Inference and foundations
Results
All (22)
All (22) (0 to 10 of 22 results)
- Articles and reports: 12-001-X202400100001Description: Inspired by the two excellent discussions of our paper, we offer some new insights and developments into the problem of estimating participation probabilities for non-probability samples. First, we propose an improvement of the method of Chen, Li and Wu (2020), based on best linear unbiased estimation theory, that more efficiently leverages the available probability and non-probability sample data. We also develop a sample likelihood approach, similar in spirit to the method of Elliott (2009), that properly accounts for the overlap between both samples when it can be identified in at least one of the samples. We use best linear unbiased prediction theory to handle the scenario where the overlap is unknown. Interestingly, our two proposed approaches coincide in the case of unknown overlap. Then, we show that many existing methods can be obtained as a special case of a general unbiased estimating function. Finally, we conclude with some comments on nonparametric estimation of participation probabilities.Release date: 2024-06-25
- Articles and reports: 12-001-X202400100002Description: We provide comparisons among three parametric methods for the estimation of participation probabilities and some brief comments on homogeneous groups and post-stratification.Release date: 2024-06-25
- Articles and reports: 12-001-X202400100003Description: Beaumont, Bosa, Brennan, Charlebois and Chu (2024) propose innovative model selection approaches for estimation of participation probabilities for non-probability sample units. We focus our discussion on the choice of a likelihood and parameterization of the model, which are key for the effectiveness of the techniques developed in the paper. We consider alternative likelihood and pseudo-likelihood based methods for estimation of participation probabilities and present simulations implementing and comparing the AIC based variable selection. We demonstrate that, under important practical scenarios, the approach based on a likelihood formulated over the observed pooled non-probability and probability samples performed better than the pseudo-likelihood based alternatives. The contrast in sensitivity of the AIC criteria is especially large for small probability sample sizes and low overlap in covariates domains.Release date: 2024-06-25
- Articles and reports: 12-001-X202400100004Description: Non-probability samples are being increasingly explored in National Statistical Offices as an alternative to probability samples. However, it is well known that the use of a non-probability sample alone may produce estimates with significant bias due to the unknown nature of the underlying selection mechanism. Bias reduction can be achieved by integrating data from the non-probability sample with data from a probability sample provided that both samples contain auxiliary variables in common. We focus on inverse probability weighting methods, which involve modelling the probability of participation in the non-probability sample. First, we consider the logistic model along with pseudo maximum likelihood estimation. We propose a variable selection procedure based on a modified Akaike Information Criterion (AIC) that properly accounts for the data structure and the probability sampling design. We also propose a simple rank-based method of forming homogeneous post-strata. Then, we extend the Classification and Regression Trees (CART) algorithm to this data integration scenario, while again properly accounting for the probability sampling design. A bootstrap variance estimator is proposed that reflects two sources of variability: the probability sampling design and the participation model. Our methods are illustrated using Statistics Canada’s crowdsourcing and survey data.Release date: 2024-06-25
- Articles and reports: 12-001-X202400100014Description: This paper is an introduction to the special issue on the use of nonprobability samples featuring three papers that were presented at the 29th Morris Hansen Lecture by Courtney Kennedy, Yan Li and Jean-François Beaumont.Release date: 2024-06-25
- Articles and reports: 12-001-X202300200005Description: Population undercoverage is one of the main hurdles faced by statistical analysis with non-probability survey samples. We discuss two typical scenarios of undercoverage, namely, stochastic undercoverage and deterministic undercoverage. We argue that existing estimation methods under the positivity assumption on the propensity scores (i.e., the participation probabilities) can be directly applied to handle the scenario of stochastic undercoverage. We explore strategies for mitigating biases in estimating the mean of the target population under deterministic undercoverage. In particular, we examine a split population approach based on a convex hull formulation, and construct estimators with reduced biases. A doubly robust estimator can be constructed if a followup subsample of the reference probability survey with measurements on the study variable becomes feasible. Performances of six competing estimators are investigated through a simulation study and issues which require further investigation are briefly discussed.Release date: 2024-01-03
- Articles and reports: 12-001-X202300200009Description: In this paper, we investigate how a big non-probability database can be used to improve estimates of finite population totals from a small probability sample through data integration techniques. In the situation where the study variable is observed in both data sources, Kim and Tam (2021) proposed two design-consistent estimators that can be justified through dual frame survey theory. First, we provide conditions ensuring that these estimators are more efficient than the Horvitz-Thompson estimator when the probability sample is selected using either Poisson sampling or simple random sampling without replacement. Then, we study the class of QR predictors, introduced by Särndal and Wright (1984), to handle the less common case where the non-probability database contains no study variable but auxiliary variables. We also require that the non-probability database is large and can be linked to the probability sample. We provide conditions ensuring that the QR predictor is asymptotically design-unbiased. We derive its asymptotic design variance and provide a consistent design-based variance estimator. We compare the design properties of different predictors, in the class of QR predictors, through a simulation study. This class includes a model-based predictor, a model-assisted estimator and a cosmetic estimator. In our simulation setups, the cosmetic estimator performed slightly better than the model-assisted estimator. These findings are confirmed by an application to La Poste data, which also illustrates that the properties of the cosmetic estimator are preserved irrespective of the observed non-probability sample.Release date: 2024-01-03
- Articles and reports: 12-001-X202300200018Description: Sample surveys, as a tool for policy development and evaluation and for scientific, social and economic research, have been employed for over a century. In that time, they have primarily served as tools for collecting data for enumerative purposes. Estimation of these characteristics has been typically based on weighting and repeated sampling, or design-based, inference. However, sample data have also been used for modelling the unobservable processes that gave rise to the finite population data. This type of use has been termed analytic, and often involves integrating the sample data with data from secondary sources. Alternative approaches to inference in these situations, drawing inspiration from mainstream statistical modelling, have been strongly promoted. The principal focus of these alternatives has been on allowing for informative sampling. Modern survey sampling, though, is more focussed on situations where the sample data are in fact part of a more complex set of data sources all carrying relevant information about the process of interest. When an efficient modelling method such as maximum likelihood is preferred, the issue becomes one of how it should be modified to account for both complex sampling designs and multiple data sources. Here application of the Missing Information Principle provides a clear way forward. In this paper I review how this principle has been applied to resolve so-called “messy” data analysis issues in sampling. I also discuss a scenario that is a consequence of the rapid growth in auxiliary data sources for survey data analysis. This is where sampled records from one accessible source or register are linked to records from another less accessible source, with values of the response variable of interest drawn from this second source, and where a key output is small area estimates for the response variable for domains defined on the first source.Release date: 2024-01-03
- Articles and reports: 12-001-X202200200001Description:
Conceptual arguments and examples are presented suggesting that the Bayesian approach to survey inference can address the many and varied challenges of survey analysis. Bayesian models that incorporate features of the complex design can yield inferences that are relevant for the specific data set obtained, but also have good repeated-sampling properties. Examples focus on the role of auxiliary variables and sampling weights, and methods for handling nonresponse. The article offers ten top reasons for favoring the Bayesian approach to survey inference.
Release date: 2022-12-15 - Articles and reports: 12-001-X202200200002Description:
We provide a critical review and some extended discussions on theoretical and practical issues with analysis of non-probability survey samples. We attempt to present rigorous inferential frameworks and valid statistical procedures under commonly used assumptions, and address issues on the justification and verification of assumptions in practical applications. Some current methodological developments are showcased, and problems which require further investigation are mentioned. While the focus of the paper is on non-probability samples, the essential role of probability survey samples with rich and relevant information on auxiliary variables is highlighted.
Release date: 2022-12-15
Data (0)
Data (0) (0 results)
No content available at this time.
Analysis (22)
Analysis (22) (0 to 10 of 22 results)
- Articles and reports: 12-001-X202400100001Description: Inspired by the two excellent discussions of our paper, we offer some new insights and developments into the problem of estimating participation probabilities for non-probability samples. First, we propose an improvement of the method of Chen, Li and Wu (2020), based on best linear unbiased estimation theory, that more efficiently leverages the available probability and non-probability sample data. We also develop a sample likelihood approach, similar in spirit to the method of Elliott (2009), that properly accounts for the overlap between both samples when it can be identified in at least one of the samples. We use best linear unbiased prediction theory to handle the scenario where the overlap is unknown. Interestingly, our two proposed approaches coincide in the case of unknown overlap. Then, we show that many existing methods can be obtained as a special case of a general unbiased estimating function. Finally, we conclude with some comments on nonparametric estimation of participation probabilities.Release date: 2024-06-25
- Articles and reports: 12-001-X202400100002Description: We provide comparisons among three parametric methods for the estimation of participation probabilities and some brief comments on homogeneous groups and post-stratification.Release date: 2024-06-25
- Articles and reports: 12-001-X202400100003Description: Beaumont, Bosa, Brennan, Charlebois and Chu (2024) propose innovative model selection approaches for estimation of participation probabilities for non-probability sample units. We focus our discussion on the choice of a likelihood and parameterization of the model, which are key for the effectiveness of the techniques developed in the paper. We consider alternative likelihood and pseudo-likelihood based methods for estimation of participation probabilities and present simulations implementing and comparing the AIC based variable selection. We demonstrate that, under important practical scenarios, the approach based on a likelihood formulated over the observed pooled non-probability and probability samples performed better than the pseudo-likelihood based alternatives. The contrast in sensitivity of the AIC criteria is especially large for small probability sample sizes and low overlap in covariates domains.Release date: 2024-06-25
- Articles and reports: 12-001-X202400100004Description: Non-probability samples are being increasingly explored in National Statistical Offices as an alternative to probability samples. However, it is well known that the use of a non-probability sample alone may produce estimates with significant bias due to the unknown nature of the underlying selection mechanism. Bias reduction can be achieved by integrating data from the non-probability sample with data from a probability sample provided that both samples contain auxiliary variables in common. We focus on inverse probability weighting methods, which involve modelling the probability of participation in the non-probability sample. First, we consider the logistic model along with pseudo maximum likelihood estimation. We propose a variable selection procedure based on a modified Akaike Information Criterion (AIC) that properly accounts for the data structure and the probability sampling design. We also propose a simple rank-based method of forming homogeneous post-strata. Then, we extend the Classification and Regression Trees (CART) algorithm to this data integration scenario, while again properly accounting for the probability sampling design. A bootstrap variance estimator is proposed that reflects two sources of variability: the probability sampling design and the participation model. Our methods are illustrated using Statistics Canada’s crowdsourcing and survey data.Release date: 2024-06-25
- Articles and reports: 12-001-X202400100014Description: This paper is an introduction to the special issue on the use of nonprobability samples featuring three papers that were presented at the 29th Morris Hansen Lecture by Courtney Kennedy, Yan Li and Jean-François Beaumont.Release date: 2024-06-25
- Articles and reports: 12-001-X202300200005Description: Population undercoverage is one of the main hurdles faced by statistical analysis with non-probability survey samples. We discuss two typical scenarios of undercoverage, namely, stochastic undercoverage and deterministic undercoverage. We argue that existing estimation methods under the positivity assumption on the propensity scores (i.e., the participation probabilities) can be directly applied to handle the scenario of stochastic undercoverage. We explore strategies for mitigating biases in estimating the mean of the target population under deterministic undercoverage. In particular, we examine a split population approach based on a convex hull formulation, and construct estimators with reduced biases. A doubly robust estimator can be constructed if a followup subsample of the reference probability survey with measurements on the study variable becomes feasible. Performances of six competing estimators are investigated through a simulation study and issues which require further investigation are briefly discussed.Release date: 2024-01-03
- Articles and reports: 12-001-X202300200009Description: In this paper, we investigate how a big non-probability database can be used to improve estimates of finite population totals from a small probability sample through data integration techniques. In the situation where the study variable is observed in both data sources, Kim and Tam (2021) proposed two design-consistent estimators that can be justified through dual frame survey theory. First, we provide conditions ensuring that these estimators are more efficient than the Horvitz-Thompson estimator when the probability sample is selected using either Poisson sampling or simple random sampling without replacement. Then, we study the class of QR predictors, introduced by Särndal and Wright (1984), to handle the less common case where the non-probability database contains no study variable but auxiliary variables. We also require that the non-probability database is large and can be linked to the probability sample. We provide conditions ensuring that the QR predictor is asymptotically design-unbiased. We derive its asymptotic design variance and provide a consistent design-based variance estimator. We compare the design properties of different predictors, in the class of QR predictors, through a simulation study. This class includes a model-based predictor, a model-assisted estimator and a cosmetic estimator. In our simulation setups, the cosmetic estimator performed slightly better than the model-assisted estimator. These findings are confirmed by an application to La Poste data, which also illustrates that the properties of the cosmetic estimator are preserved irrespective of the observed non-probability sample.Release date: 2024-01-03
- Articles and reports: 12-001-X202300200018Description: Sample surveys, as a tool for policy development and evaluation and for scientific, social and economic research, have been employed for over a century. In that time, they have primarily served as tools for collecting data for enumerative purposes. Estimation of these characteristics has been typically based on weighting and repeated sampling, or design-based, inference. However, sample data have also been used for modelling the unobservable processes that gave rise to the finite population data. This type of use has been termed analytic, and often involves integrating the sample data with data from secondary sources. Alternative approaches to inference in these situations, drawing inspiration from mainstream statistical modelling, have been strongly promoted. The principal focus of these alternatives has been on allowing for informative sampling. Modern survey sampling, though, is more focussed on situations where the sample data are in fact part of a more complex set of data sources all carrying relevant information about the process of interest. When an efficient modelling method such as maximum likelihood is preferred, the issue becomes one of how it should be modified to account for both complex sampling designs and multiple data sources. Here application of the Missing Information Principle provides a clear way forward. In this paper I review how this principle has been applied to resolve so-called “messy” data analysis issues in sampling. I also discuss a scenario that is a consequence of the rapid growth in auxiliary data sources for survey data analysis. This is where sampled records from one accessible source or register are linked to records from another less accessible source, with values of the response variable of interest drawn from this second source, and where a key output is small area estimates for the response variable for domains defined on the first source.Release date: 2024-01-03
- Articles and reports: 12-001-X202200200001Description:
Conceptual arguments and examples are presented suggesting that the Bayesian approach to survey inference can address the many and varied challenges of survey analysis. Bayesian models that incorporate features of the complex design can yield inferences that are relevant for the specific data set obtained, but also have good repeated-sampling properties. Examples focus on the role of auxiliary variables and sampling weights, and methods for handling nonresponse. The article offers ten top reasons for favoring the Bayesian approach to survey inference.
Release date: 2022-12-15 - Articles and reports: 12-001-X202200200002Description:
We provide a critical review and some extended discussions on theoretical and practical issues with analysis of non-probability survey samples. We attempt to present rigorous inferential frameworks and valid statistical procedures under commonly used assumptions, and address issues on the justification and verification of assumptions in practical applications. Some current methodological developments are showcased, and problems which require further investigation are mentioned. While the focus of the paper is on non-probability samples, the essential role of probability survey samples with rich and relevant information on auxiliary variables is highlighted.
Release date: 2022-12-15
Reference (0)
Reference (0) (0 results)
No content available at this time.
- Date modified: