Cost optimal sampling for the integrated observation of different populations

Articles and reports: 12-001-X201900300004

Description:

Social or economic studies often need to have a global view of society. For example, in agricultural studies, the characteristics of farms can be linked to the social activities of individuals. Hence, studies of a given phenomenon should be done by considering variables of interest referring to different target populations that are related to each other. In order to get an insight into an underlying phenomenon, the observations must be carried out in an integrated way, in which the units of a given population have to be observed jointly with related units of the other population. In the agricultural example, this means that a sample of rural households should be selected that have some relationship with the farm sample to be used for the study. There are several ways to select integrated samples. This paper studies the problem of defining an optimal sampling strategy for this situation: the solution proposed minimizes the sampling cost, ensuring a predefined estimation precision for the variables of interest (of either one or both populations) describing the phenomenon. Indirect sampling provides a natural framework for this setting since the units belonging to a population can become carriers of information on another population that is the object of a given survey. The problem is studied for different contexts which characterize the information concerning the links available in the sampling design phase, ranging from situations in which the links among the different units are known in the design phase to a situation in which the available information on links is very poor. An empirical study of agricultural data for a developing country is presented. It shows how controlling the inclusion probabilities at the design phase using the available information (namely the links) is effective, can significantly reduce the errors of the estimates for the indirectly observed population. The need for good models for predicting the unknown variables or the links is also demonstrated.

Issue Number: 2019003
Author(s): Falorsi, Piero Demetrio; Righi, Paolo; Lavallée, Pierre

Main Product: Survey Methodology

FormatRelease dateMore information
HTMLDecember 17, 2019
PDFDecember 17, 2019

Related information

Subjects and keywords

Subjects

Date modified: