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ABSTRACT 
 

Data from longitudinal surveys are used to help understand life history processes such as education, employment, fertility, 
and health. One aspect of this concerns the duration of spells or sojourns that individuals spend in certain states. This paper 
discusses methods for analyzing duration data that address features of longitudinal surveys: the use of complex sampling 
designs; intermittent follow-up of subjects; missing and mismeasured data; and losses to follow-up. The analysis of jobless 
spells in Statistics Canada’s Survey of Labour and Income Dynamics is used for illustration. 

 
 

1. INTRODUCTION 
 

There is much interest in using data from longitudinal surveys to help understand life history processes such as 
education, employment, fertility, marriage, and health. One aspect of this concerns the durations of spells or 
sojourns that individuals spend in certain states, such as unemployment or marriage. Duration analysis and, more 
generally, life or event history analysis, are well developed areas with many standard methods (e.g., Andersen et al. 
1993, Kalbfleisch and Prentice 2002, Lawless 2002). However, data collected through longitudinal surveys bring a 
variety of problems that standard methods do not fully handle. Our objective is to discuss such problems and review 
approaches for dealing with them. 
 
Populations on which longitudinal surveys are based tend to be very heterogeneous, and individuals are typically 
sampled according to a complex survey design involving stratification and clustering. Even if analysis is directed at 
a specific subpopulation or process, this creates difficulties, as we discuss below. The way in which longitudinal 
data are collected in the survey can also cause problems: intermittent (e.g. annual) follow-up of individuals may lead 
to missing or mismeasured data and to difficulty in defining censoring times for persons lost to follow-up; loss to 
follow-up processes may not be ignorable; short duration follow-up provides limited information on life history 
processes that evolve over a long period of time; time-varying factors that affect a process are often not measured. 
 
This paper is concerned with the use of longitudinal surveys to understand the life history processes of individuals. 
The conceptual framework used for modelling and analysis is the process that generates the individuals and their 
histories. Section 2 reviews methods of inference for duration data within this framework, stressing the need to deal 
with the survey design. Section 3 considers missing or mismeasured data involving initial conditions, losses to 
follow-up, the timing of duration-related events, and covariates. Section 4 discusses these issues in the context of 
unemployment spells in the Survey of Labour and Income Dynamics (SLID). Section 5 makes some concluding 
remarks. 
 
 

2. DURATION ANALYSIS WITH SURVEY DATA 
 
Suppose that a duration variable Y (sometimes called a lifetime or survival time) and a vector of covariates x are 
associated with individuals in some population and that the marginal distribution of Y given x is the focus of 
attention. Many duration problems deal with the length of time that an individual spends in some state and it will be 
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convenient here to identify Y with the duration of a sojourn in a state denoted as A. Some degree of association 
between the Y's, given the corresponding x’s, for individuals belonging to certain groups or clusters within the 
population is generally expected. This will be accounted for in the analysis below, but the association will not be 
explicitly modelled. 
 
Suppose that the distribution of Y given x has probability density function f (y|x;θ). If one had a simple random 
sample S of individuals from the population then inferences about the model parameters θ could be based on the 
pseudo likelihood function 
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assuming temporarily that the durations yi are all fully observed. However, the survey population, consisting of N 
individuals, is typically divided into strata U1, U2, ..., UH that consist of clusters of individuals forming primary 
sampling units (PSU’s), and the survey sample S is chosen by randomly selecting PSU’s within each stratum and 
then randomly sampling individuals from each PSU. Let Ri = I(i Є S) denote whether individual i (i = 1, ..., N) is in 
the sample, and let the vector zi denote design-related factors such as stratum and cluster information, so that the 
sample design inclusion probabilities πi satisfy 
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Note that xi and zi may share some components. If Yi and Zi are independent, given xi, then 
( ) ( )iiiii xyfRxy |1,|Pr ==  and estimation of θ can be based on (2.1) or the corresponding pseudo score 

estimating function U(θ) = ∂ log L(θ) / ∂θ, or 
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We term U(θ) a pseudo score function because the Yi (i Є S) are not in general independent, so (2.1) is not their joint 

probability density function. However, solving U(θ) = 0 provides a consistent estimator θ̂  of θ under mild 
conditions. 
 
If Pr(yi|xi,zi) ≠ Pr(yi|xi) then Pr(yi|xi,Ri = 1) ≠  f(yi|xi), and (2.3) in general yields inconsistent estimates of θ. In 
this case a weighted pseudo score function 
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can be used for estimation (e.g. Pfefferman 1993; Thompson 1997, Sec. 6.2). Solving UW(θ) = 0 yields an estimator 

θ̂  that is consistent for θ, though it has larger variance than estimators based on (2.3) when both are consistent. 
 
Pfefferman (1993) provides an insightful review of weighted versus unweighted estimation and of the potential uses 
of the model f(y| x; θ) when Y is not independent of design factors Z, given x. We suppose for most of the discussion 
here that the covariates x include sufficient information that the survey design is ignorable and (2.3) can be used. 
However, the methodology is easily extended to include weights, as in (2.4). 
 
2.1 Estimation for Parametric Duration Distributions 
 
Suppose that Y given x has survivor function S(y | x; θ) = Pr(Y ≥ y | x; θ) and hazard function λ(y|x; θ) = f(y|x; 
θ)/S(y|x; θ). Suppose also that individual i is followed over the calendar time period (Li, Ri) and consider observation 
of a sojourn in state A that covers the time period (ti, ti +ỹi), which overlaps (Li, Ri). If ti ≤ Li then the spell duration 
ỹi satisfies ỹi ≥ Li - ti and is left-truncated at vi = Li - ti ≥ 0. If ti +ỹi > Ri then we observe only that ỹi > Ri - ti and ỹi is 



right-censored at ci = Ri - ti. With the notation yi = min(ỹi, ci) and δi = I(yi = ỹi), the pseudo score component Ui(θ) in 
(2.3) is then replaced by (e.g., Lawless 2003, Sec. 5.2) 
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Based on the sample design described earlier, the pseudo score (2.3) with components (2.5) can be written as 
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where Ch is the number of clusters or PSU’s taken from stratum h and Shc denotes the individuals sampled from 
cluster c in stratum h. We assume that the duration times of individuals in distinct clusters are independent. Under 

mild conditions the estimator θ̂  obtained by solving U(θ) = 0 is then asymptotically normal with mean θ and 
covariance matrix that is estimated consistently by 
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where I(θ) = -∂U(θ)/∂θ' and 
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This allows for association among the duration times of individuals in the same cluster. Existing software for 

accelerated failure time or other parametric models can be used to obtain θ̂  and ( )θ̂I ;a little extra programming is 

generally necessary to compute (2.8). 
 
2.2 Semiparametric Cox Models 

 
The Cox (1972) proportional or multiplicative hazards model is widely used. It takes the hazard function for Y given 
x to be of the form 
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where λ0(y) is an arbitrary “baseline” hazard function and β is a vector of regression coefficients. Well known partial 

likelihood methods provide estimates of β and nonparametric estimates of ( ) ( )∫=Λ
y

dtty
0 00 λ  under simple random 

sampling, and observation schemes allowing left-truncation or right-censoring (e.g. Kalbfleisch and Prentice 2002, 
Ch. 4). 
 

The standard methods can be extended to handle within-cluster association in duration times (e.g. Lee et al. 1992). 
Spiekerman and Lin (1998) and Boudreau and Lawless (2001) have shown how to deal with both cluster and 
stratum effects, and time-varying covariates. For example, in some settings the stratified Cox model with hazard 
functions 
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is useful. Estimation of β and of the cumulative hazard functions Λ0h(t) can be based on the standard estimating 
functions from the case of simple random sampling (Kalbfleisch and Prentice 2002, Sec. 4.4). Boudreau and 
Lawless (2001) derive variance estimates analogous to (2.7) and demonstrate that they are easily obtained using the 



S-Plus software function coxph, with the cluster and strata options. Their methodology can also handle weights. An 
illustration is provided in Section 4. 
 
We remark that Binder (1992) and Lin (2000) have discussed weighted estimation for the Cox model. They both 
considered design-based variance estimation, and Lin also discussed model-based estimation as done here. Lin 
allows more general survey designs than we discuss but ignores association in duration times at the population level. 
The variance estimates given by our methods (with (2.8) - (2.9) extended to include weights) and his (using software 
such as SUDAAN for the design-based portion of the variance) are very close for settings that we have examined. 
 
 

3. MISSING OR MISMEASURED DATA 
 
3.1 Initial Conditions and Left-Truncation 
 
An individual is typically followed over some calendar period (Li, Ri) in a longitudinal survey, but analysis may 
require information about the individual prior to time Li. One such instance occurs when an individual is already in 
state A at time Li, with interest focused on the duration Y of sojourns in that state. If the time ti ≤ Li at which an 
individual entered the state is known then, provided ti and Yi are independent, the relevant distribution for the 
sojourn duration is the left-truncated density f(y)/S(vi), where vi = Li - ti. This gives the pseudo likelihood score 
function (2.5). In some cases the distribution of Yi may depend on the time ti of entry into state A, in which case f(y) 
and S(y) are replaced with f(y|t) and S(y|t). If, however, Yi and ti both depend on unmeasured factors then (2.5) is no 
longer appropriate (e.g. Keiding 1992, Lawless and Fong 1999). The use of design weights will not alleviate this. 
Such “initial conditions” problems have received considerable discussion in economics and the social sciences (e.g. 
Heckman and Singer 1985, Hoem 1985). 
 
The entry time ti into the state A may also be unknown or measured with error. In the former case, let g(v) denote 
the p.d.f. of Vi = Li - ti, given that an individual is in state A at time Li and assuming independence of Yi and ti. For 
simplicity, dependence on covariates is suppressed in the notation. If ti, and hence vi, are unobserved, the appropriate 
p.d.f. for the observed data is 
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where wi = ti + yi - Li is the duration of the remaining sojourn in state A after time Li. Either wi or a censoring time 
for it are assumed to be observed. 
 
A model for g(v) is thus required when ti is unobserved. This can sometimes be specified through knowledge of the 
flow rate into state A over time. Sometimes an argument is made for assuming that g(v) = S(v)/µ, where µ = E(Y ) 
is the average duration in state A; this corresponds to a flow rate into state A that is constant over time and can also 
be obtained through equilibrium arguments in a renewal process. If g(u) = S(v)/µ then (3.1) reduces to S(wi)/µ, 
which is the well known forward recurrence time distribution in renewal theory (e.g., Ross 1983). Note that it may 
be possible to test a hypothesized model for g(v). In particular, if there are individuals whose sojourns Yi in state A 

are untruncated then an estimate ( )yŜ  can be obtained from them. The empirical distribution of the wi’s for left-

truncated sojourns can then be compared with ( ) µ̂/ˆ yS ,or, more generally, the distribution implied by (3.1). 

 
In the absence of a suitable model for g(v), an acceptable procedure is simply to discard left-truncated yi’s, using 
only sojourns in state A that start while an individual is under follow-up (e.g., Aalen and Husebye 1991). Boudreau 
and Lawless (2002) examine the loss of information in doing this when (3.1) is actually available. A practical issue 
is that in some settings most observations may be subject to some degree of left-truncation. 
 
If the value of ti is recorded with error of measurement due to recall or other factors, one approach is to model the 
measurement error along with the joint distribution g1 (ti) f (yi) / S (vi) of ti and Yi to get a pseudo likelihood based 
on the observed data. This can be very difficult, and the possible dependence of the measurement error on v must be 



considered. Rather than incorporate formal modelling into the estimation process, one might carry out a sensitivity 
analysis to assess the effect of mismeasurement on standard estimates. Lawless (2003, Sec. 8) provides an 
illustration involving the recall of the date at which breast feeding of infants terminated. 
 
3.2 Effects of Intermittent Observation 
 
When panel members are interviewed at rather widely spaced time points, the accuracy of event times and other 
variables over the period since the preceding interview should be considered. Seam effects can occur, in which 
individuals tend to locate events near times of interviews (e.g., Kalton and Miller 1991). Problems involving missing 
or mismeasured covariates are very difficult to handle with duration data, especially when the censoring process is 
related to the covariates (e.g., Kalbfleisch and Prentice 2002, Ch. 11). Modelling of the covariate and censoring 
processes is unavoidable in many cases. Common sampling approaches such as imputation have not been carefully 
examined, but would also require strong assumptions about censoring. This area is in need of development. 
 
Missing information about event times or durations due to intermittent observation can be more readily handled, 
though supplementary modelling may be needed. For example, if entry into state A has occurred at an unknown time 
between the preceding and current interview dates, then a model for the time of entry is needed, as discussed in 
Section 3.1. 
 
Intermittent observation can also affect the validity of standard censoring assumptions. For example, if an individual 
is in the midst of a sojourn in state A at the year t interview and then becomes lost to follow-up by the year t + 1 
interview time, then it is standard practice to assign a censoring time based on the current duration in state A at the 
year t interview. However, this requires that the loss to follow-up mechanism is independent of the individual’s 
duration process over the period following the interview, given covariates measured up to year t. This assumption is 
likely violated in many settings. The only clear resolution of this problem is to trace some individuals lost to follow-
up (e.g. Farewell et al. 2002), but sensitivity analysis can be used to assess the effect of an hypothesized dependent 
loss-to-follow-up mechanism. 
 
 

4. ILLUSTRATION: UNEMPLOYMENT SPELLS IN SLID 
 
We provide here a brief illustration of issues based on Statistics Canada’s Survey of Labour and Income Dynamics 
(SLID). We consider data from the first panel, for which follow-up started in January 1993 and continued for six 
years (barring loss to follow-up). Panel selection is based on a stratified multistage sampling design in which the 
PSU’s are groups of households forming enumeration areas (EA’s). Sampling involves a random selection of 
households within sampled PSU’s; all individuals over 16 years of age in a household are followed longitudinally in 
the survey. Panel members are interviewed annually in January, at which time information on events that occurred 
over the previous calendar year is collected. Detailed information on SLID is available from its web site, which can 
be accessed from http://www.statcan.ca. 
 
The example given here deals with the duration of jobless spells for persons who are in the labour force and don’t 
suffer from long term disabilities. We discuss issues relating to missing or mismeasured data below, but first 
illustrate a semiparametric proportional hazards (PH) analysis of the duration of spells that started in the calendar 
year 1993. These data involve a total of 2313 observed spells, 104 of which were right-censored. 
 
Table 1 shows results for a model involving nine covariates: SEX (= 1 if female, 0 if male); LOOKED (= 1 if 
looking for work, 0 if not); CHILDREN (= 1 if individual has one or more children, 0 otherwise); AGE (= age as of 
January 1993); SCHOOL (= number of years of schooling); HOURWAGE (= wage in dollars per hour); EI (= 1 if 
person received employment insurance, 0 if not); MINORITY (= 1 if person is a member of a visible minority 
group, 0 if not); WINTER (= 1 if person lost previous job during months November - April). Two-factor interactions 
involving these covariates are also considered. The model fitted was a stratified Cox PH model (Kalbfleisch and 
Prentice 2002, Section 4.4) with provinces forming the strata. Estimates and standard errors based on both weighted 
and unweighted estimating functions (Boudreau and Lawless 2001) are shown in Table 1. The weighted estimates 
used individual sampling weights provided by SLID that account for both sample design and a loss to follow-up 
adjustment. Two additional sets of standard errors are shown for them: the finite sample design-based standard 



errors of Binder (1992) and the analogous standard errors of Lin (2000), which are based on Binder’s variance 
estimates plus an additional term for the superpopulation process. Our standard errors for both weighted and 
unweighted estimates are based on using households as clusters. The use of EA’s as clusters produced standard 
errors that were very close to these. For the unweighted case, “independence” (and technically incorrect) standard 
errors are shown; they are based on treating the unweighted analysis as though it arose from a sample of mutually 
independent duration times. 
 
The three standard errors for the weighted analyses are virtually identical, indicating that the superpopulation 
correction term of Lin (2000) adds only a tiny amount to Binder’s (1992) designbased standard errors, and also that 
our simple robust variance estimation procedures work well here. The unweighted and weighted estimation 
procedures give estimates that generally agree well; the largest difference is for the LOOKED covariate, where they 
differ by just under two (weighted) standard errors. The independence standard errors for the unweighted analysis 
are not very different form the robust standard errors, indicating only a small effect due to association of jobless 
durations for persons in the same household. 
 
Diagnostic checks on the model based on the unweighted analysis (e.g. Lawless 2002, Section 7.2) indicate only one 
significant departure from assumptions: the effect of the WINTER covariate decreases with time. This suggests that 
losing one’s job during the winter months is associated with an increasing chance of finding employment over the 
next 12 months, but does not much affect the hazard function for return to employment after about 12 jobless 
months. 

 
Figures 1 and 2 show illustrative plots of survivor functions for the duration of a jobless spell. 

 

 
 



 
 
 

Table 1. Estimates and Standard Errors of PH Covariate Effects for Jobless Spells 
Covariate Unweighted 

estimate 
SE SE (Ind.) Weighted 

estimate 
SE SE (Lin) SE (Binder) 

SEX -0.561 0.224 0.212 -0.628 0.294 0.295 0.295 

LOOKED -0.119 0.051 0.056 0.023 0.075 0.075 0.075 

CHILDREN -0.714 0.132 0.128 -0.847 0.196 0.196 0.196 

AGE -0.025 0.006 0.005 -0.031 0.009 0.009 0.009 

SCHOOL 0.001 0.009 0.010 -0.001 0.012 0.012 0.012 

HOURWAGE 0.062 0.013 0.012 0.037 0.021 0.021 0.021 

EI -0.368 0.130 0.125 -0.216 0.178 0.178 0.178 

MINORITY -0.183 0.204 0.233 -0.098 0.244 0.244 0.244 

WINTER 0.205 0.092 0.080 0.242 0.135 0.135 0.135 

SEX*SCHOOL 0.033 0.015 0.015 0.036 0.020 0.020 0.020 

SEX*CHILDREN -0.007 0.088 0.089 -0.015 0.122 0.122 0.122 

AGE*CHILDREN 0.023 0.004 0.004 0.025 0.006 0.006 0.006 

SEX*HOURWAGE -0.022 0.008 0.008 -0.008 0.012 0.012 0.012 

WINTER*LOOKED -0.100 0.105 0.097 -0.170 0.150 0.150 0.150 

AGE*HOURWAGE -0.001 0.0004 0.0003 -0.001 0.0005 0.0005 0.0005 

AGE*EI 0.002 0.004 0.004 0.015 0.006 0.006 0.006 



Many issues related to points discussed in Section 3 arise with SLID data. Left-truncation of duration spells occurs 
for persons in the panel who were unemployed as of January 1, 1993. However, information on the start of these 
spells is not available from the survey, and so we chose here to base estimation only on spells that began after 
January 1, 1993. In order to use the left-truncated spells as well, we would have to model the flow into the 
unemployed state for persons becoming unemployed prior to 1993 and remaining unemployed on January 1, 1993. 
 
Losses to follow-up, or attrition, are common in SLID. For example, the initial 1993 panel comprised about 15,000 
households and 31,000 persons age 16 or over. The percentages of these persons that were subsequently interviewed 
in January of the years 1994, 1995, and 1996 were 89.6%, 86.5% and 85.2%, respectively. The impact of the losses 
to follow-up on the estimation of the duration distribution is greatest for long durations. For example, in Figure 1 it 
is seen that some jobless spells have very long durations; the estimation of this part of the distribution could, 
however, be heavily influenced by any non-ignorable patterns in panel attrition. 
 
Various issues arise in the measurement of job duration, including the effects of respondent recall and how the starts 
and ends of spells of employment are recorded. In SLID the latter are recorded by week of occurrence, so there is 
only a small grouping effect for duration times. Other factors, including seam effects, also come into play (e.g. see 
Cotton and Giles 1998). 
 
The issue of weights in surveys such as SLID is rather complicated. “Longitudinal” weights can be calculated for 
each person in the initial 1993 panel, but as has been indicated earlier, weights for duration analysis need to be 
adjusted over time, to deal with losses to follow-up, if we want protection against the effects of non-ignorable 
sampling and attrition. A spell that began in 1993 and ended in 1994, for example, would have the start date reported 
in January 1994 and the end date reported in January 1995. For simplicity of analysis one would presumably use 
either the January 1994 or January 1995 weights, but neither choice is fully satisfactory in all circumstances. It 
should also be noted that individuals who join households in the original panel are interviewed in subsequent years. 
They have initial longitudinal weights of zero but can be included in analyses, such as those discussed in this paper. 

 
 

5. CONCLUDING REMARKS 
 
Standard methods of survival or duration analysis can be adapted to data from longitudinal surveys by utilizing 
methods of robust variance estimation and, if necessary, weights to counter the effects of non-ignorable sampling or 
losses to follow-up. Weights must in some cases be time-varying, however, and methods of choosing them deserve 
further study. There are connections here with the work of Robins and others (e.g., Robins and Rotnitzky 1995). 
 
We note a few other topics that deserve study. First, based on a desire to develop models that describe the life 
history processes of individuals, there is a need for diagnostic checking of duration models. Methods exist for 
standard unweighted analysis but the effects of cluster sampling have received little study. Methods based on 
comparisons of weighted and unweighted estimates (e.g., Pfefferman 1993) could also be developed. 
 
The study of repeated spells, or transitions among states, for an individual is of much interest, and raises the issue of 
multivariate duration models and measures of association. Multilevel modelling provides one approach (e.g., 
Bandeen-Roche and Liang 1996) but it seems desirable to develop simpler methods that model individual level 
processes but use robust variance estimation techniques to deal with higher level cluster effects. 
 
Empirical study and reasonably simple methods of dealing with measurement error, missing covariate values, and 
possibly non-ignorable losses to follow-up deserve attention, as mentioned previously. 
 
Finally, the life history processes associated with individuals very often depend substantially on time-varying 
factors. Methods of duration analysis that incorporate time-varying covariates are available, but there nonetheless 
are issues concerning how best to quantity or describe specific life history processes, in order to gain a fuller 
understanding of their evolution. 
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