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Linearization variance estimators  
for model parameters from complex survey data 

Abdellatif Demnati and J.�.K. Rao 1 

Abstract 

Taylor linearization methods are often used to obtain variance estimators for calibration estimators of totals and nonlinear 

finite population (or census) parameters, such as ratios, regression and correlation coefficients, which can be expressed as 

smooth functions of totals. Taylor linearization is generally applicable to any sampling design, but it can lead to multiple 

variance estimators that are asymptotically design unbiased under repeated sampling. The choice among the variance 

estimators requires other considerations such as (i) approximate unbiasedness for the model variance of the estimator under 

an assumed model, and (ii) validity under a conditional repeated sampling framework. Demnati and Rao (2004) proposed a 

unified approach to deriving Taylor linearization variance estimators that leads directly to a unique variance estimator that 

satisfies the above considerations for general designs. When analyzing survey data, finite populations are often assumed to 

be generated from super-population models, and analytical inferences on model parameters are of interest. If the sampling 

fractions are small, then the sampling variance captures almost the entire variation generated by the design and model 

random processes. However, when the sampling fractions are not negligible, the model variance should be taken into 

account in order to construct valid inferences on model parameters under the combined process of generating the finite 

population from the assumed super-population model and the selection of the sample according to the specified sampling 

design. In this paper, we obtain an estimator of the total variance, using the Demnati-Rao approach, when the characteristics 

of interest are assumed to be random variables generated from a super-population model.  We illustrate the method using 

ratio estimators and estimators defined as solutions to calibration weighted estimating equations. Simulation results on the 

performance of the proposed variance estimator for model parameters are also presented. 
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1. Introduction 

 
In survey sampling, estimation of a finite population total 

1 ( )�

k kY y Y y== ∑ ≡  is often of interest, where �  is the size 

of the finite population. For a general sampling design with 

positive inclusion probabilities ,kπ  a custumary design 

unbiased estimator of the total Y  is given by Ŷ =  

1/ ( ) ,�

i s i i k k ky d s y∈ =∑ π ≡ ∑  where s  is a sample, ( )kd s =  

( ) /k ka s π  are the design weights with ( ) 1ka s =  if k s∈  

and ( ) 0ka s =  otherwise. We use operator notation and 

write 1
ˆ( ) ( )�

k k kY z d s z== ∑  so that ˆ ˆ( ).Y Y y=  Henceforth, 

all the sums are considered on the whole population and 

hence write 1

�

k k ky y=∑ = ∑  and ˆ( ) ( ) ,k kY z d s z= ∑  to 

simplify the notation. Again, using the operator notation, we 

denote an unbiased estimator of the variance of ˆ( )Y z  as a 

quadratic function, ( ),zϑ  in the kz ’s. 

More complex estimators of a total Y  based on known 

population auxiliary information, such as ratio and 

regression estimators, and estimators of more complex 

parameters obtained as solutions to sample weighted 

estimating equations, such as estimators of “census” 

logistic regression coefficients, are also often used in 

practice. Estimators that can be expressed as a general 

functional ˆ( )T M  have also been studied, where M̂  

denotes a measure that allocates the weight ( )kd s  to ;ky  

for example, ˆ ˆ( ) ( )T M xdM x= ∫ = ( )k kd s y∑  if the popu-

lation parameter is the total ( ) ( ) ,T M xdM x Y= ∫ =  where 

the measure M  allocates a unit mass to each ky  (Deville 

1999). Large-sample estimation of the variance of such 

complex estimators, θ̂  say, has received considerable 

attention in the literature. In particular, Taylor linearization 

methods of estimating the variance of θ̂  are generally 

applicable to any sampling design that permits an unbiased 

variance estimator ( )zϑ  of ˆ( ).Y z  Binder (1983) studied 

estimators θ̂  that are solutions to weighted estimating 

equations and applied Taylor linearization to obtain a 

variance estimator that can be expressed as ( ),zϑ ɶ  where the 

linearized variable kzɶ  depends on unknown parameters, and 

kzɶ  is replaced by an estimator kz  that may be based on the 

substitution method. Deville (1999) derived a Taylor 

linearization variance estimator of the functional ˆ( )T M  as 

( ),zϑ ɶ  where kz =ɶ  ( ; )T kI M y  denotes the influence 

function of T  at ,ky  and then replaced kzɶ  by the sample 

estimator 1
ˆ( ; ).k T kz I M y=  For example, when θ̂  is the 

ratio estimator ˆ ˆ ˆ( / )Y X X RX=  of the total ,Y  where 
ˆ ˆ( )X Y x=  and ( )X Y x=  is the known total of an auxiliary 

variable ,x  we get kz =ɶ  k ky Rx−  and 1
ˆ .k k kz y Rx= −  

However, ˆ( / )kz X X=  ˆ( )k ky Rx−  is also a candidate to 

estimate kzɶ  and the resulting ( )zϑ  is often preferred over 

1( );zϑ  see Demnati and Rao (2004). Thus the choice of an 
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estimator of kzɶ  is somewhat arbitrary under Deville’s 

approach. 

Demnati and Rao (2004) studied general estimators that 

can be expressed as smooth functions of the weights 

1( ) { ( ), ..., ( )} ,T

�s d s d s=d  say ˆ ( ( )),f sθ = d  and obtained 

a Taylor linearization variance estimator directly as ( )zϑ  

with known linearized variables ( )( ) / |k k sz f b b == ∂ ∂ b d  

without estimating kzɶ  first and then replacing it by an 

estimator. For example, in the case of the ratio estimator 

their method automatically leads to kz  given above. This 

method can be applied to a variety of estimators including 

estimators of “census” logistic regression parameters based 

on calibration weights (Demnati and Rao 2004). Previous 

work on direct variance estimation includes Binder (1996). 

When analyzing survey data, the population values ,ky  

1, ..., ,k �=  are often assumed to be generated from a 

super-population model, and the user is often interested in 

making inferences on the model parameters. Let �θ  be a 

“census” parameter, i.e., an estimator of a model parameter 

θ  when the population ky -values are all known, and let θ̂  

be a design-unbiased estimator of ,�θ  the “census” 

parameter. Suppose that θ̂  is design-model unbiased for ,θ  

i.e., ˆ( ) ,m pE E θ = θ  where mE  and pE  respectively denote 

the expectations with respect to the design and the model. 

Then the total variance of θ̂  is 2ˆ ˆ( ) ( )m pV E Eθ = θ − θ  which 

can be decomposed as 

ˆ ˆ( ) ( ) ( ),m p m �V E V Vθ = θ + θ  (1.1) 

where 2ˆ ˆ( ) ( )p p �V Eθ = θ − θ  is the design variance of θ̂  and 

( )m �V θ  is the model variance of .�θ  It follows from (1.1) 

that the total variance may be estimated using a design-

based estimator of ˆ( )pV θ  if the last term ( )m �V θ  is 

negligible relative to ˆ( ).m pE V θ  In that case, the distinction 

between �θ  and θ  can be ignored (Skinner, Holt and 

Smith 1989, page 14). On the other hand, it is necessary to 

estimate the total variance ˆ( )V θ  when the model variance 

( )m �V θ  is not negligable relative to ˆ( ).m pE V θ  This 

requires consideration of the joint design and model random 

processes. Molina, Smith and Sugden (2001) argued that the 

combined process of generation of the finite population and 

selection of the sample should be the basis for analytical 

inferences on model parameters. Rubin-Bleuer and Şchiopu-

Kratina (2005) have provided a mathematical framework for 

joint model and design-based inference. However, a broadly 

applicable method is needed for the estimation of total 

variance. The main purpose of this paper is to provide such 

a method, by extending the Demnati-Rao approach for finite 

population parameters.  

In Section 2, we consider the case of a scalar parameter 

θ  and present linearization variance estimators by 

expanding the Demnati and Rao (2004) approach. The 

method is illustrated for the special case of a ratio estimator 

of a super-population mean .θ  Results of Section 2 are 

extended in Section 3 to estimators of a vector parameter θ  

obtained as solutions to weighted estimating equations, and 

the method is illustrated for the special case of parameters of 

a logistic regression model. Simulation results are also 

presented. 

 
2. Scalar model parameter 

 
2.1 Point estimators  

Consider a finite population U  of �  elements, and let 

( ) ( ) /k k kd s a s= π  be the design weights attached to the 

population element ,k  where ( ) 1ka s =  if element k  is in 

the sample s  and ( ) 0ka s =  otherwise, and kπ  is the 

inclusion probability associated with .k  We consider 

estimators θ̂  of a scalar parameter θ  that can be expressed 

as functions of random variables under the design and the 

assumed model. In particular, ˆ ( ),dfθ = A  where dA  is a 

( 1)p �+ ×  matrix with columns 1 2( , , ...,k k k k kd h d h=d  

( 1) 1 ( 1)) ( , ..., )T T
k p k k p kd h d d+ +≡  where ( )k kd d s=  is ran-

dom under the design, 1 1,kh =  and ikh ( 2, ..., 1)i p= +  are 

random under the model. 

For example, consider the ratio model with fixed 

covariates :kx  

2
( ) , ( ) , Cov ( , ) 0,

, , 1, ..., ,

m k k m k k m k tE y x V y x y y

k t k t �

= β = σ =

≠ =  (2.1)
 

where , ,m mE V  and Covm  denote model expectation, model 

variance, and model covariance respectively and 2 0.>σ  

Suppose that we are interested in estimating the super-

population mean 1( ) ( )m m kE Y � E y X−θ = = ∑ = β  where 

Y  is the finite population mean of .y  In this case, a ratio 

estimator of θ  is given by 

ˆ ˆ ˆ ˆ( / ) ,X Y X XRθ = ≡  (2.2) 

where ˆ ( )k kY d s y= ∑  and ˆ ( )k kX d s x= ∑  are the design-

unbised estimators of the totals Y and ,X  and X  is the 

know population mean of .x  We can write the ratio 

estimator (2.2) in the form 2 1
ˆ ( ) / ,k k kX d d xθ = ∑ ∑  where 

1 ( )k kd d s=  and 2 ( ) .k k kd d s y=  This is a special case of 

( )df A  with 1p =  and 2 .k kh y=  

Let pE  be the design expectation and m pE E E=  be the 

total expectation. Then, we have 1 1( ) (1) 1k m kE d E= = ≡ µ  

and ( ) ( ) ,ik m ik ikE d E g= ≡ µ 2, ..., 1,i p= +  noting that 

( ( )) 1.p kE d s =  We assume that ( ) ,f µ = θA  where µA  is a 

( 1)p �+ ×  matrix with columns 1 2( , , ...,k k k= µ µµ  

( 1) ) .T
p k+µ  Hence, θ̂  is asymptotically pm -unbised for .θ  

In the special case of the ratio estimator, we have 

( ) ,f Xµ = β = θA  noting that 1 1kµ =  and 2 .k kxµ = β  
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2.2 Linearization variance estimator  
We first derive an estimator of the total variance of a 

linear estimator ˆ ,T

k kU = ∑u d  where ku  is a vector of 

constants. The total variance of Û  may be decomposed as 

ˆ ˆ ˆ( ) ( ) ( ) ,m p m pV U E V U V E U I II= + ≡ +  (2.3) 

where pV  and mV  denote design variance and model 

variance respectively. A design-unbiased estimator of the 

component I  of the total variance (2.3) is obtained by 

estimating the design variance ˆ( )pV U  for fixed 

1 ( 1)( , ..., ) .T
k k p kh h +=h  Now, noting that ˆ ( )k kU b d s= ∑  is 

the standard Narain-Horvitz-Thompson (NHT) estimator of 

the total kU b= ∑  when T

k k kb = u h  are fixed conditionally, 

we can use either the Sen-Yates-Grandy (SYG) variance 

estimator for fixed sample size designs or the Horvitz-

Thompson (HT) variance estimator for arbitrary designs. 

The SYG estimator is given by 

SYG

2

ˆest( ) ( )

( )
( ) ( ) ,k t kt

kt k tk t
k t

I U

d s b b
<

= ϑ

π π − π
= −

π π
∑∑

 
(2.4)

 

where ( ) { ( ) ( )}/kt k t ktd s a s a s= π  and ktπ  is the inclusion 

probability for units k  and t ( ).k t≠  The HT variance 

estimator is given by 

HT

( )ˆest( ) ( ) ( ) ,kt k t
kt k t

k t

I U d s b b
π − π π

= ϑ =
π π

∑∑  (2.5) 

where ( ) ( ).kk kd s d s=  For the special case of stratified 

random sampling (2.4) and (2.5) are identical. 

Turning to the component II  of the total variance (2.3), 

we have ˆ( ) ( ) Cov ( , )T T
m p m k k k m k t tV E U V= ∑ = ∑∑u h u h h u  

and a pm -unbiased estimator is therefore given by 

est( ) ( ) cov ( , ) ,T

kt k m k t tII d s=∑∑ u h h u  (2.6) 

after replacing Cov ( , )m k th h  by an estimator cov ( , ).m k th h  

The estimator of total variance (2.3) is now given by 

est( ) est( ).I II+  We denote it, in operator notation, as 

( ).ϑ u  

We now turn to the estimation of total variance of ˆ.θ  

Following Demnati and Rao (2004), a Taylor expansion of 

θ̂ − θ  may be written as 

ˆ ( )T

k k kθ − θ ≈ −∑ ɶz d µ  (2.7) 

where ( ) / |
bk b kf

µ== ∂ ∂ɶ A Az A b  and bA  is a ( 1)p �+ ×  

matrix with thk  column ,kb  a vector of arbitrary real 

numbers. The approximation (2.7) is valid for any θ̂  that 

can be expressed as a smooth function of estimated totals. 

Following Demnati and Rao (2004), a linearization 

estimator of the total variance is now given by 

DR
ˆ( ) ( ),ϑ θ = ϑ z  (2.8) 

which is obtained from ( )ϑ u  by replacing ku  by the 

“linearized variable” ( ) / | .
b dk b kf == ∂ ∂ A Az A b  A rigorous 

theoretical justification of (2.8) follows along the lines of 

Deville (1999). 
 
2.3 Special case of ratio estimator  

For the ratio estimator ˆ ˆX Rθ =  of the model parameter 

,Xθ = β kz  reduces to 

1 2
ˆ ˆ( / ) ( ,1) ( , ) .T T

k k k kX X R x z z= − =z  (2.9) 

Further, kb  in (2.4) or (2.5) is replaced by 

1 2

ˆ ˆ ˆ( / ) ( ) ( / ) ,

T

k k k k k

k k k

z z y

X X y R x X X e

= +

= − ≡

z h
 

using (2.9). Also, replacing ku  by kz  in (2.6) we get 

2 2cov ( , ) cov ( , ).T

k m k t t k t m k tz z y y=z h h z  

Under the ratio model (2.1) with unspecified model variance 
2( ) ,m k kV y = σ 1, ..., ,k �=  we can estimate 2

kσ =  
2( )m k kE y x− β  by 2ˆ( )k ky Rx−  and letting cov ( , )m k ty y =  

0, for .k t≠  

We now study the special case of simple random 

sampling without replacement. In this case, both (2.4) and 

(2.5) reduce to 

2

21
est( ) 1 ,e

X n
I s

x n �

   = −  
  

 (2.10) 

where 2 2( ) /( 1),e k ks a s e n= ∑ −  and (2.6) reduces to  

2

2( 1)
est( ) .e

X n
II s

x n�

− 
=  
 

 (2.11) 

Hence, using (2.10) and (2.11), the variance estimator (2.8) 

reduces to 

DR

2

2

ˆ( ) est( ) est( )

1 1
.e

I II

X �
s

x n �

ϑ θ = +

− 
=  
 

 (2.12)
 

It is interesting to note that the “g-weight” /X x  appears 

automatically in DR
ˆ( ),ϑ θ  given by (2.12), and that the finite 

population correction 1 /n �−  is absent in DR
ˆ( )ϑ θ  unlike 

in ( )est I  given by (2.10).  

In the customary approach to the estimation of total 

variance (see e.g., Korn and Graubard 1998) ˆ( )V θ  is first 

written as 
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2 2

ˆ ˆ ˆ( ) ( ) ( )

ˆ( ) ( )

ˆ( ) ( ) ,

m p m p

m p m

m p m k k

V E V V E

E V V Y

E V � E y x−

θ = θ + θ

≈ θ +

= θ + −β∑
 

(2.13)

 

under the ratio model with unspecified 2,kσ 1, ..., .k �=  The 

first term ˆ( )m pE V θ  in (2.13) is then estimated by a design-

consistent estimator of ˆ( ),pV θ  typically by (2.10) without 

the g-factor 2( / ) .X x  The second term is estimated by 
2 2 1 2ˆ( ) ( ) ( ) ( 1) .k k k e� d s y R x n� n s− −∑ − = −  The sum of 

the two estimated terms then equals (2.12) without the 

g-factor. We denote this customary variance estimator by 

cus
ˆ( ).ϑ θ  On the other hand, if (2.10) with the g-factor is 

used to estimate ˆ( ),pV θ  the sum of this estimated term and 

the previous estimator of the second term leads to a 

“hybrid” variance estimator  

1 2

mix
ˆ( ) est( ) ( ) ( 1) ,eI n� n s−ϑ θ = + −  

where the g-term is absent in the last term. It is clear from 

the above results that the choice of estimator of total 

variance under the customary approach is not unique, unlike 

under the proposed approach. 

If the parameter of interest is / Xβ = θ  instead of ,θ  

then ˆ ˆ ˆ/ X Rβ = θ =  and DR
ˆ( )ϑ β  under simple random 

sampling is give by 

2 2 2

DR DR

1 1ˆ ˆ( ) ( ) .e

�
X x s

n �

− − −
ϑ β = ϑ θ =  (2.14) 

The customary approach leads to the same variance 

estimator, (2.14). 

 

2.4 Simulation study  
We conducted a small simulation study to examine the 

performances of different variance estimators, both un-

conditionally and conditionally on ˆ .X  We first generated 

R = 2,000 finite populations 1{ , ..., }�y y  each of size � =  

393, from the ratio model 

1/ 22 ,k k k ky x x= + ε  (2.15) 

with independent values kε  generated from (0,1),�  where 

the fixed kx  are the “number of beds” for the Hospitals 

population studied in Valliant, Dorfman and Royall (2000, 

page 424-427). One simple random sample of specified size 

n  is drawn from each generated population. Our parameter 

of interest is ,Xθ = β  where 2.β =  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 1 Averages of variance estimates for selected sample sizes compared to estimated 

MSE of the ratio estimator. 
DR

ϑϑϑϑ = DR var. est., 
s

ϑϑϑϑ = Sampling component: ratio 
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Simulated total MSE of the ratio estimator ˆ ( / )X y xθ =  

is calculated as 1 2,000 2

1
ˆ ˆ( ) ( ) ,r rM R−

=θ = ∑ θ − θ  where ˆ
rθ  is 

the value of θ̂  for the thr  simulated sample and ( , )y x  are 

the sample means. We calculated the total variance estimate 

DR
ˆ( ),ϑ θ  and its components est( )s Iϑ =  and est( )m IIϑ =  

from each simulated sample r  and their averages DR ,ϑ ,sϑ  

and mϑ  over .r  Figure 1 gives a plot of the average of 

variance estimates, DRϑ  and ,sϑ  and the simulated total 

MSE for 20, 40, ..., 380, 393.n =  In the case of ,n �=  

0.sϑ =  It is seen from Figure 1, that DRϑ  is approxiamatly 

unbiased, whereas sϑ  leads to severe underestimation as the 

sample size, ,n  increases.  

We also examined the conditional performance of the 

variance estimators under simple random sampling given 

,x  by conducting another simulation study for inference on 

,θ  using model (2.15). The study is similar to the study of 

Royall and Cumberland (1981) for inference on the finite 

population mean � Yθ =  from a fixed population 

1{ , ..., }.�y y  We generated R = 20,000 finite populations 

1{ , ..., },�y y  each of size � = 393 from (2.15) using the 

number of beds as ,kx  and from each population we then 

selected one simple random sample of size n = 100. We 

arranged the 20,000 samples in ascending order of 

x -values and then grouped them into 20 groups each of 

size 1,000 such that the first group, 1,G  contained 1,000 

samples with the smallest x -values, the next group, 2,G  

contained the next 1,000 smallest x -values, and so on to get 

1 20, ..., .G G  For each of the 20 groups so formed, we 

calculated the average values of the ratio estimates 
ˆ ( / )X y xθ =  and the mean estimates ,y  and the resulting 

conditional relative bias (CRB) in estimating 2 ;Xθ =  see 

Figure 2. It is clear from Figure 2 that y  is conditionally 

biased unlike ˆ :θ  negative CRB (-14%) for 1G  increasing to 

positive CRB (+14%) for 20.G  Note that both y  and θ̂  are 

unconditionally unbiased for .θ  The conditional bias of θ̂  

and y  in estimating the model parameter θ  is similar to the 

conditional bias in estimating the “census” parameter 

,� Yθ =  as observed by Royall and Cumberland (1981). 

We also calculated the conditional MSE of θ̂  and the 

associated CRB of the variance estimators DR ,ϑ cusϑ  and 

mixϑ  based on the average values of DR ,ϑ cusϑ  and mixϑ  in 

each group; see Figure 3. It is evident from Figure 3 that 

CRB of cusϑ  ranges from -28% to 20% across the groups 

whereas DRϑ  exhibits no such trend and its CRB is less 

than 5% in absolute value except for 6G  and 20.G  Also, the 

CRB of mixϑ  is largely negative and below that of DRϑ  for 

the first half of the groups and above for the second half, but 

mixϑ  exhibits no visible trends unlike cus.ϑ  

Figure 4 reports the conditional coverage rates (CCR) of 

normal theory confidence intervals based on DR ,ϑ cus,ϑ  

mixϑ  and sϑ  (ignoring the component )mϑ  for nominal 

level of 95%. As expected, the use of sϑ  leads to severe 

undercoverage because the sampling fraction, 100/393, is 

significant. On the other hand, CCR associated with DRϑ  is 

closer to nominal level across groups, while cusϑ  exhibits a 

trend across groups with CCR ranging from 91% to 97%. 

Further, CCR associated with mixϑ  is slightly below that of 

DRϑ  for the first half of the groups but mixϑ  and DRϑ  

perform similarly. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2 Conditional relative bias of the expansion and ratio estimators: ratio model 

 

R
el

a
ti

v
e 

B
ia

s 

Groups 

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

 

20% 

 
15% 

 
     10% 

 
5% 

 
0% 

 
-5% 

 
-10% 

 
-15% 

  
  mean                                  ratio estimate 



198 Demnati and Rao: Linearization variance estimators for model parameters from complex survey data 

 

 

Statistics Canada, Catalogue No. 12-001-X 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3 Conditional relative bias of variance estimators 
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Figure 4 Conditional coverage rates of normal theory confidence intervals based on 

DR
,ϑϑϑϑ cus
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3. Calibration weighted estimating equations 
 
3.1 Estimators of model parameters 
 

Suppose that the super-population model on the 

responses ky  is specified by a generalized linear model 

(McCullagh and Nelder 1989) with mean ( )m kE y =  

( ) ( ),T

k khµ =θ θx  where kx  is a 1p ×  vector of explanatory 

variables, θ  is the p -vector of model parameters and (.)h  

is a “link” function. For example, ( )h a a=  gives a linear 

regression model and ( ) /(1 )a ah a e e= +  gives a logistic 

regression model for binary responses .ky  

We define census estimating equations (CEE) , based on 

estimating functions ( ),k θl  as ( ) ( )k= ∑ =θ θ 0l l  with 

( ) ,m kE =θ 0l  and the solution to CEE gives the census 

parameter vector .�θ  For example, ( ) ( ( ))k k k ky= −θ µ θl x  

for linear and logistic regression models. We use 

generalized regression (GREG) weights ( )kw s =  

( ) ( ( )),k kd s g sd  where the “g-weights” are given by 

-1
ˆ( ( )) 1 ( ) ( ) ,T T

k k k k k k kg s d s c c = + −  ∑d T T t t t  

for specified ,kc  where ˆ ( )k kd s= ∑T t  is the HT estimator 

of the known total T  of a 1q ×  vector of calibration 

variables kt  and ( )sd  is the 1� ×  vector of the weights 

( ).kd s  The GREG weights, ( ),kw s  have the calibration 

property ( )k kw s∑ =t T  and lead to efficient estimators 

( )k kY w s y= ∑ɶ  of totals ,kY y= ∑  when ky  and kt  are 

linearly related (Särndal, Swensson and Wretman 1989, 

chapter 6). 

We use the calibration weights, ( ),kw s  to estimate the 

CEE. The calibration weighted estimating equations are 

given by 

( ) ( ) ( ) ( ) ( ( )) ( ) .k k k k kw s d s g s= = =∑ ∑θ θ θ 0ɶl l d l  (3.1) 

The solution to (3.1), obtained by the Newton-Raphson-

type iterative method, gives the calibration-weighted 

estimator θɶ  of ,θ  and θɶ  is approximately design-model 

unbiased for ,θ  i.e., ( ) .E ≈θ θɶ  It follows from (3.1) that θɶ  

is of the form ( )df A  with ( ( ), ( ) ( )) ,T T

k k k kd s d s= θd l  

where ( )df A is a 1p ×  vector and dA  is a ( 1)p �+ ×  

matrix with thk  column .kd  Here we have 1 1kh =  and 

2 ( 1)( , ..., ) ( ).k p k kh h + = θl  
 
3.2 Linearized variance estimators  

We first extend the result on variance estimation for the 

scalar case ˆ T

k kU = ∑b d  (Section 2.2) to the vector case 
ˆ ( ),T

k k k kd s= ∑ = ∑U U d b  where k k k=b U h  is a p-vector 

and kU  is a ( 1)p p× +  matrix with rows ,T
jku 1, ..., .j p=  

In this case, the SYG variance estimator (2.4) is changed to 

 

SYG
ˆ( ) ( )

( )
( ) ( ) ( ) .Tk t kt

kt k t k tk t
k t

I U

d s
<

= ϑ

π π − π
= − −

π π
∑∑

est

b b b b
 

(3.2)
 

Similarly, the H-T variance estimator (2.5) is changed to 

HT

( )ˆ( ) ( ) ( ) .
Tkt k t

kt k t

k t

I U d s
π − π π

= ϑ =
π π

∑∑est b b  (3.3) 

Turning to the component II  of the total variance of ˆ,U  

(2.6) is changed to 

( ) ( ) cov ( , ) .T

kt k m k t tII d s=∑∑est U h h U  (3.4) 

The total variance of Û  is estimated by the sum of (3.2) 

and (3.4) for fixed sample size designs or by the sum of 

(3.3) and (3.4) for arbitrary designs. 

A linearization variance estimator of the total variance of 

θɶ  is obtained from the estimated total variance estimator of 

Û  by replacing kU  by the linearized variable k =Z  

( ) / | .
b db k =∂ ∂ A Af A b  Following the implicit differentiation 

method of Demnati and Rao (2004), kZ  reduces to 

-1 ˆ[ ( )] ( ( )) ( , ),T
k k l k pg s= −θɶɶZ J d B t I  

with 
-1

ˆ ( ) ( ) ( ),T T
l k k k k k k k kd s c d s c =  ∑ ∑ θɶB t t t l  

( ) ( ) ( ( )) ( ( ) / ),T

k k kd s g s= − ∂ ∂∑θ θ θɶJ d l  

and pI  is the p p×  identity matrix.  

After some simplification, the first component ( )Iest  is 

given by (3.2) or (3.3) with kb  changed to 

-1[ ( )] ( ) ( ( )),k k k ke g s= θ θɶ ɶɶZ h J d  (3.5) 

where 

ˆ( ) ( ) .T

k k l k= −θ θɶ ɶe l B t  

Similarly, the second component ( )IIest  simplifies to  

-1 2 -1

( )

[ ( )] ( ) ( ( )) ( ) ( )[ ( )] ,T

k k k k

II

d s g s

=

∑

est

θ θ θ θɶ ɶ ɶ ɶɶ ɶJ d l l J
 

(3.6)

 

if Cov [ ( ) ( )]T

m k t =θ θ 0ɶ ɶl l  for .k t≠  

The total variance estimator of θɶ  is now estimated by  

DR ( ) ( ) ( ).I IIϑ = +θ est estɶ  (3.7) 

This variance estimator of θɶ  automatically takes account of 

the g-weights as in Section 2. 

A customary variance estimator of ,θɶ cus ( ),ϑ θɶ  is 

obtained from (3.7) by ignoring the g-weights in (3.5) and 

(3.6). Similarly, a hybrid variance estimator, mix ( ),ϑ θɶ  is 
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obtained from (3.7) by retaining the g-weights in ( )Iest  

and ignoring them in ( ).IIest  
 
3.3 Simulation study  

We conducted a simulation study to compare the relative 

performances of the three variance estimators DR ,ϑ cus,ϑ  

and mix,ϑ  for the special case of a logistic regression model: 

     ( ) ( ) exp( ) /{1 exp( )}T T

m k k k kE y = µ = +θ θ θx x  (3.8) 

( ) ( ) (1 ( )), Cov ( , ) 0, .m k k k m k tV y y y k t= µ − µ = ≠θ θ  

In this case, we have ( ) ( ( )),k k k ky= − µθ θl x  and 

( ) ( ) ( ( )) ( )(1 ( )).T

k k k k k kd s g s= µ − µ∑θ θ θɶJ d x x  

For the simulation study, we set (1, ) ,T

k kx=x  where 

the kx  denote the number of beds for the Hospitals 

population of size � = 393 studied in Section 2.2. We 

implemented post-stratification by dividing the population 

into two classes with 1 171� =  hospitals k  having 

350kx <  in class 1 and 2 122� =  hospitals k  with 

350kx ≥  in class 2. Here, ˆ( ( )) / ,k h hg s � �=d 1, 2,h =  if 

k  belongs to class ,h  where ˆ ( )h k hk� d s t= ∑  is the 

design-weight estimator of ,h�  and 1 2( , )T

k k kt t=t  is the 

vector of class indicator variables .hkt  

We generated R = 40,000 finite populations 1{ , ..., },�y y  

each of size � = 393, assuming the logistic regression 

model (3.8) with 0 1( , ) ( 1, 0.005) .T T= θ θ = −θ  The para-

meter of interest is 1θ = 0.005. From each generated 

population, we selected one simple random sample of size 

n = 150, and then obtained the calibration-weighted esti-

mated 1θɶ  and associated variance estimators est( )I =  

1( ),sϑ θɶ DR 1( ),ϑ θɶ cus 1( )ϑ θɶ  and mix 1( )ϑ θɶ  from each sample 

.r  We obtained the averages of the estimates and the 

variance estimates as 1
ˆav( )θ ≈ 0.00514, DRav( )ϑ ≈  0.0989, 

cusav( )ϑ ≈ 0.0987, mixav( )ϑ ≈ 0.0988, and av( )sϑ ≈ 0.0613. 

Also, the estimated total MSE of 1θ̂  is equal to 0.0998. 

Hence, unconditionally the estimator 1θɶ  is approximately 

unbiased for 1,θ  and the bias of the three variance 

estimators DR ,ϑ cusϑ  and mixϑ  is negligible. On the other 

hand ignoring the second component and using only the 

first component, 1est( ) ( ),sI = ϑ θɶ  leads to severe 

underestimation, as expected. 

We also examined the conditional performances of the 

three variance estimators along the line of Section 2.2. We 

arranged the 40,000 samples in ascending order of the 

sample size, 1,n  in class 1, and then grouped the samples 

into twenty groups, each of size 2,000, such that the first 

group, 1,G  contained the 2,000 samples with the smallest 

1n -values, the second group, 2,G  contained the 2,000 

samples with the next smallest 1n -values, and so on to get 

twenty groups, 1 20, ..., .G G  

We calculated the conditional MSE of 1θɶ  and the 

associated conditional relative bias (CRB) of the variance 

estimators DR ,ϑ cusϑ  and mixϑ  based on the average values 

of DR ,ϑ cusϑ  and mixϑ  in each group; see Figure 5. We can 

see from Figure 5 that CRB of cusϑ  ranges from 20% to 

-20% across the groups, whereas DRϑ  exibits no such trend 

and its CRB is less than 5% in absulate value except for two 

groups. Also, the CRB of mixϑ  exhibits a trend but less 

prononced than cus.ϑ  Figure 6 reports the conditional 

coverage rates (CCR) of normal theory intervals based on  

DR ,ϑ cusϑ  and mixϑ  for nominal level of 95%. We can see 

from Figure 6 that cusϑ  exhibits a trend across groups with 

CCR ranging from 97% to 92%, whereas CCR associated 

with DRϑ  is close to the nominal level across groups. 

Further, CCR associated with mixϑ  is slighthy above that of 

DRϑ  for the first half of the groups and slighty below for the 

remaing groups. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5 Conditional relative bias of variance estimators: logistic regression 
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Figure 6 Conditional coverage rates of normal theory confidence intervals for nominal level of 95%: logistic regression 

 

 

Concluding remarks 
 

We have studied the estimation of total variance of 

estimators of model parameters under an assumed super-

population model. Our approach leads directly to a 

linearization variance estimator which is shown to perform 

well under a conditional framework when calibration 

weights are used for estimation. We are currently inves-

tigating extensions of our method to estimation of total 

variance under imputation for item nonresponse and 

integration of two independent surveys. 
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