Bias reduction in standard errors for linear regression with multi-stage samples - ARCHIVED
Articles and reports: 12-001-X20020029058
Linearization (or Taylor series) methods are widely used to estimate standard errors for the co-efficients of linear regression models fit to multi-stage samples. When the number of primary sampling units (PSUs) is large, linearization can produce accurate standard errors under quite general conditions. However, when the number of PSUs is small or a co-efficient depends primarily on data from a small number of PSUs, linearization estimators can have large negative bias.
In this paper, we characterize features of the design matrix that produce large bias in linearization standard errors for linear regression co-efficients. We then propose a new method, bias reduced linearization (BRL), based on residuals adjusted to better approximate the covariance of the true errors. When the errors are independent and identically distributed (i.i.d.), the BRL estimator is unbiased for the variance. Furthermore, a simulation study shows that BRL can greatly reduce the bias, even if the errors are not i.i.d. We also propose using a Satterthwaite approximation to determine the degrees of freedom of the reference distribution for tests and confidence intervals about linear combinations of co-efficients based on the BRL estimator. We demonstrate that the jackknife estimator also tends to be biased in situations where linearization is biased. However, the jackknife's bias tends to be positive. Our bias-reduced linearization estimator can be viewed as a compromise between the traditional linearization and jackknife estimators.
Main Product: Survey Methodology
Format | Release date | More information |
---|---|---|
January 29, 2003 |
Related information
Subjects and keywords
Subjects
Keywords
- Date modified: