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ABSTRACT 
 

Small area estimation methods typically combine direct estimates from a survey with predictions from a regression model 
to obtain estimates of population quantities which have reduced mean squared error. In this paper, we consider effects of 
errors or missing values in the covariates used in the regression model. Such situations occur when the covariates come 
from another survey or from an administrative source with incomplete data. We present and develop properties of models 
that allow survey and administrative data to be used as auxiliary information for estimating quantities of interest in a 
primary survey. The methodology accounts for the survey designs and missing data in the error structure. 
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1.  INTRODUCTION 
 
National surveys such as the U.S. Current Population Survey (CPS) or the U.S. National Crime Victimization Survey 
(NCVS) give accurate estimates of poverty or criminal victimization at the national level. These surveys do not, 
however, contain sufficient sample sizes to give reliable estimates by themselves for “small areas” such as states, 
counties or minority groups, or to provide detailed information about events such as domestic violence that affect 
only a small part of the population. Current methods for estimating poverty in counties incorporate auxiliary 
administrative information from sources such as tax records and food stamp programs as explanatory variables in a 
regression equation; the predicted value of the regression is combined with a direct estimate of poverty from the CPS 
to estimate the county poverty rate (Citro and Kalton, 1999). If the regression model gives accurate predictions, the 
mean squared error of the resulting small area estimate is smaller than that for the direct estimate of county poverty 
from the CPS. Properties of the small area estimates such as bias and mean squared error are derived conditionally 
on the auxiliary information: This approach assumes that the auxiliary data are available for all areas and are 
measured without error. 
 
In many situations, however, auxiliary information is available that can help in the estimation, but that information is 
not exact. Auxiliary information may be available from another survey, or may come from an administrative source 
in which imputation has been used to fill in missing values. In both of these cases, the auxiliary information is 
measured with error—sampling and nonsampling error for survey data, and imputation error for incomplete 
administrative data. We give four examples of situations where auxiliary information may have errors. 
 
Estimates of income and poverty at the state and county level currently use the CPS, which samples approximately 
60,000 households each year, to obtain a direct estimate of poverty in the small areas. If funded by Congress, 
however, the proposed American Community Survey (ACS) will sample 3 million households each year. For most 
small areas, the ACS is expected to give more precise estimates of quantities it measures; it has been suggested as a 
source of auxiliary information for improving accuracy of estimates from the CPS. The ACS still contains sampling 
error for many small areas, however, and that error should be accounted for in any error bounds reported for the 
estimates. 
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The U.S. Bureau of the Census is interested in estimates of health insurance coverage in states, with initial focus on 
coverage of low-income children. These estimates are used to allocate funds for the State Children's Health 
Insurance Program. The CPS is used for the primary estimate of health insurance coverage. One research question 
(Campbell et al., 2002) involves whether to use auxiliary data that may be provided by some states and that are of 
variable quality. 
 
Another example involves estimating violent crime victimization rates in each state, or the total amount of medical 
expenses incurred in each state as a result of violent crime. The U.S. National Crime Victimization Survey (NCVS) 
provides this information, but has insufficient sample sizes to provide accurate estimates for every state. The FBI 
Uniform Crime Reports (UCR), which provides statistics on crimes reported to police agencies, is an excellent 
source of auxiliary information. Although the UCR underestimates the amount of crime and its costs to society, 
victimization rates from the UCR are positively correlated with victimization rates from the NCVS. Reporting to the 
UCR is voluntary, however, and the UCR data set has many holes; in addition, data reported by some police agencies 
may be inaccurate. 
 
Many survey designs in the U.S. are now being integrated to allow combination of estimates. The U.S. National 
Health Interview Survey (NHIS) and National Health and Nutrition Examination Survey (NHANES) share the same 
primary sampling units (psu's): the psu's selected for NHIS are used as a sampling frame for NHANES. NHIS is a 
stratified multistage probability sample of about 100,000 persons (40,000 households) per year. The design is 
described in detail in Botman et al. (2000). NHANES conducts medical examinations of participants, however, and 
the mobile examination unit can only visit 15 psu's per year (about 5000 persons), as opposed to 358 psu's for NHIS. 
Because of the small sample size, NHANES data are usually accumulated over time in order to produce estimates. 
State and local estimates from NHANES have low precision. The NHIS data provide better estimates of quantities 
measured at some localities, but the data come from an interview rather than an examination: for example, in 
NHANES, prevalence of diabetes is estimated using the results of the medical exams, while in NHIS it is estimated 
using the results of questionnaires. We would expect, though, that the questionnaire results would be highly 
correlated with the medical examination results, and thus that the NHIS would provide high-quality auxiliary 
information for use with NHANES data for improved small area estimation. 
 
Fay and Herriot (1979) first studied improved estimation in small areas using known vectors of covariate means. 
Since then, many other models have been studied. Prasad and Rao (1990) put many of these estimators in a unified 
framework and derived second-order approximations to the mean squared errors of the estimators. Schaible (1996) 
described indirect small area estimators used by U.S. government agencies. Rao (2003) gave a detailed account of 
work done in small area estimation to date. 
 
Suppose there are m areas of interest (for example, m = 50 if states are small areas). We are interested in a 
characteristic Yi of area i. For some (or all) areas, we have data from the primary survey. Let yi be an unbiased 
estimator of Yi from the survey, with sampling variance V(yi) = ψi. Administrative data for area i, Ai, is assumed to be 
measured without error. We consider the p-vector xi to be measurements from the auxiliary data source, which may 
have sampling error and/or bias. Each vector xi estimates the true characteristic for that area, Xi. We assume that 
E(xi) = Xi + bi and V(xi) = Σi. Note that if Xi is measured exactly, the bias bi and covariance matrix Σi are both zero. 
 
Often the characteristic of interest will be a mean or proportion: For the crime example, Yi will represent the 
proportion of persons who are victims of crime in state i. The NCVS gives a direct estimate yi; the auxiliary data xi 
come from the UCR. 
 
The goal in this paper is to use the auxiliary data xi to improve estimation of the characteristic of interest Yi. Lohr and 
Prasad (2001) developed unit-level models when the auxiliary data come from another survey; in those models, 
however, one must be able to match individuals’ data from the primary and auxiliary survey. The area-level models 
of this paper require only that one be able to link the information at the area level. In Section 2, we describe 
consequences of using the Fay-Herriot (1979) model when the xi’s are measured with error, and discuss an empirical 
Bayes approach. In Section 3, we extend the multivariate Fay-Herriot model to incorporate the error in estimation. 
Section 4 presents measurement error models that incorporate the uncertainty in xi into the estimator; Section 5 
contains concluding remarks. 



2.  FAY-HERRIOT MODEL AND EMPIRICAL BAYES ESTIMATION 
 
The Fay-Herriot (1979) model leads to the best linear unbiased predictor (BLUP) of Yi. If yi and Yi are assumed to be 
normally distributed, the Fay-Herriot estimator can be motivated by a Bayesian approach (see Rao, 2003, chapter 9). 
In that case yi | Yi, ψi ~ N(Yi, ψi); the regression model for the population quantity is given by 
 
 2 2| , , , , ~ ( , ).T T

i i i v i i vY Nσ α β α β σ+A X A X  (2.1) 

 
It is assumed that the quantities (yi, Yi) are independent across the areas, conditionally on Ai, Xi, α, β and σv

2. With 
this model, the posterior distribution of Yi is 
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where * 2 2/( ).i v v iγ σ σ ψ= +  Note that the posterior mean is the BLUP for Yi when all of the quantities that are 

conditioned on are known; the mean squared error (MSE) of the BLUP is the posterior variance. 
 

Now consider what happens if an estimate ˆ
iX  is substituted for the population quantity Xi. In practice, xi might be 

used for ˆ
iX . Let ˆ MSE( )i i=C X and let * * * ˆ(1 )( )T T

i i i i i iY yγ γ α β= + − +A X% be the substitution estimator of Yi. Then 
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i i i i iY γ ψ γ β β= + − C% . Note that if the matrix Ci is large, the mean squared error of the substitution 

estimator can be larger than ψi, the variance of the estimator using only the survey data. Thus if the auxiliary 
information is inaccurate, its use can result in a less accurate estimate than if no auxiliary information were used. The 
relative weight, γi

*, given to the direct estimator, yi, in the substitution estimator may be too small since the relative 
weight does not account for all of the error in the predicted value from the regression. In addition, if it is pretended 
that there is no error in estimating Xi, the posterior variance in (2.2) is smaller than the true MSE.  
 
We can correct the MSE by incorporating the error in estimating Xi into the model in (2.1). Suppose that xi is also 

normally distributed: xi | Xi, Σi ~ N(Xi, Σi) and that Xi | µx, Σ  ~ N(µx, Σ). Then the posterior distribution of Xi is  
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where ci = Σ (Σi + Σ)−1 xi + Σi (Σi + Σ)−1 µx and Di = Σ (Σi + Σ)−1 Σi = Σi (Σi + Σ)−1 Σ. Combining (2.2) and (2.3), 

the posterior distribution of Yi has mean * *(1 )( )T T
i i i i iyγ γ α β+ − +A c and variance * * 2(1 ) T

i i i iγ ψ γ β β+ − D . With the 

additional assumptions on the distribution of the auxiliary survey data, the posterior variance is correct for the MSE. 
The relative weight γi

*, however, still does not account for the error in estimating Xi; it is possible for the posterior 
variance to be larger than ψi so that incorporating the auxiliary x information may result in a decrease in precision. 
The models in Sections 3 and 4 adjust the relative weights so that this problem will not occur. 
 
The above discussion assumed that the regression parameters and covariance matrices are known. These must in 
general be estimated from the data; in that case, under appropriate regularity conditions, the MSE of the resulting 
small area estimator is the posterior variance above plus lower order terms. The extra terms in the MSE due to 
estimating the parameters are given in Ybarra (2003). 
 
 

3. MULTIVARIATE FAY-HERRIOT MODEL 
 
Fay (1987) and Datta et al. (1991) developed a Fay-Herriot-type model for a multivariate response, and showed that 
it often results in more efficient estimators for a small area quantity of interest than the univariate Fay-Herriot model. 
Datta et al. (1991) were interested in estimating Yi, the median income of four-person households in state i. The 
direct estimate yi was from the CPS. The auxiliary information, xi = (3/4) (median income of five-person households) 



+ (1/4) (median income of three-person households) also came from the CPS. They found that using a multivariate 
model reduced the MSE of the estimator of Yi. 
 
We extend this model to allow for missing observations and measurement error, and to allow the observations to 
come from different sources. In the following, let 0k denote a k-vector with all entries 0, and let Ik denote the k × k 
identity matrix. Assume throughout this section that xi is an unbiased estimator of Xi, so that bi = 0. 
 
Let Ui = [Xi

T  Yi ]
T represent the population values for each of the i areas, i = 1, …, m. Then a model relating the 

population quantities for the areas to each other is Ui = Ai
Tα  + vi, where vi  ~ N(0p+1, Σv). The model covariance 

matrix Σv is partitioned as 
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Define the vector ui and the matrices Zi and Ψi for three cases:  
 
 1. ui = [xi

T, yi ]
T, Zi = I p+1, Ψi = blockdiag(Σi, ψi)  if both x and y are observed in area i;  

 2. ui = xi, Zi
T = [ Ip, 0]T, Ψi = Σi if x is observed in area i but not y;  

 3. ui = yi, Zi
T = [ 0p, 1]T, Ψi = ψi if y is observed in area i but not x. 

 
Then the observations ui follow the model ui = Zi

TAi
Tα  + Zi

Tvi + ei, where ei  ~ N(0, Ψi). The covariance matrix of ui 
is Vi = V(ui) = Zi

TΣvZi + Ψi. This model fits into the block diagonal covariance structure model described in Section 
6.3 of Rao (2003). The BLUP for Ui is then  
 

 ,i i iα= +U A v% % %  (3.1) 

 
where 1( )T

i v i i i i iα
−= −v Z V u Z A% %Σ and 

 
1

1 1 .T T T
i i i i i i i i i

i i

α
−

− −   =    
   
∑ ∑A Z V Z A A Z V u%  (3.2) 

 
Let Mi = (Σvxx  + Σi)

−1 and κi = (Σvyy  − Σvxy
T Mi Σvxy ) / (Σvyy  − Σvxy

T Mi Σvxy + ψi ). Using (3.1), 
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for cases 1 and 2 above (note that for case 2, κi = 0). For case 3 (areas i in which x is not measured and hence the 

entries of Mi are 0), ,MFH (1 )[ , 1] ,T
i i i i p iY yκ κ α= + − 0 A% % and κi = Σvyy  / (Σvyy + ψi ). 

 
The weighting κi in the small area estimator in (3.3) thus depends on the variability of xi: κi is smaller, and the small 
area estimator depends more heavily on the direct estimator, if the variability of xi is larger. If Xi is measured exactly 
(i.e., all entries of Σi are 0), the multivariate Fay-Herriot estimator, using assumptions of normality, coincides with 
the univariate Fay-Herriot estimator that incorporates the x information as covariates. 
 
The MSE of the estimator in (3.3) can be obtained using standard methods: Under regularity assumptions given in 

Datta et al. (1991) and Ybarra (2003), we have that for cases 1 and 3, 1
,MFHMSE ( ) ( ).i i iY O mκ ψ −= +%  For case 2, 

* 1
,MFHMSE ( ) ( ),i iY O mκ −= +%  where κi

∗ is the numerator of κi. 

 
In practice, Σv as well as α must be estimated from the data. Method of moments, maximum likelihood, or restricted 
maximum likelihood may be used. See Datta et al. (2001) for a comparison of the estimators of Σv in the univariate 
case. 
 



4. MEASUREMENT ERROR MODELS 
 
4.1 Estimation when regression parameters and variances are known 
 
We saw in Section 2 that ignoring the error in xi resulted in underestimating the mean squared error and using a non-
optimal weighting. The motivation for using a measurement error model comes from the observation that omitted or 
inaccurate covariates can cause bias. Suppose that the model in (2.1) holds, but that the analyst fits the model without 
the term involving β. Since the “wrong” model is fit, estimates of the regression parameters α and the predicted 
values may be biased. The bias arising from omitting X from the covariates leads to an increase in the MSE of the 
predicted values. If X is included in the covariates, though, the error in measuring X must be accounted for in the 
estimation and mean squared error. Fuller (1987, 1990) presented a comprehensive treatment of using measurement 
error models for estimation of regression parameters and for prediction. 
 

As in Section 2, let ˆ
iX  be an estimator of the population quantity Xi with ˆ MSE( )i i=C X . We assume that such an 

estimator exists for every area: If x is not measured in area i, then an empirical Bayes estimator or imputed value 

may be used for ˆ
iX . Consider the model 
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where ˆ ˆ( , ) ( )i i i i i ir v β= + −X X X X  and MSE(ri) = σv
2 + βTCiβ. As before, V(ei) = ψi is the sampling variance of yi. 

We assume here that yi, vi and ˆ
iX are mutually independent. Now let 
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Note that *MSE ( ) MSE ( ),i iY Y≤% % where *
iY% is the substitution estimator from Section 2: Equality is attained if 

0.T
iβ β =C The MSE is also smaller than the MSE that would result from using the model T

i i i iy t eα= + +A  instead 

of (4.1). If the empirical Bayes estimator from Section 2 is used for ˆ
iX , then it can be shown that the estimator in 

(4.2) is equivalent to the multivariate Fay-Herriot estimator. 
 
4.2 Estimating the regression parameters and variances 
 
In practice, the quantities σv

2, α and β are unknown and must be estimated from the data. Although most research 
using area-level models has assumed that ψi is known, ψi and Ci may also need to be estimated. 
 
Lindley (1947, p. 243) suggested using weighted least squares to estimate the regression parameters. For our model, 
the MSE of the error terms is MSE (ri + ei) = σv

2 + ψi + βTCiβ. Thus, one can solve for the unknown parameters by 
minimizing 
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where the sum is over areas i where y is measured. Gleser (1981) gives large sample properties of the resulting 
estimates of the regression parameters.  
 
Use of  (4.3), however, requires that σv

2 be known. If it is unknown, we can use modified least squares to estimate 
the parameters (Cheng and Van Ness, 1999, pp. 85 and 146). In this case an unbiased estimator of σv

2 is 
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Minimizing Q2 with respect to α and β gives estimates of the regression parameters. Note, though, that terms in (4.4) 
may be negative and it is possible that minimization will occur on the boundaries of the parameter space. 
  
 

5. DISCUSSION 
 
 
In this paper, we have discussed and compared the first order properties of three methods—empirical Bayes, 
multivariate Fay-Herriot, and measurement error models—for incorporating auxiliary information into small area 
estimation, when the auxiliary information is subject to error. All three methods account for the extra variability in 
not knowing the auxiliary information exactly. The multivariate Fay-Herriot and measurement error models also 
change the relative weightings of the direct estimator and the predicted value from the regression equation, so that 
more reliance is placed on the direct estimator if Xi is measured inaccurately. The measurement error model is the 
most flexible in terms of choice of estimator of Xi; it gives the same results as the multivariate Fay-Herriot estimator 
in the normal case when there are no administrative covariates and the shrinkage estimator from Section 2 is used to 
estimate Xi. 
 
The first order MSE’s presented in this paper are calculated assuming that the regression parameters and covariances 
are known. If these are unknown, and must be estimated from the data, the MSE’s of the estimators will be larger 
than stated here. The second order properties depend on the relative magnitudes of m, the number of areas, and Ci, 
the error in estimating Xi. Ybarra (2003) compares estimators of the unknown quantities and derives the second 
order terms of the MSE’s of the estimators. 
 
Although in some situations the measurement error model and multivariate Fay-Herriot method give the same results, 
we prefer the measurement error model for many practical situations. It is more flexible for choice of estimator of Xi. 
In addition, robust methods may be used for estimating the regression parameters and variance terms, so that the 
measurement error model is adaptable for situations in which some of the xi’s are outliers due to variable quality of 
the data sources. 
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