Frames and coverage

Filter results by

Search Help
Currently selected filters that can be removed

Keyword(s)

Type

1 facets displayed. 1 facets selected.

Content

1 facets displayed. 1 facets selected.
Sort Help

Results

All (2)

All (2) ((2 results))

  • Articles and reports: 12-001-X201500114149
    Description:

    This paper introduces a general framework for deriving the optimal inclusion probabilities for a variety of survey contexts in which disseminating survey estimates of pre-established accuracy for a multiplicity of both variables and domains of interest is required. The framework can define either standard stratified or incomplete stratified sampling designs. The optimal inclusion probabilities are obtained by minimizing costs through an algorithm that guarantees the bounding of sampling errors at the domains level, assuming that the domain membership variables are available in the sampling frame. The target variables are unknown, but can be predicted with suitable super-population models. The algorithm takes properly into account this model uncertainty. Some experiments based on real data show the empirical properties of the algorithm.

    Release date: 2015-06-29

  • Articles and reports: 12-001-X201400214128
    Description:

    Users, funders and providers of official statistics want estimates that are “wider, deeper, quicker, better, cheaper” (channeling Tim Holt, former head of the UK Office for National Statistics), to which I would add “more relevant” and “less burdensome”. Since World War II, we have relied heavily on the probability sample survey as the best we could do - and that best being very good - to meet these goals for estimates of household income and unemployment, self-reported health status, time use, crime victimization, business activity, commodity flows, consumer and business expenditures, et al. Faced with secularly declining unit and item response rates and evidence of reporting error, we have responded in many ways, including the use of multiple survey modes, more sophisticated weighting and imputation methods, adaptive design, cognitive testing of survey items, and other means to maintain data quality. For statistics on the business sector, in order to reduce burden and costs, we long ago moved away from relying solely on surveys to produce needed estimates, but, to date, we have not done that for household surveys, at least not in the United States. I argue that we can and must move from a paradigm of producing the best estimates possible from a survey to that of producing the best possible estimates to meet user needs from multiple data sources. Such sources include administrative records and, increasingly, transaction and Internet-based data. I provide two examples - household income and plumbing facilities - to illustrate my thesis. I suggest ways to inculcate a culture of official statistics that focuses on the end result of relevant, timely, accurate and cost-effective statistics and treats surveys, along with other data sources, as means to that end.

    Release date: 2014-12-19
Data (0)

Data (0) (0 results)

No content available at this time.

Analysis (2)

Analysis (2) ((2 results))

  • Articles and reports: 12-001-X201500114149
    Description:

    This paper introduces a general framework for deriving the optimal inclusion probabilities for a variety of survey contexts in which disseminating survey estimates of pre-established accuracy for a multiplicity of both variables and domains of interest is required. The framework can define either standard stratified or incomplete stratified sampling designs. The optimal inclusion probabilities are obtained by minimizing costs through an algorithm that guarantees the bounding of sampling errors at the domains level, assuming that the domain membership variables are available in the sampling frame. The target variables are unknown, but can be predicted with suitable super-population models. The algorithm takes properly into account this model uncertainty. Some experiments based on real data show the empirical properties of the algorithm.

    Release date: 2015-06-29

  • Articles and reports: 12-001-X201400214128
    Description:

    Users, funders and providers of official statistics want estimates that are “wider, deeper, quicker, better, cheaper” (channeling Tim Holt, former head of the UK Office for National Statistics), to which I would add “more relevant” and “less burdensome”. Since World War II, we have relied heavily on the probability sample survey as the best we could do - and that best being very good - to meet these goals for estimates of household income and unemployment, self-reported health status, time use, crime victimization, business activity, commodity flows, consumer and business expenditures, et al. Faced with secularly declining unit and item response rates and evidence of reporting error, we have responded in many ways, including the use of multiple survey modes, more sophisticated weighting and imputation methods, adaptive design, cognitive testing of survey items, and other means to maintain data quality. For statistics on the business sector, in order to reduce burden and costs, we long ago moved away from relying solely on surveys to produce needed estimates, but, to date, we have not done that for household surveys, at least not in the United States. I argue that we can and must move from a paradigm of producing the best estimates possible from a survey to that of producing the best possible estimates to meet user needs from multiple data sources. Such sources include administrative records and, increasingly, transaction and Internet-based data. I provide two examples - household income and plumbing facilities - to illustrate my thesis. I suggest ways to inculcate a culture of official statistics that focuses on the end result of relevant, timely, accurate and cost-effective statistics and treats surveys, along with other data sources, as means to that end.

    Release date: 2014-12-19
Reference (0)

Reference (0) (0 results)

No content available at this time.

Date modified: