Variance estimation under composite imputation: The methodology behind SEVANI - ARCHIVED
Articles and reports: 12-001-X201100211605
Composite imputation is often used in business surveys. The term "composite" means that more than a single imputation method is used to impute missing values for a variable of interest. The literature on variance estimation in the presence of composite imputation is rather limited. To deal with this problem, we consider an extension of the methodology developed by Särndal (1992). Our extension is quite general and easy to implement provided that linear imputation methods are used to fill in the missing values. This class of imputation methods contains linear regression imputation, donor imputation and auxiliary value imputation, sometimes called cold-deck or substitution imputation. It thus covers the most common methods used by national statistical agencies for the imputation of missing values. Our methodology has been implemented in the System for the Estimation of Variance due to Nonresponse and Imputation (SEVANI) developed at Statistics Canada. Its performance is evaluated in a simulation study.
Main Product: Survey Methodology
Format | Release date | More information |
---|---|---|
December 21, 2011 |
Related information
Subjects and keywords
Subjects
Keywords
- Date modified: