Linearization variance estimators for model parameters from complex survey data - ARCHIVED

Articles and reports: 12-001-X201000211381

Description:

Taylor linearization methods are often used to obtain variance estimators for calibration estimators of totals and nonlinear finite population (or census) parameters, such as ratios, regression and correlation coefficients, which can be expressed as smooth functions of totals. Taylor linearization is generally applicable to any sampling design, but it can lead to multiple variance estimators that are asymptotically design unbiased under repeated sampling. The choice among the variance estimators requires other considerations such as (i) approximate unbiasedness for the model variance of the estimator under an assumed model, and (ii) validity under a conditional repeated sampling framework. Demnati and Rao (2004) proposed a unified approach to deriving Taylor linearization variance estimators that leads directly to a unique variance estimator that satisfies the above considerations for general designs. When analyzing survey data, finite populations are often assumed to be generated from super-population models, and analytical inferences on model parameters are of interest. If the sampling fractions are small, then the sampling variance captures almost the entire variation generated by the design and model random processes. However, when the sampling fractions are not negligible, the model variance should be taken into account in order to construct valid inferences on model parameters under the combined process of generating the finite population from the assumed super-population model and the selection of the sample according to the specified sampling design. In this paper, we obtain an estimator of the total variance, using the Demnati-Rao approach, when the characteristics of interest are assumed to be random variables generated from a super-population model. We illustrate the method using ratio estimators and estimators defined as solutions to calibration weighted estimating equations. Simulation results on the performance of the proposed variance estimator for model parameters are also presented.

Issue Number: 2010002
Author(s): Demnati, Abdellatif; Rao, J.N.K.

Main Product: Survey Methodology

FormatRelease dateMore information
PDFDecember 21, 2010

Related information

Related products

Analysis

Subjects and keywords

Subjects

Keywords

Date modified: