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Bias Reduction in Standard Errors for Linear Regression with
Multi-Stage Samples

Robert M. Bell and Daniel F. McCaffrey *

Abstract

Linearization (or Taylor series) methods are widdly used to estimate standard errors for the coefficients of linear regression
models fit to multi-stage samples. When the number of primary sampling units (PSUs) is large, linearization can produce
accurate standard errors under quite genera conditions. However, when the number of PSUs is smdl or a coefficient
depends primarily on data from a small number of PSUs, linearization estimators can have large negative bias. In this paper,
we characterize features of the design matrix that produce large bias in linearization standard errors for linear regression
coefficients. We then propose a new method, bias reduced linearization (BRL), based on residuas adjusted to better
approximate the covariance of the true errors. When the errors are i.i.d., the BRL estimator is unbiased for the variance.
Furthermore, a simulation study showsthat BRL can greatly reduce the bias even if the errors are not i.i.d. We aso propose
using a Satterthwaite approximation to determine the degrees of freedom of the reference distribution for tests and
confidence intervals about linear combinations of coefficients based on the BRL estimator. We demonstrate that the
jackknife estimator also tends to be biased in situations where linearization is biased. However, the jackknife' s biastends to
be positive. Our bias reduced linearization estimator can be viewed as a compromise between the traditiona linearization

and jackknife estimators.

Key Words: Complex samples; Linearization; Jackknife; Satterthwaite approximation; Degrees of Freedom.

1. Introduction

Regression andysis of multi-stage samples has become
very common in recent years (for example, Ellickson and
McGuigan 2000; Shapiro, Morton, McCafrrey, Senterfitt,
Fleishman, Perlman, Athey, Keesey, Goldman, Berry and
Bozzette 1999; Goldstein 1991; Landis, Lepkowski, Ekland
and Stehouver 1982). Although hierarchical models (Bryk
and Raudenbush 1992; Gelman, Carlin, Stern and Rubin
1995, Chapter 13) allow andysis of both fixed and random
effects, many analysts prefer the simplicity of standard
regression models when random effects are not of direct
interest. Standard regression estimators produce unbiased
parameter estimates that can be efficient, but the default
standard error estimators do not account for the sample
design, resulting in inconsistent standard errors (Kish 1965;
Skinner 19893). Various methods produce consistent
standard error estimates gpplicable when the number of
primary sampling units (PSUs) is sufficiently large. These
include sample reuse methods such as the jackknife, boot-
strap and balance repeated replication as well as linear-
ization (or Taylor series) methods.

Linearization (Skinner 1989b) is a nonparametric method
for estimating the standard errors of design-based statistics
such as means and ratios as well as coefficients from linear
and nonlinear regression models. By nonparametric, we
mean that linearization does not rest on any assumptions
about the within-PSU error structure, such as an assumption
of constant intra-cluster correlation. When the number of
PSUs can be conddered large, linearization produces

consgent standard errors in the presence of multiple
features of complex sample desgns-dratification, multi-
stage sampling, and sampling weights-as well as hetero-
skedastic errors (Fuller 1975). Because of these desirable
properties and its increased availability in software such as
SUDAAN, Stata, and SAS Version 8.0 (Shah, Barnwell,
and Bidler 1997; StataCorp. 1999; SAS Indtitute, Inc. 1999),
linearization has become a common method for estimating
standard errors and confidence intervals and for conducting
datistical tests on data from complex sample designs (for
example, Ellickson and McGuigan 2000; Shapiro et al.
1999; Rust and Rao 1996). Linearization has also been
proposed for estimating standard errors from Generaized
Estimating Equations (GEE) fit to multi-stage data (Zeger
and Liang 1986).

However, the linearization method has limitations.
When the number of primary sampling units is small,
standard error estimates can be severely biased low, they
can have large coefficients of variation, and the standard
degrees of freedom may be far too liberd (Kott 1994;
Murray, Hannan, Wolfinger, Baker and Dwyer 1998).
Consequently, standard linearization inference for coeffi-
cients based mainly on data from a small number of PSUs
may produce confidence intervals that are too narrow and
testswith Type | error ratesthat are substantialy higher than
their nominal values. Sample reuse methods like the
jackknife have similar limitations.

In this paper, we characterize the design factors (i.e., the
distribution of explanatory variables within and between
PSUs) that produce large bias in linearization and jackknife

1. Robert M. Bell, Statistics Research Department, AT& T Labs-Research, Room C211, 180 Park Ave., Florham Park, NJ 07932; Daniel F. McCaffrey,
Statistics Group, RAND, 201 North Craig Street, Suite 202, Pittsburgh, PA 15213-1516.
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gandard errors for linear regression coefficients and
demonstrate that the problem can persist even when the
number of PSUs is quite large. We then propose an
dternative to the standard linearization estimator that is
unbiased for independent, identically distributed (i.i.d.)
errors and tends to grestly reduce bias otherwise. We also
present approximate degrees of freedom for use with tests
and confidence intervals based on our variance estimator.
Simulation results show improved small sample properties
of our dternative estimator and test compared with those of
more traditional methods. Finally, we present an example of
our methods using data from a national experiment
evaluating care for depression.

2. Bias of the Linearization Method

For simplicity, we restrict consideration in the body of
this paper to unweighted linear regression for two-stage
nongratified samples. Extensions to weighted estimators
and dratified samples are presented in McCaffrey, Bell and
Botts (2001) and discussed further in section 8.

Let n equa the number of PSUs and m, equal the
number of final sampling units from the it PSU, for
i =1, .., n. The overall sample sizeis M =Y, m. We
assume that y; =p’x; +¢;, where £ has mean 0 and
covariance matrix V, and where Yiis Xij and & al refer
to the jt observation from the 1t PSU. We drop the
standard OLS assumption of i.i.d. errors, assuming only
that errors from distinct PSUs are uncorrelated.
Specifically, we assume that V is block diagonal, with
m xm blocks Vv, fori = 1, .., n. In addition to the
notation of this model, throughout the paper, we let T
denote an M xM identity matrix and I, equal an
m xm,_identity matrix.

Let B denote the estimated coefficients of the linear
regression model. To smplify presentation, we generally
discuss a linear combination of the regression coefficients,
¢ B for an arbitrary column vector I. For the spemal case
whereone dement of | = 1 andtherest are 0, I’ equalsa
single estimated coefficient. If errors are uncorrelated across
PSUs, thevariance of I'B is

Var (I'p) = |’(x’x)1(_zn: XV, X, J(X’X)ll, 0

where X and X; are the design matrices for the entire sample
and for PSU i, respectively.

The gtandard linearization estimator of the variance of
I’B isgiven by:

[CZX, rr’X, j XX ©
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where r; is the vector of residuals for the ith PSU.
Comparison of (1) and (2) shows that linearization smply
involves estimating V; by a congtant ¢ times the outer
product of the resduas. The congant c is typicaly set
equal to n/(n— 1), the value used by SUDAAN and the Stata
svy procedures (Shah, Banwell, and Bider 1997;
StataCorp. 1999). For GEE procedures, Zeger and Liang
(1986) =t ¢ = 1.

Under fairly genera conditions, nv. converges in
probability to the variance of the asymptotic distribution of
x/ﬁ(I’B —1I'B) and the relaive bias of v is O(1/n) as the
number of PSUs gets large (Fuller 1975; Kott 1994). To
demonstrate convergence for the bias of v, Kott (1994)
assumes that the number of observations from every PSU is
bounded and that elements of (X’ X)X’ are bounded by
B/n for a constant B. These assumptions effectively ensure
that the influence of any PSU on the find estimate
diminishes as the number of PSUs grows. Convergence of
the bias of v holds for heteroskedastic data from stratified
samples with unegqual sampling weights and arbitrary corre-
lation structure within PSUs. Unfortunately, consistency
does not guarantee good properties for smal to moderate
numbers of PSUs.

Theorem 1. WhenV = ¢ landc=n/(n-1), EW) <
Va (I’ B) with equality if and only if I’ (X’ X)X/ X; is
constant acrossi.
Proof. Without loss of generality, we assume that
=1 so that V = I. The residual vector r can be
written as (I — H) €, where H = X(X’ X)™X’ isthe hat or
projection matrix for X. Thus, we have that r; =
(I-H),¢, where (I — H); contains the m; rows of (I — H)
for the ith PSU. Consequently,

E(v,)= (ni_J (xx)*

(ixf (1 ) E@) - HYX, J(x'x)ll

i=1

- (nL_J (X’ X)™

i(x; X, - X)X, (X' X)X/ X, ) (XX ()

because E(eg’) = I and (I — H) I-H){ = (-
H; = Xi{(X’ X) X/. Let D =X' X -
Notethat &, D, = L X] X; —X'X = 0. Thus,

H;) for
(Un) (X’ X).
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E(v,) =(LJI'(X’X)‘1

Zn: (Xi’ X, —[(1/n)X’X+D,] (X’X) ™ [(1/n)X’X+D, ])

)1|

Lo

( ~@/n)X’ X - ZD X' X) Dij(x’x)‘ll

i=1

=X’ X) 1 - (LJI (x"x)*

n-1

S0
=Var(l’ B)( J[qux) j @)

for & =D (x X)? =X X~ (Un) (X X)] (X X)7.
Because (X’ X)™ is positive definite, E(v ) < Var(l” B ) with
equdity if and only if & = 0, or equivdently, X/’ X
(X’ X)™ | is constant across thei.

Replication methods do not necessarily avoid the
problem of bias for regresson variance edimators. A
jackknife estimator for multi-stage samples can be derived
from the set of pseudo values{ B}, estimates of § from
data that excludethe it PSU:

4

w=l0-0 M S VB -8)By -8 ©®

(Cochran 1977; Rust and Rao 1996). If (I;
foral i, then

- Hii)_l exiss

Ve =[(=/m]I"(X X)' Y X((1 - H,)
ror (L -H, )X (XOX) 7, ©®

which  follows from the wupdating formula
(X'X-XX))'= (X'X)"+(X'X)"  X{(L, -H;)"
X, (X"X) ™" (Cook and Weisberg 1982; Bell and McCaffrey
2002, page 34). Some authors (Efron and Tibshirani 1993)
suggest an alternative jackknife estimator with 3 replaced
by the mean of the B;;’sin (5). These two methods provide
very similar estimates in our simulations, so we discuss only
the version based on (5) in what follows.

Theorem 2. WhenV = ¢°I and (I; — H;)™" exists for ll
i, then E(vik) > Var(I’B) with equdity if and only if I’
(X’ X)™ X/ X; is constant acrossi (proof in appendix).

The following example shows that the conditions for
linearization and the jackknife estimators to be unbiased are
very restrictive even for simplelinear regression.

Example 1. Consider simple linear regression. We have
that
1 Y. 2, g2 _ g
Xi/Xi(X/X)—llz mz B 2X|_2 S +X X I
Ms®| X S™+X -X 1

where & and {s?} are ML estimates for the overall and
within-PSU variances of x, with divisors M and {m},
respectively. So we have

XX (X'X)' =

To have vp and vy unbiased for the dope, i.e, for
I”=(0,1), we must have tha m(X,—X) and
m (s*+X°—XX) are both constant across i. The former
implies that X =X, and together they imply that

=Y (x; —X)? is constant. Note that m need not be
condtant. These two conditions are not sufficient to
guarantee unbiasedness for I’ = (1, 0), however. Additiona
agebra shows that the bias in the linearization estimator for
the variance of the dope equals

W{Z[m(x X)]2+Z{Z(X| —X)?- ms}}

i+1 =1| j=1

Consequently, the bias includes a part that is proportiona to
the weighted variance of the PSU means of x and another
that is proportiond to the variance of the within-PSU sums
of squares.

The example shows that when the errors are i.i.d., v is
unbiased only under very redtrictive conditions. When
V # 1, Theorems 1 and 2 do not hold, and the biasin v can
even be positive (see Example 2 of Bel and McCaffrey
2002).

In generdl, v, tends to have negative bias. The estimator
is the sum over PSUs of squares of linear combinations of
residuals, ¢“21”(X’ X)™X/’ ;. These sums of squares tend to
be too small for two reasons. residuals are generally smaller
than true errors due to overfitting, and residuals tend to have
lower intra-cluster correlation than the errors. The factor
¢ = n/(n-1) corrects completely for these problems only
in very redtricted circumstances like the conditions in
Theorem 1.

The bias of the linearization estimator (or the jackknife)
increases with the between-PSU variance of the explanatory
variables. Consequently, explanatory variables that are
(nearly) constant within PSUs tend to exhibit the largest
bias. When there are several such explanatory variables,
there can be substantial underestimation of intra-cluster

Statistics Canada, Catalogue No. 12-001
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correlations, leading to large bias in estimated variances for
al the corresponding coefficients. Even greater bias
potential appears to occur when certain PSUs account for
most of the variability in the covariates and have dispro-
portionate impact on the determination of 1" .

3. The Bias Reduced Linearization Method

Phillip Kott has proposed two methods for reducing the
bias in linearization. Kott (1994) suggested correcting the
bias in v, by using the residuds and the design matrix to
estimate the negative of the bias of v, by R (R >0,
typically) and setting vios = Wi /(1 — R /). Kott suggested
the estimator vkq rather than the more obvious (vLA+ R) as
ad hoc compensation for the relative bias in R as an
estimator of the true negative bias, R.

In his 1996 paper, Kott suggests calculating the ratio of
Va(l’B) to E(v) under the assumption that V = I and
adjusting v, by the ratio. If V = I then the resulting esti-
mator Vkgs Will be unbiased.

In the context of generalized estimating equations, Mancl
and DeRouen (2001) take a different approach to correcting
the bias in the linearization estimator. They suggest
adjusting the residuals from each PSU to reduce the bias in
rix; as an estimator of V;. For the unweighted linear model
given in section 2, they approximate E(rir') by
(i —Hp)Vi(L — Hi) and suggest replacing r; by
(I, -H;)™r, in equation (2). Thus, for unweighted linear
models the Manc and DeRouen edimator equals
n/(n-1) v, and the properties on this estimator follow
from the properties of the jackknife estimator.

We present an alternative approach that we first proposed
in 1997 (McCaffrey and Bell 1997). The method is aso
based on replacing r; in equation (2) with adjusted residuals
of the form ri* = Air; intended to act more like the true
erors g;. Like Kott (1996), we derive an estimator that
eliminates the bias of v when V equas U, a specified
block-diagona covariance matrix, and reduces the bias for
other V. Like Mancl and DeRouen (2001) we adjust the
residuals from each PSU. However, using U we derive an
dternative approximation to the E(rir;') and our resulting
estimator is not proportional to the jackknife but rather can
be seen as a compromise between the linearization and
jackknife estimators. Our approach is also a generdization
of the method of MacKinnon and White (1985), who adjust
individua residuas to produce a heteroskedastically-
consigent variance estimator (in the sense of White 1980)
that is unbiased when the errors are independent and
homoskedastic.

Theorem 3.
matrix U, consider the class of estimators v,. =1"(X"X)
CrL.X A ATX) (X' X)), where A;, satisfies
A [(IT — H;UI - H)|,] AI, =0 fori= l,A..., n. If
V =kU for somescaar k, then E(v.) =Var (I"B).

For a specified block-diagonal covariance

-1
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Proof. Theexpected valueof v,. isgivenby

E(v.)

O XA, (kU
X’ x)™

= '(X'X)‘l(i X/ (KU, )X, j(X’X)‘ll =Var(l’p).

i=1

Without external evidence to the contrary, an analyst is
likely to use a working covariance matrix of the form
U = ¢, which simplifies the condition on A; to A,
(L —H;y) A’ = I;or

AT A =(I, _Hii)_l' )

Weset U = Tinwhat follows.

A solution to equation (7) exists for PSU i whenever
(I; —Hjy) is full rank, which is true if al the eigenvalues of
H;; are grictly less than 1 (the eilgenvalues of H;; are aways
between 0 and 1). An eigenvaue of H; may equa 1 —eg.,
when the modd includes a dichotomous explanatory
variable that is one if and only if an observation falsin the
ith PSU.

For m> 1, A; isnot unique If A; satisfies AYA; =
m - Hn)_l, then so does OA,;, for any m x m orthogonal
matrix O. If V = o°I, the choice of A; IS unimportant
because any solution to (7) will produce an unbiased
variance estimator. However, the resulting estimators are
biased when V = o1, and the bias can vary greatly with the
choice of A;. Heurigticaly, it makes sense to choose the
solution A “closest” to the identity matrix, o as to “mix”
the residuals as little as possible. Two promising candidates
are the Cholesky decomposition of (I, — H;) ™, which hasall
0's below the diagona, and the symmetric square root of
I - Hn)_l. Let P be an orthogona matrix whose columns
are the eigenvectors of (I, — H;)™ and A be a diagond
matrix containing the corresponding eigenvalues of
(I —Hy) ™, so that (I, — H;) ™ = PAP’. Then for A equal to
the elementwise square root of A, PAY?P’ is symmetric and
solves (7). In contrast, multiplying either of these two
solutions by a random orthogonal matrix could greatly
distort the residuals.

Among the class of adjusted residuals of the form Ajr;
where A; satisfies (7), those based on the symmetric square
root of (I —H;) ™, 1y = PAY?P’r;, are “best” in the sense
of Theil (1971) — i.e., they minimize the expected sum of
the squared differences between the estimated and truei.i.d.
errors (see pages 36—37 of Bel and McCaffrey 2002 for
details). When there is intra-cluster correlation, smulation
results in section 6 suggest that the bias of v, based on the
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symmetric square root is greatly reduced compared with that
of the traditional linearization estimator, vi. For these
reasons, we consder only the symmetric root in the
remainder of the paper and refer to the estimator using this
root as the biased reduced linearization estimator, Vg, .

As Kott (1994) proved for v, if the number of units in
every PSU is bounded and the elements of (X’X)™X’ are
bounded by B/n for some constant B (i.e,
(X’X)™X’=0(1/n)), then the hias in vgr. is O(N™) and
the relative bias is O(1/n) (Bell and McCaffrey 2002, page
15).

4. Variance of the Estimators and Testing

We note that v, Vg, and vy can al be written in the
form

V=d/(X' X)) XA R A X (X X) T,

where: ¢ = n/(n — 1), 1, or (n — 1)/ n, respectively, and
A = 1, (Ii - Hii)_llz, or (Ii - Hii)_l, respectlvely This
formulation of the estimators shows that vgg, can be viewed
as a compromise between v and vy, chosen to offset their
opposing biases.

Theorem 4. Let the eror terms be didributed as
multivariate norma  with mean 0 and nonsingular
covariance matrix V. Then for any variance estimator of the
form

V=d/(X' X)) XA R A X (X X) T,

Vv equals the weighted sum of independent x? random
variables where the weights are the eigenvalues of the
nxn marix G = {g' Vg}, for g = "1 - HY
A X (X’ X)™ | (proof in appendix).

We can write v as a quadratic form y’G’y, where the
M-by-M matrix G* = Y, g g , sothat v isaweighted
sum of independent chi-square random variables with
weights equal to the eigenvalues of G'V. The proof consists
of showing that the nonzero eigenvalues of G’V equal the
nonzero eigenvalues of G.

The mean and variance of v' are simple functions of the
dgenvalues of G, namely E(V) = YL A E(U?) =30,
and Var(v) = YLAVar(u?) =YL 202 If V = 6% and
Xi' Xi (X X)‘ll fori = 1, ..., nareconstant, conditions for
v, and v to be unbiased, then Theorem 4 implies that av,,
avx, and avgr ae dl digributed 2, for a=
(n=-1)/Va(l’B) (Bel and McCaffrey 2002, pages 41-42).
However, in general, the X' X; (X’ X)™ will not be constant
and the sguared coefficient of variation will exceed
2/(n — 1), the corresponding statistic for a x2 , random
variable.

This excess variability is of particular concern when
considering reference distributions for testing the null
hypothesis that |3 = 0, with test dtatistics of the form

t = I8/WV For v, Sheh, Holt and Folsom (1977)
suggested comparing t to a reference t—distribution with
n—1 degrees of freedom, which is now the default in Stata
(Stata Corp. 1999), SUDAAN (Shah, Barnwell and Bieler
1997) and SAS (SAS Ingtitute 1999). The choice of n— 1
degrees of freedom is motivated by the fact that v can be
written as the sum of sguares of n random variables
c’’ X’ X)™ X/ r. However, because the variance of
(n—=1) v, /E(v, ) tends to be greater than 2(n — 1), tests
that use a t—distribution with n — 1 degrees of freedom
would tend to have Type | eror rates that exceed the
nomina value, evenif v, were unbiased.

Satterthwaite (1946) suggested approximeating the distri-
bution of alinear combination of y? variablesby x4 (upto
a condant) where the first two moments of the linear
combination match those of 3 . We would approximate v,
VerL OF Vi by @ x2 wheref=2/co= (X0_,A, )2/ A2
and the A; are the eigenvalues of the corresponding matrix
G. Tests based on reference t-distributions with f degrees of
freedom would be expected to provide better Type | error
rates than tests based on n— 1 degrees of freedom. Rust and
Rao (1996) aso suggest using a Satterthwaite approxi-
mation to estimate the degrees of freedom for the jackknife
estimator. They present results for the estimator of a mean,
while Theorem 4 extends this agpproach to testing linear
combinations of regression coefficients. Kott (1994, 1996)
suggests using the Satterthwaite approximation to estimate
the degrees of freedom for tests based on his aternatives to
linearization.

The coefficient of variation for any of the nonparametric
variance estimators can be very large for certain designs.
High variability occurs under the same conditions that v,
and vy are most biased — when residuals from only a few
PSUs effectively determine the final variance estimate. This
variability of the estimators is an inherent cost of using
nonparametric techniques.

Because the Satterthwaite degrees of freedom f requires
specifying the unknown matrix V, we have investigated two
methods for setting V. The first treats V as block-diagonal
and estimates each block with the outer-product of the
resduals for the PSU. Because preliminary simulation
results showed that degrees of freedom based on this
empirica estimate of V produced tests that were extremely
conservative, we do not present any simulation results for
this method. Kott (1994) also found that estimating V for
use in the formula for estimated degrees of freedom proved
unsatisfactory. Instead, we used a second method that sets
V identicaly equal to the identity matrix — i.e., it assumes
independent, homoskedastic errors for purposes of deter-
mining degrees of freedom.

The distribution of vgr. (and the other variance
egtimators) tends to be less skewed and have less mass in
the lower tail than the distribution of a x4 where f equals
the Satterthwaite degrees of freedom. Hence, reference
t—distributions based on the Satterthwaite approximation
tend to overestimate tail probabilities. For example, when
data from a couple of PSUs nearly determine the value of a

Statistics Canada, Catalogue No. 12-001
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coefficient, the Satterthwaite degrees of freedom can be less
than two, incorrectly implying a chi-square density that is
infinite at zero. Consequently, the probability of very large
t-gatistics may not be as large as the Satterthwaite approxi-
mation would imply, especially when the Satterthwaite
degrees of freedom are lessthan 4 or 5.

5. Simulation Methods

We use a Monte Carlo smulation to study the properties
of aternative variance estimators and tests for a balanced
two-stage cluster sample with n = 20 PSUs and a constant
m = 10 observations in each PSU. All simulation repli-
cations use a common design matrix X with four explana-
tory variables chosen to represent a range of difficulty for
nonparametric variance estimators. The first two explana-
tory variables, x; and x,, are dichotomous (0 or 1) and
congtant within PSU. The variable x; is 1 in half the clusters:
1, 3, .., 19, while x; is 1 in just three clusters: 9, 10, and
11. Both x3 and x4 were generated from standard normal
distributions. They differ in that x; was generated from a
multivariate norma with intra-cluster correlation of 0.5
within PSU, while x, was generated from independent
normal distributions. Observed intra-cluster correlations are
1.00, 1.00, 0.62 and —0.04, respectively. Observed correla
tions among the explanatory variables are all very small
with the exception of Corr(x;, xo) = 0.14, Corr(x,, Xs) =
0.25 and Corr(xs, X4) = —0.11. The estimated regression

9

coefficients are linear combinations of the dependent
variable with multipliers given by the rows of (X’X)™X’,
which are shown in Figure 1. For the first three coefﬂments
and to a lesser extent B, observations from the same PSU
tend to have smilar multipliers. Of more importance, ,,
By, and B, are determined primarily by results in a small
number of PSUs with rdatively large multipliers (in
absolute value), For example, Figure 1 shows that the
multipliersfor B, arelargefor the second PSU, which hasa
mean that is over two standard deviations from the average
PSU mean. In genera, variance in the PSU means gives
some PSUs grester weight for estimating B .

The dependent variable was generated from the equation
Yi = B’ % + €j, where B = 0 and the &'s are standard
multivariate normal random variables with intra-cluster cor-
relation p. We use three alternative values of p = 0,1/9, and
1/3, corresponding to design effects for the sample mean of
DEFF=1, 2, and 4, respectivdy (DEFF= 1+ (m — 1) p).
Monte Carlo results are based on 100,000 replications of y
for our fixed X.

We evaluated the ordinary least squares (OLS) variance
estimator, s?I” (X’ X)™, and five nonparametric variance
edimators: the standard linearization estimator given in
equation (2) with ¢ = n/(n — 1); the jackknife estimator
given in (5); bias reduced linearization; and Kott's two
adjustments to linearization. BRL and the Kott adjustments
are all based on working intra-cluster correlationsof p = 0.
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s le!ﬁégii |§ I i Ili iEI I !|| d 11 l E!Iltl 1L |“!’F ‘(; firat i ! ” i glil ! i i ! Yy II.EJ !!E
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Figure 1. Vaues of therowsof (X' X)X for the design matrix used in smulations.
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We estimated Type | error rates for eight aternative test
procedures based on 100,000 replications from the null
hypothesis where each B, = 0, for k = 0 to 4. Each
procedure compares a “t—datistic’ against a reference
t—distribution. For the t's based on linearization, the jack-
knife, and BRL, we wuse critica vaues from
t—distributions with both (n—1) =19 degrees of freedom
and the corresponding Satterthwaite approximation. For
Kott's methods, we use his proposed degrees of freedom.
All computations were implemented in SAS.

6. Simulation Results

Table 1 shows the bias of severd variance estimators for
the five regression coefficients (including the intercept) for
p =0,1/9, and 1/3. Except for Kott (1994), al values are
exact based on the X matrix described above. Because Kott
(1994) cannot be written as a linear functiona, its bias is
edimated from the Monte Carlo smulations, and the
standard error of the biasis shown in parentheses.

Table 1
Bias of Variance Estimators
(as a Percentage of the True Variance)

Estimator Po P1 P2 B3 Pa
p=0
OLS 0.0 0.0 0.0 0.0 0.0
Linearization -96 -132 -325 -133 -18
Jackknife 117 172 512 176 21
Kott (1994) 4.0 25 -10 22 4.7
(standard error) (02) (01 (03 (0.2 (0.2)
Kott (1996) 0.0 0.0 0.0 0.0 0.0
BRL 0.0 0.0 0.0 0.0 0.0
p=1/9
OLS -502 -497 -50.7 -37.7 4.1
Linearization -103 -142 -332 -171 -25
Jackknife 110 164 501 1938 32
Kott (1994) 39 27 -08 15 4.6
(standard error) (02 (01 (@03 (02 (0.1
Kott (1996) -08 -12 -10 -44 -07
BRL -07 -10 -08 -12 0.1
p =13
OLS -758 -755 -762 -653 138
Linearization -10.7 -148 -335 -199 -41
Jackknife 107 159 495 214 59
Kott (1994) 36 24 -06 14 44
(standard error) (02 (01 (@03 (02 (0.1
Kott (1996) -12 -19 -15 -77 -23
BRL -10 -15 -13 -21 0.4

Note: All values are exact except for Kott (1994), which is
based on 100,000 simulation replications.

The OLS variances are unbiased for p = 0, but they are
badly biased for p = 1/9 and 1/3. Asdiscussed in Wu, Holt,
and Holmes (1988), the OLS variances are too small by

roughly a factor of /[1 + p(m — 1) ICC{, where ICC
denotesthe intra-cluster correlation for an x variable. Hence,
for PSU-level variables (including the intercept), the OLS
variances are too smal by roughly a factor of 1/DEFF.
Similarly, the bias is smdler, but still substantia for xs, the
individual-level variable with large intra-cluster correlation.
The positive bias for the OLS variance of 8, results from
the dight negative intra-cluster correlation for ;.

Linearization and the jackknife each suffer from large
biases, relatively independent of p, but the biases point in
opposite directions. For each estimator, the magnitude of the
bias varies grestly among the coefficients. The largest biases
(in absolute value) occur for B,, which depends mainly on
the data from three PSUs. The next greatest biases occur for
B, followed closdy by B, and B, .

Except for B,, Kott (1994) has much smaller magnitude
bias than linearization. However, the method tends to over-
compensate, often resulting in notable positive bias. An
exception is B,, for which Kott's estimator remains biased
low.

By design, Kott (1996) and BRL eiminate the bias for
p = 0. Consequently, choice among these alternatives
should rest mainly on how well they hold down bias for
V # 1. Both methods reduce the magnitude of bias
dramatically relative to linearization for p = 1/9 and 1/3.
Although differences between the two methods are often
small, BRL does uniformly better, with its worst bias being
—2.1 percent. While Kott (1996) is practicaly indis-
tinguishable from BRL for the PSU-levdl varigbles, it
performs substantially worsefor B, and 8, .

The linearization, jackknife, BRL and Kott estimators are
highly correlated with similar coefficients of variation. For
any given regression coefficient, the correlation among the
variance egtimators aways exceeded 0.969, with most
exceeding 0.99 (not shown). The smalest correations
tended to be between the jackknife and other estimators.
The coefficients of variation (dlso not shown) were largest
for Kott (1994) and tended to be smallest for linearization
and Kott (1996) (except for the intercept). For the intercept,
the jackknife had the smallest coefficient of variation. The
relative variance of the BRL estimator was similar to that of
the alternative nonparametric methods. Its coefficient of
variation was between 1 and 6 percent larger than that of the
linearization estimator but about 5 to 10 percent smaller
than that of Kott (1994). Thus, the five nonparametric
variance estimators tend to differ from each other mainly by
consant factors, and Table 1 summarizes the main
difference among these variance estimators.

Table 2 shows the Satterthwaite degrees of freedom for
each of the five coefficients for the linearization, jackknife,
BRL and Kott variance estimators. For al estimators the
degrees of freedom were caculated assuming V = T and
consequently depend only on the design matrix and not on
the values of y. The approximations are similar for linear-
ization and BRL dthough the linearization degrees of
freedom tend to be dightly larger reflecting the fact that for
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this design matrix the relative variances of the BRL esti-
mators are margindly larger than those for linearization.
Kott's gpproximation derives the coefficient of variation for
a linearization-type estimator based on the true errors rather
than the residuals. As a result, Kott's gpproximate degrees
of freedom, which are larger than those for linearization or
BRL, tend to overdtate the precision of his estimator (see
Kott 1994, section 6). Across al four edtimators, the
approximations are smallest for 3, .

Table 2
Degrees-of-Freedom for Selected Estimators

Method Bo B B2 B3 Pa
Satterthwaite (LIN)

9.02 1445 3.30 11.56 16.65

Satterthwaite 952 13.30 262 9.06 16.23
(Jackknife)
Satterthwaite (BRL) ~ 9.24 14.08 2.90 10.26 16.45

Kott's method 10.33 1641 4.32 11.36 17.44

Table 3 shows that Type | error rates for the standard
linearization method with (n — 1) degrees of freedom
consistently exceed 5 percent for all three values of p. Type
| errors are most common for 8, where they reach as high
as 16 percent, but they also occur much too frequently for
By, By, and B,, ranging from 7.0 to 8.8 percent. The
magnitude of this problem correates closaly with the size of
the bias of the linearization estimator (see Table 1). Type |
error rates are much lower, 5.7 to 6.4 percent, for tests based
on the Satterthwaite degrees of freedom. Thus using the
dternative degrees of freedom improved the Type | error
rates by about 30 to 88 percent.

There is a less consgtent pattern for the Type | error
probabilities for the jackknife. The jackknife with (n — 1)
degrees of freedom tends to be conservative for , and B,
in accord with the positive bias in the jackknife variance. In
contrast, the probability of Type | error is much too large for
B,, and ahbit too largein two of three cases for the intercept
Bo- The apparent explanation is that the choice of (n—1) as
the degrees of freedom for the reference t—distribution
sometimes counteracts the bias in the jackknife variance.
This conclusion is supported by the very low Type | error
rates for the jackknife with Satterthwaite degrees of
freedom; smaller degrees of freedom combined with large
positive biases result in very conservative tests.

BRL with (n — 1) degrees of freedom improves substan-
tially on linearization with the same degrees of freedom.
Because BRL is unbiased when p = 0, comparing the fifth
row of the table against the first demongtrates the reduction
in Type | erors that results from removing the bias of
linearization. Excluding f,, BRL reduces Type| error rates
by about 45 to 88 percent. However, BRL with (n — 1)
degrees of freedom remains consistently liberal, especialy
for B,. Comparison of rows 2 and 5 of each section shows
the relative impact of bias reduction and the Satterthwaite
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adjustment. For B, and B,, degrees of freedom are more
important, while bias matters more for B; and B..
Performance for BRL with the Satterthwaite approximation
is very good, except for ,, wherethe Type| error falls to
about 3 percent.

Table 3
Type | Error Rates for Tests of the Null Hypothesisthat f =0
Estimator Df ﬁo 61 [32 [33 [%4
p=0

Linearization n—1 754 700 1599 735 5.38
Linearization Satt 575 645 633 628 518

Jackknife n—1 501 3.92 758 452 5.02

Jackknife Satt 3.80 343 141 326 477

Kott (1994) Kott 487 503 713 521 467

Kott (1996) Kott 511 5.08 485 476 5.07

BRL n—1 6.28 537 1125 590 5.21

BRL Satt 473 486 312 472 500
p=1/9

Linearization n—1 781 714 1619 818 534
Linearization Satt 6.03  6.60 643 7.05 514

Jackknife n—1 531 4.06 7.63 449 477

Jackknife Satt 411 361 148 324 451

Kott (1994) Kott  5.07 5.03 7.00 551 4.56

Kott (1996) Kott 542 5.28 514 532 5.01

BRL n—-1 652 550 1127 623 508

BRL Satt 5.04 5.00 319 493 4.84
p=13

Linearization n—-1 810 728 1639 879 566
Linearization St 630 6.78 6.62 753 544

Jackknife n—1 545 411 776 456  4.67
Jackknife Satt 413 361 151 335 4.46
Kott (1994) Kott 514  5.06 702 580 484
Kott (1996) Kott 559 544 514 5838 531
BRL n—1 676 563 1155 645 519

BRL Satt 518 514 330 526 498

Note: Entries with atrue value of 5.00 percent have standard
errors of 0.07 percent.

Tests based on Kott's 1994 estimator with his proposed
degrees of freedom perform very well for the coefficients
where the variance estimator is biased upward. It appears
that the upward biasin the variance estimator is offset by the
upward bias in the gpproximate degrees of freedom. Kott's
variance estimator is slightly negatively biased for §, and
therefore the upward bias in the degrees of freedom
compounds the bias in the estimator resulting in a Type |
error rate of about 7 percent for all three values of p.

Tests based on Kott's 1996 estimator also perform well.
For amogt all the coefficients and al values of p the Typel
error rate is close to 5 percent. The exception is the test for
B; when p = 1/3, which has an error rate of 5.88 percent
asaresult of the moderate biasin the variance estimator.
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7. Example from the Partners in Care
Experiment

We illustrate the methods in this paper using data from
Partners in Care, a longitudinal experiment assessing the
effect of “qudity improvement” programs on care for
depression in managed care organizations (MCOs) (Wells
et al. 2000). The experiment followed 1,356 patients who
screened positive for depression in 1996—1997 in 43 clinics
of seven MCOs. Clinics were assigned at random to one of
three experimentd cells. usud care, a quality improvement
program supplemented by resources for medication follow-
up, or a quality improvement program supplemented by
resources for access to psychotherapists. Clinics were
assigned at random after forming 27 clinic sets — three for
each of nine blocks (sx MCOs congtituted single blocks,
and one MCO was divided into three blocks based on ethnic
mix of the clinics). Within blocks of more than three clinics,

clinic sets were combined to match as closely as possible on
anticipated sample size and patient characteristics. See
Wadlset al. (2000) for additional details.

We present results from an OL S regression on the mental
health summary score from the SF12 (Ware, Kosinski, and
Keller 1995) for 1,048 patients at 6—month follow-up.
Scores were standardized to have mean 50 and standard
deviation 10 in a general population, with higher scores
indicating better hedth. As in Wells et al. (2000), the
explanatory variable of primary interest is an intervention
indicator that estimates the combined effect of medication
or therapy versus care as usud. The first two columns of
Table 4 show OLS coefficients and standard errors for the
intervention effect and al the covariates used by, but not
reported in, Wells et al. (2000). Our regression differs from
theirs because we do not weight for nonresponse or impute
for missing values of the outcome variable, but the results
for the intervention effect agree reasonably closely.

Table 4
Comparison of OLS, Linearization, and BRL Inference for Partner-in-Care Example
R SEin SEgrL P-value
Explanatory Variable Bj SEors  SEos SEos DFgg. oLS LIN BRL
PSU-Level
Intercept 28.795 3.409 1.03 1.06 23.7 0.000 0.000 0.000
Intervention 1.724 0.746 0.73 0.84 15.4 0.021 0.003 0.015
Block 1 1.386 1.867 0.63 0.80 2.7 0.458 0.244 0.426
Block 2 —0.031 1.576 0.88 1.07 3.6 0.984 0.982 0.986
Block 3 —1.042 1.230 0.53 0.61 39 0.397 0.117 0.241
Block 4 0.038 1.231 0.62 0.73 45 0.976 0.961 0.968
Block 5 —3.707 1.503 0.66 0.78 4.7 0.014 0.001 0.027
Block 6 —0.025 1.562 1.15 1.32 4.9 0.987 0.989 0.991
Block 7 —2.784 1.644 0.84 0.97 7.0 0.090 0.051 0.126
Block 8 0.822 1.233 0.93 1.03 12.0 0.505 0.476 0.527
Demographic
Black 0.972 1.448 0.74 0.79 7.6 0.502 0.369 0.419
Hispanic 0.202 1.004 0.73 0.75 24.3 0.841 0.785 0.791
Other nonwhite —1.033 1.409 0.77 0.80 216 0.463 0.349 0.369
Female —0.502 0.803 1.09 112 231 0.532 0.571 0.581
Log of net worth + $1,000 0.015 0.215 0.87 0.89 236 0.943 0.936 0.937
Less than high school —1.690 1.217 1.00 1.04 25.3 0.165 0.173 0.192
Some college —1.140 0.879 0.77 0.78 26.0 0.195 0.097 0.108
College graduate —0.703 1.047 0.78 0.79 211 0.502 0.393 0.404
Age 0.059 0.032 0.91 0.93 26.5 0.064 0.047 0.056
Married 0.541 0.748 1.05 1.07 285 0.470 0.496 0.504
Basdline Hedlth
1 chronic condition (of 19) —0.973 1.039 0.92 0.94 237 0.349 0.313 0.327
2 chronic conditions 0.198 1.116 0.87 0.90 230 0.859 0.840 0.846
3+ chronic conditions —0.201 1.132 0.90 0.91 240 0.859 0.844 0.847
Depression and dysthymia —5.305 1.335 0.93 0.95 258 0.000 0.000 0.000
Depression or dysthymia —3.882 0.982 1.12 1.15 237 0.000 0.001 0.002
Prior depression only -2.396 1.109 1.02 1.05 21.2 0.031 0.040 0.052
Mental component of SF-12 0.287 0.036 111 114 26.6 0.000 0.000 0.000
Physical comp of SF-12 0.079 0.036 0.88 0.89 24.6 0.029 0.017 0.022
Anxiety disorder —2.438 0.749 1.20 1.23 26.3 0.001 0.010 0.014
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Because patients from the same clinics could have
smilar outcomes, OLS standard errors could easily be too
low — especidly for PSU-level variables like Intervention.
Columns 3 and 4 of Table 4 show the ratios of linearization
and BRL standard errorsto the OLS standard errors. We use
clinic asthe PSU because thereis very little reason to expect
correlations of errors across clinics after controlling for
block.

Using the method of Wu, Holt and Holmes (1988), we
estimate the intra-clinic correlation of the errors as —0.0026,
easly consistent with a true value of 0. Nonetheless, there
iS no reason to expect any of the correct standard errors to
fal much below those obtained from OLS. Column 3 of
Teble 4 shows that the linearization standard errors
frequently fall far below those obtained from OLS —
especidly for the PSU-level explanatory variables at the top
of the table. Similarly, linearization with a reference t,_;
often produces much smaller P—values than does OLS.

BRL improves over linearization. BRL standard errors
are aways larger and sometimes substantialy larger than
the linearization standard errors. For example, the BRL
edimates for PSU-level explanatory varigbles are on
average 15 percent larger than the linearization estimates.
On the other hand, BRL standard errors for PSU-level
variables are gill often smaller than the OLS estimates.
Thus, even though BRL edtimators should be nearly
unbiased, the variability in the estimators results in estimates
for some coefficients that are small. The variability is also
reflected in degrees of freedom that are very smal for the
block indicators and, while larger for patient level variables,
are dill considerably less than 42, the number of clusters
minus one. The degrees of freedom are especialy smdll, 7.6,
for the indictor variable Black (equa to one if the patient
was African American and zero otherwise). Plots analogous
to Figure 1 show that Black was concentrated in three
clusters. The Black indicator equals zero for all the patients
in 24 of 43 clusters, and 48 of the 78 African Americansin
the sample were found in just three clusters.  As discussed
in sections 2 and 4, the concentration of Black into a small
number of clusters results in high variance for both
estimators and large bias in the linearization estimator, both
of which canbeseenin Table 4.

8. Discussion

Although linearization is a valuable tool that provides
consistent standard errors and valid inference as the number
of PSUs grows large in multi-stage samples, users should
recognize problems with the method. Estimated variances of
linear regression coefficients (including domain means) tend
to be biased low — especially for coefficients (or linear
combinations of coefficients) that depend largely on data
from a smal number of PSUs. Depending on the design,
large biases can persist even when the total number of PSUs
is quite large. The standard jackknife for multi-stage
samples tends to have at least as large bias in the opposite
direction. Similarly, using a reference t distribution with
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degrees of freedom equa to one less than the number of
PSUs may greatly understate the uncertainty in the
estimated variance. Because the two problems (bias and
overstated degrees of freedom) tend to occur in tandem for
linearization, confidence intervals and statistical tests based
on that method may be far too liberal.

Bias reduced linearization (BRL) produces unbiased
variance estimates in the event that errors are homoskedastic
and uncorrelated, and it tends to greatly reduce bias for other
covariance structures investigated in our simulations. In our
simulations, BRL consistently exhibited smdller biases than
linearization by 90 percent or more and tended to improve
substantially on Kott's 1994 adjusted linearization method.
Results for BRL were comparable to those for Kott's 1996
method.

When BRL was used with the estimated Setterthwaite
degrees of freedom, statistical inference improved greatly in
comparison with the standard use of linearization. Bias
reduction and Satterthwaite degrees of freedom seemed to
contribute about equally to the improved performance.
Although Satterthwaite’'s approximation may overcom-
pensate, leading to conservative inference in certain
situations, the problem does not seem noteworthy until the
Satterthwaite degrees of freedom drop below 5 (based, in
part, on smulations not reported in this paper). In such
cases, analysts might choose to estimate criticad values using
simulations based on Theorem 4.

It isimportant to note some limitations of our smulation
results. First, we only report results for four distinct
explanatory variables plus an intercept. We choose those
variables to span a wide variety of stuations. Although
some might describe x, as extreme or pathologicd, it is not
outside the range of situations that we have seen in our own
consulting work. Variables like x, can results from group-
randomized trials (see section 7) or observational data
where only afew PSUs exhibit a particular trait or from use
of a series of dummy variables to represent levels of a
categorica variable. Second, we present results only for
n = 20 PSUs. To the extent that X remains Smilar as n
increases (e.g., by replication), Equation (4) implies that the
bias declines in proportion to 1/(n — 1). Also, the results
observed for n = 20 could occur for much larger n if the
bulk of the variation in X is contributed by afew PSUs, and
the determination of |’B depends similarly on a small
number of PSUs. Finaly, to reduce the number of factors
affecting the results, we smplified the design in severa
ways. constant PSU sizes, no weights or strata, and little
multicollinearity. We suspect that relaxing any of those
congraints would actudly tend to make standard lineari-
zation and the jackknife perform worse. We do not believe
that the choice of m = 10 for the PSU size had much
impact either way on our findings.

Although we bdieve that our proposed methods will
prove vauable to analysts of multi-stage samples, these



14 Bell and McCaffrey: Bias Reduction in Standard Errors for Linear Regression with Multi-Stage Samples

methods will not completely solve the inference problem for
unweighted linear regression. Both authors have frequently
observed the disturbing sStuation where standard lineari-
zation methods produced shorter confidence intervals than
methods that ignore the design. Certainly, the bias of v and
improper use of n — 1 degrees of freedom contribute to the
frequency of this phenomenon, but our methods would not
eliminate its occurrence (see section 7). Linearization, like
sample reuse methods, necessarily produces estimators with
high variance for some or possibly all coefficientsin certain
designs. When confronted with situations like the coeffi-
cientsfor our X,, where the Satterthwaite degrees of freedom
fal near 3 or lower, andysts should serioudy consider
whether they can afford the large variability, and corre-
sponding loss of power, that comes with nonparametric
variance estimators. Parametric alternatives like hierarchical
linear models or inference based on estimating a common
intra-class correlation across al the PSUs (Wu, Holt and
Holmes 1988) should produce more stable results.

Although this paper has focused on unweighted linear
regression for samples without stratification, we have no
reeson to expect that the bias and degrees-of-freedom
problems of linearization would be lessened by Stratification
or for either weighted least squares or generaized linear
models (GLMs). As shown in McCaffrey, Bell and Botts
(2001) the BRL method extends immediately to weighted
linear regression by using H = X (X’ WX)™X’ W in the
main condition of Theorem 3. Because solutions to GLMs,
such as logistic regression, are equivaent to the final steps
of iteratively reweighted least squares (McCullagh and
Nelder 1989), the obvious choice for these modelsisto use
BRL based on the find weights and to set U = W)™
Nevertheless, Theorem 3 does not extend to GLMs because
the weights are estimated from the data, and we have not
investigated the properties of BRL in this context.

Korn and Graubard (1995) suggest w2 as a standard
error estimator for stratified samples in situations where the
dratification is non-informative. The same reasoning applies
to vi2 . Fuller (1975) proposed an dternative design
consgent standard error estimator for stretified samples.
Bell and McCaffrey (2002, pages 32—-33) show that by
adjusting the vector of residuals for each stratum, BRL can
reduce or remove the model bias that can exist in Fuller's
estimator.
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Appendix
Proofs of Theorems 2 and 4

Proof of Theorem 2. Following the first steps of the proof
of Theorem 1, equation (6) implies that

E(vy) =

(nnljl XX_l(ZX (I _H_)lxij(x’x)‘ll.

=1

The existence of (I, — H;) ™ implies that the eigenvalues of
H; are strictly less than 1, so that (I, — H;) ™ can be written
as Y7_oH} . Consequently, letting D = (1/n)(X’ X) and
D; = (X X)) — D,wehave

Thetermfor r = O equals!’ (X’ X)™ = Var(l'fi). The
termforr = 1 equals0. By the binomia theorem,

r+l
=(r+s\1 ( n
SR
so that the remaining terms can be paired, for

r=2 4,6 ..,togve

[(XX)"D,]"?

(7] oo

[0, (x'X)"”

B (ni_lj(x’x)‘lni (X’X)"l} .

The middle factor in the summation can be written as,

e SRR Py (SRR EEN

n-1
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which is positive definite, so that the whole expression must
be positive. Consequently, we have shown that E(vik) >
Var(l’B) with equality if and only if 1(X’X)™D, =0,
which is true if and only if 1I'(X’ X)X X, is constant
acrossi.

Proof of Theorem 4.
Vo= ci (X' X)"X/A, (I-H) g (I-H),
i=1
AX (XX)M
= ggi g e

Let P equal the matrix of eigenvectors and A denote the
diagonal matrix with elements A4, ..., Ay equa to the
dgenvalues of V23", g g/ V*? = B'B where B' = V*?
[g1g..g]. Let u=P V™ Yy whee V2yv 2=
defines VY 2 then the elements of u arei ndependent normal
variableswith variance 1 and

M
vV =u'Au= Zki u’.
i=1

Let A; be any nonzero eigenvaue of B' B, then there exits
a nonzero vector z such that B'Bz = A;z and BB' Bz =
Ai Bz. Because Bz # 0, A; is an eigenvalue of BB
Similarly, any nonzero eigenvaue of BB' is aso an
eigenvalue of B' B. Therefore, the nonzero eigenvaues of
B' B equa the nonzero eigenvaluesof BB' ={g' Vg}.
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