: 2004-09-13

  • Articles and reports: 11-522-X20020016719
    Description:

    This study takes a look at the modelling methods used for public health data. Public health has a renewed interest in the impact of the environment on health. Ecological or contextual studies ideally investigate these relationships using public health data augmented with environmental characteristics in multilevel or hierarchical models. In these models, individual respondents in health data are the first level and community data are the second level. Most public health data use complex sample survey designs, which require analyses accounting for the clustering, nonresponse, and poststratification to obtain representative estimates of prevalence of health risk behaviours.

    This study uses the Behavioral Risk Factor Surveillance System (BRFSS), a state-specific US health risk factor surveillance system conducted by the Center for Disease Control and Prevention, which assesses health risk factors in over 200,000 adults annually. BRFSS data are now available at the metropolitan statistical area (MSA) level and provide quality health information for studies of environmental effects. MSA-level analyses combining health and environmental data are further complicated by joint requirements of the survey sample design and the multilevel analyses.

    We compare three modelling methods in a study of physical activity and selected environmental factors using BRFSS 2000 data. Each of the methods described here is a valid way to analyse complex sample survey data augmented with environmental information, although each accounts for the survey design and multilevel data structure in a different manner and is thus appropriate for slightly different research questions.

    Release date: 2004-09-13

  • Articles and reports: 11-522-X20020016727
    Description:

    The census data are widely used in the distribution and targeting of resources at national, regional and local levels. In the United Kingdom (UK), a population census is conducted every 10 years. As time elapses, the census data become outdated and less relevant, thus making the distribution of resources less equitable. This paper examines alternative methods in rectifying this.

    A number of small area methods have been developed for producing postcensal estimates, including the Structural Preserving Estimation technique as a result of Purcell and Kish (1980). This paper develops an alternative approach that is based on a linear mixed modelling approach to producing postcensal estimates. The validity of the methodology is tested on simulated data from the Finnish population register and the technique is applied to producing updated estimates for a number of the 1991 UK census variables.

    Release date: 2004-09-13

  • Articles and reports: 11-522-X20020016730
    Description:

    A wide class of models of interest in social and economic research can be represented by specifying a parametric structure for the covariances of observed variables. The availability of software, such as LISREL (Jöreskog and Sörbom 1988) and EQS (Bentler 1995), has enabled these models to be fitted to survey data in many applications. In this paper, we consider approaches to inference about such models using survey data derived by complex sampling schemes. We consider evidence of finite sample biases in parameter estimation and ways to reduce such biases (Altonji and Segal 1996) and associated issues of efficiency of estimation, standard error estimation and testing. We use longitudinal data from the British Household Panel Survey for illustration. As these data are subject to attrition, we also consider the issue of how to use nonresponse weights in the modelling.

    Release date: 2004-09-13

  • Articles and reports: 11-522-X20020016731
    Description:

    Behavioural researchers use a variety of techniques to predict respondent scores on constructs that are not directly observable. Examples of such constructs include job satisfaction, work stress, aptitude for graduate study, children's mathematical ability, etc. The techniques commonly used for modelling and predicting scores on such constructs include factor analysis, classical psychometric scaling and item response theory (IRT), and for each technique there are often several different strategies that can be used to generate individual scores. However, researchers are seldom satisfied with simply measuring these constructs. They typically use the derived scores in multiple regression, analysis of variance and numerous multivariate procedures. Though using predicted scores in this way can result in biased estimates of model parameters, not all researchers are aware of this difficulty. The paper will review the literature on this issue, with particular emphasis on IRT methods. Problems will be illustrated, some remedies suggested, and areas for further research will be identified.

    Release date: 2004-09-13

  • Articles and reports: 11-522-X20020016733
    Description:

    While censuses and surveys are often said to measure populations as they are, most reflect information about individuals as they were at the time of measurement, or even at some prior time point. Inferences from such data therefore should take into account change over time at both the population and individual levels. In this paper, we provide a unifying framework for such inference problems, illustrating it through a diverse series of examples including: (1) estimating residency status on Census Day using multiple administrative records, (2) combining administrative records for estimating the size of the US population, (3) using rolling averages from the American Community Survey, and (4) estimating the prevalence of human rights abuses.

    Specifically, at the population level, the estimands of interest, such as the size or mean characteristics of a population, might be changing. At the same time, individual subjects might be moving in and out of the frame of the study or changing their characteristics. Such changes over time can affect statistical studies of government data that combine information from multiple data sources, including censuses, surveys and administrative records, an increasingly common practice. Inferences from the resulting merged databases often depend heavily on specific choices made in combining, editing and analysing the data that reflect assumptions about how populations of interest change or remain stable over time.

    Release date: 2004-09-13

  • Articles and reports: 11-522-X20020016743
    Description:

    There is much interest in using data from longitudinal surveys to help understand life history processes such as education, employment, fertility, health and marriage. The analysis of data on the durations of spells or sojourns that individuals spend in certain states (e.g., employment, marriage) is a primary tool in studying such processes. This paper examines methods for analysing duration data that address important features associated with longitudinal surveys: the use of complex survey designs in heterogeneous populations; missing or inaccurate information about the timing of events; and the possibility of non-ignorable dropout or censoring mechanisms. Parametric and non-parametric techniques for estimation and for model checking are considered. Both new and existing methodology are proposed and applied to duration data from Canada's Survey of Labour and Income Dynamics (SLID).

    Release date: 2004-09-13

  • Articles and reports: 11-522-X20020016745
    Description:

    The attractiveness of the Regression Discontinuity Design (RDD) rests on its close similarity to a normal experimental design. On the other hand, it is of limited applicability since it is not often the case that units are assigned to the treatment group on the basis of an observable (to the analyst) pre-program measure. Besides, it only allows identification of the mean impact on a very specific subpopulation. In this technical paper, we show that the RDD straightforwardly generalizes to the instances in which the units' eligibility is established on an observable pre-program measure with eligible units allowed to freely self-select into the program. This set-up also proves to be very convenient for building a specification test on conventional non-experimental estimators of the program mean impact. The data requirements are clearly described.

    Release date: 2004-09-13
Data (0)

Data (0) (0 results)

No content available at this time.

Analysis (97)

Analysis (97) (20 to 30 of 97 results)

  • Articles and reports: 12-001-X202100200006
    Description:

    Sample-based calibration occurs when the weights of a survey are calibrated to control totals that are random, instead of representing fixed population-level totals. Control totals may be estimated from different phases of the same survey or from another survey. Under sample-based calibration, valid variance estimation requires that the error contribution due to estimating the control totals be accounted for. We propose a new variance estimation method that directly uses the replicate weights from two surveys, one survey being used to provide control totals for calibration of the other survey weights. No restrictions are set on the nature of the two replication methods and no variance-covariance estimates need to be computed, making the proposed method straightforward to implement in practice. A general description of the method for surveys with two arbitrary replication methods with different numbers of replicates is provided. It is shown that the resulting variance estimator is consistent for the asymptotic variance of the calibrated estimator, when calibration is done using regression estimation or raking. The method is illustrated in a real-world application, in which the demographic composition of two surveys needs to be harmonized to improve the comparability of the survey estimates.

    Release date: 2022-01-06

  • Articles and reports: 12-001-X202000100001
    Description:

    For several decades, national statistical agencies around the world have been using probability surveys as their preferred tool to meet information needs about a population of interest. In the last few years, there has been a wind of change and other data sources are being increasingly explored. Five key factors are behind this trend: the decline in response rates in probability surveys, the high cost of data collection, the increased burden on respondents, the desire for access to “real-time” statistics, and the proliferation of non-probability data sources. Some people have even come to believe that probability surveys could gradually disappear. In this article, we review some approaches that can reduce, or even eliminate, the use of probability surveys, all the while preserving a valid statistical inference framework. All the approaches we consider use data from a non-probability source; data from a probability survey are also used in most cases. Some of these approaches rely on the validity of model assumptions, which contrasts with approaches based on the probability sampling design. These design-based approaches are generally not as efficient; yet, they are not subject to the risk of bias due to model misspecification.

    Release date: 2020-06-30

  • Articles and reports: 12-001-X201800254956
    Description:

    In Italy, the Labor Force Survey (LFS) is conducted quarterly by the National Statistical Institute (ISTAT) to produce estimates of the labor force status of the population at different geographical levels. In particular, ISTAT provides LFS estimates of employed and unemployed counts for local Labor Market Areas (LMAs). LMAs are 611 sub-regional clusters of municipalities and are unplanned domains for which direct estimates have overly large sampling errors. This implies the need of Small Area Estimation (SAE) methods. In this paper, we develop a new area level SAE method that uses a Latent Markov Model (LMM) as linking model. In LMMs, the characteristic of interest, and its evolution in time, is represented by a latent process that follows a Markov chain, usually of first order. Therefore, areas are allowed to change their latent state across time. The proposed model is applied to quarterly data from the LFS for the period 2004 to 2014 and fitted within a hierarchical Bayesian framework using a data augmentation Gibbs sampler. Estimates are compared with those obtained by the classical Fay-Herriot model, by a time-series area level SAE model, and on the basis of data coming from the 2011 Population Census.

    Release date: 2018-12-20

  • Articles and reports: 12-001-X201800154928
    Description:

    A two-phase process was used by the Substance Abuse and Mental Health Services Administration to estimate the proportion of US adults with serious mental illness (SMI). The first phase was the annual National Survey on Drug Use and Health (NSDUH), while the second phase was a random subsample of adult respondents to the NSDUH. Respondents to the second phase of sampling were clinically evaluated for serious mental illness. A logistic prediction model was fit to this subsample with the SMI status (yes or no) determined by the second-phase instrument treated as the dependent variable and related variables collected on the NSDUH from all adults as the model’s explanatory variables. Estimates were then computed for SMI prevalence among all adults and within adult subpopulations by assigning an SMI status to each NSDUH respondent based on comparing his (her) estimated probability of having SMI to a chosen cut point on the distribution of the predicted probabilities. We investigate alternatives to this standard cut point estimator such as the probability estimator. The latter assigns an estimated probability of having SMI to each NSDUH respondent. The estimated prevalence of SMI is the weighted mean of those estimated probabilities. Using data from NSDUH and its subsample, we show that, although the probability estimator has a smaller mean squared error when estimating SMI prevalence among all adults, it has a greater tendency to be biased at the subpopulation level than the standard cut point estimator.

    Release date: 2018-06-21

  • Articles and reports: 12-001-X201700254872
    Description:

    This note discusses the theoretical foundations for the extension of the Wilson two-sided coverage interval to an estimated proportion computed from complex survey data. The interval is shown to be asymptotically equivalent to an interval derived from a logistic transformation. A mildly better version is discussed, but users may prefer constructing a one-sided interval already in the literature.

    Release date: 2017-12-21

  • Articles and reports: 12-001-X201700114822
    Description:

    We use a Bayesian method to infer about a finite population proportion when binary data are collected using a two-fold sample design from small areas. The two-fold sample design has a two-stage cluster sample design within each area. A former hierarchical Bayesian model assumes that for each area the first stage binary responses are independent Bernoulli distributions, and the probabilities have beta distributions which are parameterized by a mean and a correlation coefficient. The means vary with areas but the correlation is the same over areas. However, to gain some flexibility we have now extended this model to accommodate different correlations. The means and the correlations have independent beta distributions. We call the former model a homogeneous model and the new model a heterogeneous model. All hyperparameters have proper noninformative priors. An additional complexity is that some of the parameters are weakly identified making it difficult to use a standard Gibbs sampler for computation. So we have used unimodal constraints for the beta prior distributions and a blocked Gibbs sampler to perform the computation. We have compared the heterogeneous and homogeneous models using an illustrative example and simulation study. As expected, the two-fold model with heterogeneous correlations is preferred.

    Release date: 2017-06-22

  • Articles and reports: 12-001-X201600214662
    Description:

    Two-phase sampling designs are often used in surveys when the sampling frame contains little or no auxiliary information. In this note, we shed some light on the concept of invariance, which is often mentioned in the context of two-phase sampling designs. We define two types of invariant two-phase designs: strongly invariant and weakly invariant two-phase designs. Some examples are given. Finally, we describe the implications of strong and weak invariance from an inference point of view.

    Release date: 2016-12-20

  • Articles and reports: 12-001-X201600114545
    Description:

    The estimation of quantiles is an important topic not only in the regression framework, but also in sampling theory. A natural alternative or addition to quantiles are expectiles. Expectiles as a generalization of the mean have become popular during the last years as they not only give a more detailed picture of the data than the ordinary mean, but also can serve as a basis to calculate quantiles by using their close relationship. We show, how to estimate expectiles under sampling with unequal probabilities and how expectiles can be used to estimate the distribution function. The resulting fitted distribution function estimator can be inverted leading to quantile estimates. We run a simulation study to investigate and compare the efficiency of the expectile based estimator.

    Release date: 2016-06-22

  • Articles and reports: 11-522-X201700014704
    Description:

    We identify several research areas and topics for methodological research in official statistics. We argue why these are important, and why these are the most important ones for official statistics. We describe the main topics in these research areas and sketch what seems to be the most promising ways to address them. Here we focus on: (i) Quality of National accounts, in particular the rate of growth of GNI (ii) Big data, in particular how to create representative estimates and how to make the most of big data when this is difficult or impossible. We also touch upon: (i) Increasing timeliness of preliminary and final statistical estimates (ii) Statistical analysis, in particular of complex and coherent phenomena. These topics are elements in the present Strategic Methodological Research Program that has recently been adopted at Statistics Netherlands

    Release date: 2016-03-24

  • Articles and reports: 11-522-X201700014713
    Description:

    Big data is a term that means different things to different people. To some, it means datasets so large that our traditional processing and analytic systems can no longer accommodate them. To others, it simply means taking advantage of existing datasets of all sizes and finding ways to merge them with the goal of generating new insights. The former view poses a number of important challenges to traditional market, opinion, and social research. In either case, there are implications for the future of surveys that are only beginning to be explored.

    Release date: 2016-03-24
Reference (8)

Reference (8) ((8 results))

No content available at this time.

Date modified: