
Catalogue no. 12-001-XIE

Survey
Methodology

December 2002



How to obtain more information

Specific inquiries about this product and related statistics or services should be directed to:  Business Survey Methods Division,
Statistics Canada, Ottawa, Ontario, K1A 0T6 (telephone: 1 800 263-1136).

For information on the wide range of data available from Statistics Canada, you can contact us by calling one of our toll-free
numbers. You can also contact us by e-mail or by visiting our website.

National inquiries line 1 800 263-1136
National telecommunications device for the hearing impaired 1 800 363-7629
Depository Services Program inquiries 1 800 700-1033
Fax line for Depository Services Program 1 800 889-9734
E-mail inquiries infostats@statcan.ca
Website www.statcan.ca

Information to access the product

This product, catalogue no. 12-001-XIE, is available for free. To obtain a single issue, visit our website at www.statcan.ca and
select Our Products and Services.

Standards of service to the public

Statistics Canada is committed to serving its clients in a prompt, reliable and courteous manner and in the official language of
their choice. To this end, the Agency has developed standards of service that its employees observe in serving its clients. To
obtain a copy of these service standards, please contact Statistics Canada toll free at 1 800 263-1136. The service standards
are also published on www.statcan.ca under About Statistics Canada > Providing services to Canadians.



Statistics Canada
Business Survey Methods Division

Survey
Methodology

December 2002

Note of appreciation

Canada owes the success of its statistical system to a long-standing partnership between 
Statistics Canada, the citizens of Canada, its businesses, governments and other 
institutions. Accurate and timely statistical information could not be produced without their 
continued cooperation and goodwill.

Published by authority of the Minister responsible for Statistics Canada

© Minister of Industry, 2006

All rights reserved. The content of this publication may be reproduced, in whole or in part, and by any 
means, without further permission from Statistics Canada, subject to the following conditions: that it is 
done solely for the purposes of private study, research, criticism, review, newspaper summary, and/or 
for non-commercial purposes; and that Statistics Canada be fully acknowledged as follows: Source 
(or “Adapted from”, if appropriate): Statistics Canada, name of product, catalogue, volume and issue 
numbers, reference period and page(s). Otherwise, no part of this publication may be reproduced, 
stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, 
photocopy, for any purposes, without the prior written permission of Licensing Services, Marketing 
Division, Statistics Canada, Ottawa, Ontario, Canada K1A 0T6.

January 2006

Catalogue no. 12-001-XIE
ISSN 1492-0921

Frequency: semi-annual

Ottawa

Cette publication est disponible en français sur demande (no 12-001-XIF au catalogue).



Vol. 28, No. 2, pp. 169-181 
Statistics Canada, Catalogue No. 12-001

 

Bias Reduction in Standard Errors for Linear Regression with 
Multi-Stage Samples 

Robert M. Bell and Daniel F. McCaffrey 1 

Abstract 

Linearization (or Taylor series) methods are widely used to estimate standard errors for the coefficients of linear regression 
models fit to multi-stage samples. When the number of primary sampling units (PSUs) is large, linearization can produce 
accurate standard errors under quite general conditions. However, when the number of PSUs is small or a coefficient 
depends primarily on data from a small number of PSUs, linearization estimators can have large negative bias. In this paper, 
we characterize features of the design matrix that produce large bias in linearization standard errors for linear regression 
coefficients. We then propose a new method, bias reduced linearization (BRL), based on residuals adjusted to better 
approximate the covariance of the true errors. When the errors are i.i.d., the BRL estimator is unbiased for the variance.  
Furthermore, a simulation study shows that BRL can greatly reduce the bias even if the errors are not  i.i.d. We also propose 
using a Satterthwaite approximation to determine the degrees of freedom of the reference distribution for tests and 
confidence intervals about linear combinations of coefficients based on the BRL estimator. We demonstrate that the 
jackknife estimator also tends to be biased in situations where linearization is biased.  However, the jackknife’s bias tends to 
be positive. Our bias reduced linearization estimator can be viewed as a compromise between the traditional linearization 
and jackknife estimators. 

                                                           
1. Robert M. Bell, Statistics Research Department, AT&T Labs-Research, Room C211, 180 Park Ave., Florham Park, NJ 07932; Daniel F. McCaffrey, 

Statistics Group, RAND, 201 North Craig Street, Suite 202, Pittsburgh, PA 15213-1516. 
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1. Introduction  
Regression analysis of multi-stage samples has become 

very common in recent years (for example, Ellickson and 
McGuigan 2000; Shapiro, Morton, McCafrrey, Senterfitt, 
Fleishman, Perlman, Athey, Keesey, Goldman, Berry and 
Bozzette 1999; Goldstein 1991; Landis, Lepkowski, Ekland 
and Stehouver 1982). Although hierarchical models (Bryk 
and Raudenbush 1992; Gelman, Carlin, Stern and Rubin 
1995, Chapter 13) allow analysis of both fixed and random 
effects, many analysts prefer the simplicity of standard 
regression models when random effects are not of direct 
interest. Standard regression estimators produce unbiased 
parameter estimates that can be efficient, but the default 
standard error estimators do not account for the sample 
design, resulting in inconsistent standard errors (Kish 1965; 
Skinner 1989a). Various methods produce consistent 
standard error estimates applicable when the number of 
primary sampling units (PSUs) is sufficiently large. These 
include sample reuse methods such as the jackknife, boot-
strap and balance repeated replication as well as linear-
ization (or Taylor series) methods. 

Linearization (Skinner 1989b) is a nonparametric method 
for estimating the standard errors of design-based statistics 
such as means and ratios as well as coefficients from linear 
and nonlinear regression models. By nonparametric, we 
mean that linearization does not rest on any assumptions 
about the within-PSU error structure, such as an assumption 
of constant intra-cluster correlation. When the number of 
PSUs can be considered large, linearization produces 

consistent standard errors in the presence of multiple
features of complex sample designs-stratification, multi- 
stage sampling, and sampling weights-as well as hetero-
skedastic errors (Fuller 1975). Because of these desirable 
properties and its increased availability in software such as 
SUDAAN, Stata, and SAS Version 8.0 (Shah, Barnwell, 
and Bieler 1997; StataCorp. 1999; SAS Institute, Inc. 1999), 
linearization has become a common method for estimating 
standard errors and confidence intervals and for conducting 
statistical tests on data from complex sample designs (for 
example, Ellickson and McGuigan 2000; Shapiro et al. 
1999; Rust and Rao 1996). Linearization has also been 
proposed for estimating standard errors from Generalized 
Estimating Equations (GEE) fit to multi-stage data (Zeger 
and Liang 1986).  

However, the linearization method has limitations.  
When the number of primary sampling units is small, 
standard error estimates can be severely biased low, they 
can have large coefficients of variation, and the standard 
degrees of freedom may be far too liberal (Kott 1994; 
Murray, Hannan, Wolfinger, Baker and Dwyer 1998).  
Consequently, standard linearization inference for coeffi-
cients based mainly on data from a small number of PSUs 
may produce confidence intervals that are too narrow and 
tests with Type I error rates that are substantially higher than 
their nominal values. Sample reuse methods like the 
jackknife have similar limitations.   

In this paper, we characterize the design factors (i.e., the 
distribution of explanatory variables within and between 
PSUs) that produce large bias in linearization and jackknife 

4                          Bell and McCaffrey: Bias Reduction in Standard Errors for Linear Regression with Multi-Stage Samples
 

 

 
 



 

 
Statistics Canada, Catalogue No. 12-001

standard errors for linear regression coefficients and 
demonstrate that the problem can persist even when the 
number of PSUs is quite large. We then propose an 
alternative to the standard linearization estimator that is 
unbiased for independent, identically distributed (i.i.d.) 
errors and tends to greatly reduce bias otherwise. We also 
present approximate degrees of freedom for use with tests 
and confidence intervals based on our variance estimator.  
Simulation results show improved small sample properties 
of our alternative estimator and test compared with those of 
more traditional methods. Finally, we present an example of 
our methods using data from a national experiment 
evaluating care for depression.  

 
2. Bias of the Linearization Method  

For simplicity, we restrict consideration in the body of 
this paper to unweighted linear regression for two-stage 
nonstratified samples. Extensions to weighted estimators 
and stratified samples are presented in McCaffrey, Bell and 
Botts (2001) and discussed further in section 8.  

Let n equal the number of PSUs and im  equal the 
number of final sampling units from the thi  PSU, for 
i  =  1,  ...,  n. The overall sample size is .∑= i imM  We 
assume that ,εβ ijijij xy +′=  where ε  has mean 0 and 
covariance matrix V, and where ,, ijij xy  and ijε  all refer 
to the thj  observation from the thi  PSU. We drop the 
standard OLS assumption of i.i.d. errors, assuming only 
that errors from distinct PSUs are uncorrelated. 
Specifically, we assume that V is block diagonal, with 

ii mm ×  blocks iV  for i  =  1,  ...,  n. In addition to the 
notation of this model, throughout the paper, we let I 
denote an MM ×  identity matrix and iI  equal an 

ii mm ×  identity matrix. 
Let β̂  denote the estimated coefficients of the linear 

regression model. To simplify presentation, we generally 
discuss a linear combination of the regression coefficients, 
β̂l ′ , for an arbitrary column vector l. For the special case 

where one element of l  =  1 and the rest are 0, β̂l ′  equals a 
single estimated coefficient. If errors are uncorrelated across 
PSUs, the variance of β̂l ′  is 

( ) ( ) ,)β̂(Var 1
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where X and Xi are the design matrices for the entire sample 
and for PSU i, respectively. 

The standard linearization estimator of the variance of 
β̂l ′  is given by: 
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where ri is the vector of residuals for the thi  PSU.  
Comparison of (1) and (2) shows that linearization simply 
involves estimating Vi by a constant c times the outer 
product of the residuals.  The constant c is typically set 
equal to n/(n – 1), the value used by SUDAAN and the Stata 
svy procedures (Shah, Barnwell, and Bieler 1997; 
StataCorp. 1999). For GEE procedures, Zeger and Liang 
(1986) set  c  =  1. 

Under fairly general conditions, nvL converges in 
probability to the variance of the asymptotic distribution of 

n ( β̂l ′ – l' β) and the relative bias of vL is O(1/n) as the 
number of PSUs gets large (Fuller 1975; Kott 1994). To 
demonstrate convergence for the bias of vL , Kott (1994) 
assumes that the number of observations from every PSU is 
bounded and that elements of (X′ X)–1 X′ are bounded by 
B/n for a constant B. These assumptions effectively ensure 
that the influence of any PSU on the final estimate 
diminishes as the number of PSUs grows. Convergence of 
the bias of vL holds for heteroskedastic data from stratified 
samples with unequal sampling weights and arbitrary corre-
lation structure within PSUs. Unfortunately, consistency 
does not guarantee good properties for small to moderate 
numbers of PSUs.  
Theorem 1.  When V  =  σ 2I and c = n/(n – 1), E(vL) < 
Var ( β̂l ′ ) with equality if and only if l ′ (X′ X)–1Xi′ Xi is 
constant across i. 
Proof.  Without loss of generality, we assume that 
σ 2  =  1 so that V  =  I. The residual vector r can be 
written as (I – H) ε, where H  =  X(X′ X)–1X′ is the hat or 
projection matrix for X. Thus, we have that ri  = 

,)( εHI i−  where (I – H)i contains the mi rows of (I – H) 
for the thi  PSU.  Consequently,  
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because E(ε ε′)  =  I and (I  –  H)i i)( ′− HI  =  (Ii  –  Hii) for 
Hii  =  Xi ( X′ X )–1 Xi′. Let Di  =  Xi' 

 Xi  –  (1/n)  (X′ X). 
Note that Σi iD   =  Σi ii XX′  – X′ X  =  0. Thus,  
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for ai  = Di (X′ X)–1 l = [Xi′ Xi  – (1/n)  (X′ X)]  (X′ X)–1l.  
Because (X′ X)–1 is positive definite, E(vL) ≤ Var( β̂l ′ ) with 
equality if and only if ai   ≡   0, or equivalently, Xi′ Xi 
(X′ X)–1 l is constant across the i. 

Replication methods do not necessarily avoid the 
problem of bias for regression variance estimators. A 
jackknife estimator for multi-stage samples can be derived 
from the set of pseudo values{ [ ]iβ

~
}, estimates of β from 

data that exclude the thi  PSU:  

[ ]( ) [ ]( )∑
′

−−′=
i iiJK llnn β̂β

~
β̂β

~
]/1) - [(  v  (5) 

(Cochran 1977; Rust and Rao 1996). If (Ii  –  Hii)
–1 exists 

for all i, then 
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which follows from the updating formula 
=′−′ −1)( ii XXXX   11 )()( −− ′+′ XXXX  1)( −−′ iiii HIX  

1)( −′XXXi  (Cook and Weisberg 1982; Bell and McCaffrey 
2002, page 34). Some authors (Efron and Tibshirani 1993) 
suggest an alternative jackknife estimator with β̂  replaced 
by the mean of the [ ]iβ

~
’s in (5). These two methods provide 

very similar estimates in our simulations, so we discuss only 
the version based on (5) in what follows.  
 

Theorem 2.  When V  =  σ 2 I and (Ii  –  Hii)
–1 exists for all 

i, then E(vJK)  >  Var( β̂l ′ ) with equality if and only if l ′ 
(X′ X)–1 Xi′ Xi is constant across i (proof in appendix).   

The following example shows that the conditions for 
linearization and the jackknife estimators to be unbiased are 
very restrictive even for simple linear regression. 
 

Example 1.  Consider simple linear regression. We have 
that  
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where s2 and {si
2} are ML estimates for the overall and 

within-PSU variances of x, with divisors M and {mi}, 
respectively. So we have  
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To have vL and vJK unbiased for the slope, i.e., for 
l ′  =  (0, 1), we must have that )( xxm ii −  and 

)( 22 xxxsm iiii −+  are both constant across i. The former 
implies that xxi ≡ , and together they imply that 

∑ −= j ijii xxsm 22 )(  is constant. Note that mi need not be 
constant. These two conditions are not sufficient to 
guarantee unbiasedness for l′ =  (1,  0), however. Additional 
algebra shows that the bias in the linearization estimator for 
the variance of the slope equals 
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Consequently, the bias includes a part that is proportional to 
the weighted variance of the PSU means of x and another 
that is proportional to the variance of the within-PSU sums 
of squares. 

The example shows that when the errors are i.i.d., vL is 
unbiased only under very restrictive conditions. When 
V  ≠  I, Theorems 1 and 2 do not hold, and the bias in vL can 
even be positive (see Example 2 of Bell and McCaffrey 
2002). 

In general, vL tends to have negative bias. The estimator 
is the sum over PSUs of squares of linear combinations of 
residuals, c1/2 l′ (X′ X)–1Xi′ ri. These sums of squares tend to 
be too small for two reasons: residuals are generally smaller 
than true errors due to overfitting, and residuals tend to have 
lower intra-cluster correlation than the errors. The factor  
c  =  n / (n – 1) corrects completely for these problems only 
in very restricted circumstances like the conditions in 
Theorem 1. 

The bias of the linearization estimator (or the jackknife) 
increases with the between-PSU variance of the explanatory 
variables. Consequently, explanatory variables that are 
(nearly) constant within PSUs tend to exhibit the largest 
bias. When there are several such explanatory variables, 
there can be substantial underestimation of intra-cluster
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correlations, leading to large bias in estimated variances for 
all the corresponding coefficients. Even greater bias 
potential appears to occur when certain PSUs account for 
most of the variability in the covariates and have dispro-
portionate impact on the determination of β̂l ′ .  

3. The Bias Reduced Linearization Method  
Phillip Kott has proposed two methods for reducing the 

bias in linearization. Kott (1994) suggested correcting the 
bias in vL by using the residuals and the design matrix to 
estimate the negative of the bias of vL by R̂  ( R̂  > 0, 
typically) and setting vK94  =  vL  /(1 – R̂ /vL). Kott suggested 
the estimator vK94 rather than the more obvious (vL + R̂ ) as 
ad hoc compensation for the relative bias in R̂  as an 
estimator of the true negative bias, R. 

In his 1996 paper, Kott suggests calculating the ratio of 
Var( β̂l ′ ) to E(vL) under the assumption that V  =  I and 
adjusting vL by the ratio. If V  =  I then the resulting esti-
mator vK96 will be unbiased.  

In the context of generalized estimating equations, Mancl 
and DeRouen (2001) take a different approach to correcting 
the bias in the linearization estimator. They suggest 
adjusting the residuals from each PSU to reduce the bias in 
ri ri' as an estimator of Vi. For the unweighted linear model 
given in section 2, they approximate E (ri  ri' ) by                 
(Ii   – Hii)Vi (Ii   –  Hii) and suggest replacing ri by 

iiii rHI 1)( −−  in equation (2). Thus, for unweighted linear 
models the Mancl and DeRouen estimator equals 

JKvnn )1/( −  and the properties on this estimator follow 
from the properties of the jackknife estimator. 

We present an alternative approach that we first proposed 
in 1997 (McCaffrey and Bell 1997). The method is also 
based on replacing ri in equation (2) with adjusted residuals 
of the form ri

*  =  Ai ri intended to act more like the true 
errors εi. Like Kott (1996), we derive an estimator that 
eliminates the bias of vL when V equals U, a specified 
block-diagonal covariance matrix, and reduces the bias for 
other V. Like Mancl and DeRouen (2001) we adjust the 
residuals from each PSU. However, using U we derive an 
alternative approximation to the E(ri ri' ) and our resulting 
estimator is not proportional to the jackknife but rather can 
be seen as a compromise between the linearization and 
jackknife estimators. Our approach is also a generalization 
of the method of MacKinnon and White (1985), who adjust 
individual residuals to produce a heteroskedastically-
consistent variance estimator (in the sense of White 1980) 
that is unbiased when the errors are independent and 
homoskedastic.   
 
Theorem 3.  For a specified block-diagonal covariance 
matrix U, consider the class of estimators ( ) 1

*

−′′= XXlv
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Without external evidence to the contrary, an analyst is 
likely to use a working covariance matrix of the form 
U  =  σ2I, which simplifies the condition on Ai to Ai                  

(Ii – Hii)  Ai′  =  I i or   

.)( 1−−=′ iiiii HIAA  (7) 

We set U  =  I in what follows. 
A solution to equation (7) exists for PSU i whenever  

(Ii – Hii) is full rank, which is true if all the eigenvalues of 
Hii are strictly less than 1 (the eigenvalues of Hii are always 
between 0 and 1). An eigenvalue of Hii may equal 1 – e.g., 
when the model includes a dichotomous explanatory 
variable that is one if and only if an observation falls in the 

thi  PSU. 
For mi  >  1,  Ai  is not unique.  If Ai  satisfies Ai′Ai  = 

(Ii  –  Hii)
–1, then so does OAi, for any mi  ×  mi orthogonal 

matrix O. If V  =  σ2 I, the choice of Ai is unimportant 
because any solution to (7) will produce an unbiased 
variance estimator. However, the resulting estimators are 
biased when V  ≠  σ2I, and the bias can vary greatly with the 
choice of Ai. Heuristically, it makes sense to choose the 
solution Ai “closest” to the identity matrix, so as to “mix” 
the residuals as little as possible. Two promising candidates 
are the Cholesky decomposition of (Ii – Hii)

–1, which has all 
0’s below the diagonal, and the symmetric square root of    
(Ii – Hii)

–1. Let P be an orthogonal matrix whose columns 
are the eigenvectors of (Ii – Hii)

–1 and Λ be a diagonal 
matrix containing the corresponding eigenvalues of            
(Ii – Hii)

–1, so that (Ii – Hii)
–1 =  PΛP ′. Then for Λ1/2 equal to 

the elementwise square root of Λ, PΛ1/2P ′ is symmetric and 
solves (7). In contrast, multiplying either of these two 
solutions by a random orthogonal matrix could greatly 
distort the residuals. 

Among the class of adjusted residuals of the form Ai ri 
where Ai satisfies (7), those based on the symmetric square 
root of (Ii – Hii)

–1, ri
*  =   PΛ1/2 P ′ ri, are “best” in the sense 

of Theil (1971) – i.e., they minimize the expected sum of 
the squared differences between the estimated and true i.i.d. 
errors (see pages 36 – 37 of Bell and McCaffrey 2002 for 
details). When there is intra-cluster correlation, simulation 
results in section 6 suggest that the bias of *

Lv  based on the 

Survey Methodology, December 2002                                                                                                                                 7
 

 

 
 

 
 

 

 

 
 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
Statistics Canada, Catalogue No. 12-001

symmetric square root is greatly reduced compared with that 
of the traditional linearization estimator, vL. For these 
reasons, we consider only the symmetric root in the 
remainder of the paper and refer to the estimator using this 
root as the biased reduced linearization estimator, vBRL. 

As Kott (1994) proved for vL, if the number of units in 
every PSU is bounded and the elements of (X′X)–1X′ are 
bounded by B/n for some constant B (i.e., 

)),/1()( 1 nO=′′ − XXX  then the bias in vBRL is O(n 
–2) and 

the relative bias is O(1/n) (Bell and McCaffrey 2002, page 
15). 

 
4. Variance of the Estimators and Testing  

We note that vL, vBRL, and vJK can all be written in the 
form  

,)()( 11* llcv iii iiii
−− ′′′′′= ∑ XXXArrAXXX  

where:  c  =  n / (n  –  1), 1, or (n  –  1) / n, respectively, and 
Ai  =  Ii,  (Ii  –  Hii)

–1/2, or (Ii  –  Hii)
–1, respectively. This 

formulation of the estimators shows that vBRL can be viewed 
as a compromise between vL and vJK, chosen to offset their 
opposing biases. 
 

Theorem 4. Let the error terms be distributed as 
multivariate normal with mean 0 and nonsingular 
covariance matrix V. Then for any variance estimator of the 
form  

,)()( 11* llcv iii iiii
−− ′′′′′= ∑ XXXArrAXXX  

v* equals the weighted sum of independent 2
1χ  random 

variables where the weights are the eigenvalues of the  
n  ×  n matrix G   =   {gi'  Vg j}, for g i = c1/2(I –  H)i′ 
Ai Xi (X′ X)–1 l (proof in appendix). 

We can write vL as a quadratic form y′ G*y, where the 
M-by-M matrix G*  =  ∑ = ′n

i ii1 ,gg  so that vL  is a weighted 
sum of independent chi-square random variables with 
weights equal to the eigenvalues of G*V. The proof consists 
of showing that the nonzero eigenvalues of G*V equal the 
nonzero eigenvalues of G. 

The mean and variance of v* are simple functions of the 
eigenvalues of G, namely E(v*)  = ∑∑ == = n

i i
n
i ii uE 11

2 λ)(λ  
and Var(v*)  = .λ2)Var(λ 1

2
1

22 ∑∑ == = n
i i

n
i ii u  If V  =  σ 2I and 

Xi' Xi (X′ X)–1l for i  =  1,  ...,  n are constant, conditions for 
vL and vJK to be unbiased, then Theorem 4 implies that avL, 
avJK, and avBRL are all distributed 2

1χ −n  for a  =                    
(n – 1) / Var ( β̂l ′ ) (Bell and McCaffrey 2002, pages 41 – 42). 
However, in general, the Xi' Xi (X′ X)–1l will not be constant 
and the squared coefficient of variation will exceed  
2 / (n  –  1), the corresponding statistic for a 2

1χ −n  random 
variable. 

This excess variability is of particular concern when 
considering reference distributions for testing the null 
hypothesis that βl ′   =  0, with test statistics of the form 

t  =  β̂l ′ / *v . For vL, Shah, Holt and Folsom (1977) 
suggested comparing t to a reference ondistributi−t  with 

1−n  degrees of freedom, which is now the default in Stata 
(Stata Corp. 1999), SUDAAN (Shah, Barnwell and Bieler 
1997) and SAS (SAS Institute 1999). The choice of n –  1 
degrees of freedom is motivated by the fact that vL can be 
written as the sum of squares of n random variables 
c1/2l ′ (X′ X)–1 Xi′ ri. However, because the variance of 

)(/)1( LL vEvn −  tends to be greater than 2(n  –  1), tests 
that use a ondistributi−t  with n  –  1 degrees of freedom 
would tend to have Type I error rates that exceed the 
nominal value, even if vL were unbiased. 

Satterthwaite (1946) suggested approximating the distri-
bution of a linear combination of 2

1χ  variables by 2χ f  (up to 
a constant) where the first two moments of the linear 
combination match those of 2χ f . We would approximate vL, 
vBRL or vJK by a 2χ f  where f = 2 / cv2 = ∑∑ ==

n
i i

n
i i 1

22
1 λ/)λ(  

and the λi are the eigenvalues of the corresponding matrix 
G. Tests based on reference t-distributions with f degrees of 
freedom would be expected to provide better Type I error 
rates than tests based on n –  1 degrees of freedom. Rust and 
Rao (1996) also suggest using a Satterthwaite approxi-
mation to estimate the degrees of freedom for the jackknife 
estimator. They present results for the estimator of a mean, 
while Theorem 4 extends this approach to testing linear 
combinations of regression coefficients. Kott (1994, 1996) 
suggests using the Satterthwaite approximation to estimate 
the degrees of freedom for tests based on his alternatives to 
linearization. 

The coefficient of variation for any of the nonparametric 
variance estimators can be very large for certain designs.  
High variability occurs under the same conditions that vL 
and vJK are most biased – when residuals from only a few 
PSUs effectively determine the final variance estimate. This 
variability of the estimators is an inherent cost of using 
nonparametric techniques. 

Because the Satterthwaite degrees of freedom f requires 
specifying the unknown matrix V, we have investigated two 
methods for setting V. The first treats V as block-diagonal 
and estimates each block with the outer-product of the 
residuals for the PSU. Because preliminary simulation 
results showed that degrees of freedom based on this 
empirical estimate of V produced tests that were extremely 
conservative, we do not present any simulation results for 
this method. Kott (1994) also found that estimating V for 
use in the formula for estimated degrees of freedom proved 
unsatisfactory.  Instead, we used a second method that sets 
V identically equal to the identity matrix – i.e., it assumes 
independent, homoskedastic errors for purposes of deter-
mining degrees of freedom.   

The distribution of vBRL (and the other variance 
estimators) tends to be less skewed and have less mass in 
the lower tail than the distribution of a 2χ f  where f equals 
the Satterthwaite degrees of freedom. Hence, reference 

onsdistributi−t  based on the Satterthwaite approximation 
tend to overestimate tail probabilities. For example, when 
data from a couple of PSUs nearly determine the value of a 

8                          Bell and McCaffrey: Bias Reduction in Standard Errors for Linear Regression with Multi-Stage Samples
 

 

 
 



 

 
Statistics Canada, Catalogue No. 12-001

coefficient, the Satterthwaite degrees of freedom can be less 
than two, incorrectly implying a chi-square density that is 
infinite at zero. Consequently, the probability of very large 
t-statistics may not be as large as the Satterthwaite approxi-
mation would imply, especially when the Satterthwaite 
degrees of freedom are less than 4 or 5. 

 
5. Simulation Methods  

We use a Monte Carlo simulation to study the properties 
of alternative variance estimators and tests for a balanced 
two-stage cluster sample with n  =  20 PSUs and a constant 
m  =  10 observations in each PSU. All simulation repli-
cations use a common design matrix X with four explana-
tory variables chosen to represent a range of difficulty for 
nonparametric variance estimators. The first two explana-
tory variables, x1 and x2, are dichotomous (0 or 1) and 
constant within PSU. The variable x1 is 1 in half the clusters: 
1,  3,  ...,  19, while x2 is 1 in just three clusters: 9, 10, and 
11. Both x3 and x4 were generated from standard normal 
distributions. They differ in that x3 was generated from a 
multivariate normal with intra-cluster correlation of 0.5 
within PSU, while x4 was generated from independent 
normal distributions.  Observed intra-cluster correlations are 
1.00, 1.00, 0.62 and  – 0.04, respectively. Observed correla-
tions among the explanatory variables are all very small 
with the exception of Corr(x1,   x2)  =  0.14, Corr(x1,  x3)  = 
0.25 and Corr(x1,  x4)  = .11.0−  The estimated regression 

coefficients are linear combinations of the dependent 
variable with multipliers given by the rows of (X′X)–1X′, 
which are shown in Figure 1. For the first three coefficients, 
and to a lesser extent 3β̂ , observations from the same PSU 
tend to have similar multipliers. Of more importance, 2β̂ , 

0β̂ , and 3β̂  are determined primarily by results in a small 
number of PSUs with relatively large multipliers (in 
absolute value). For example, Figure 1 shows that the 
multipliers for 3β̂  are large for the second PSU, which has a 
mean that is over two standard deviations from the average 
PSU mean. In general, variance in the PSU means gives 
some PSUs greater weight for estimating 3β̂ . 

The dependent variable was generated from the equation 
yij  =  β′ xij  +  εij, where β  =  0 and the εi’s are standard 
multivariate normal random variables with intra-cluster cor-
relation ρ. We use three alternative values of ρ  =  0,1/9, and 
1/3, corresponding to design effects for the sample mean of 
DEFF = 1, 2, and 4, respectively (DEFF = 1 + (m – 1) ρ). 
Monte Carlo results are based on 100,000 replications of y 
for our fixed X.   

We evaluated the ordinary least squares (OLS) variance 
estimator, ls ′2  (X′ X)–1l, and five nonparametric variance 
estimators: the standard linearization estimator given in 
equation (2) with c  =  n / (n  –  1); the jackknife estimator 
given in (5); bias reduced linearization; and Kott’s two 
adjustments to linearization. BRL and the Kott adjustments 
are all based on working intra-cluster correlations of ρ  =  0. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Values of the rows of (X' X)–1X' for the design matrix used in simulations. 
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We estimated Type I error rates for eight alternative test 
procedures based on 100,000 replications from the null 
hypothesis where each kβ̂   =  0, for k  =   0 to 4. Each 
procedure compares a “t – statistic” against a reference 

.ondistributi−t  For the t’s based on linearization, the jack-
knife, and BRL, we use critical values from 

onsdistributi−t  with both (n – 1) = 19 degrees of freedom 
and the corresponding Satterthwaite approximation. For 
Kott’s methods, we use his proposed degrees of freedom. 
All computations were implemented in SAS. 

 
6. Simulation Results  

Table 1 shows the bias of several variance estimators for 
the five regression coefficients (including the intercept) for 
ρ = 0,1/9, and 1/3.  Except for Kott (1994), all values are 
exact based on the X matrix described above. Because Kott 
(1994) cannot be written as a linear functional, its bias is 
estimated from the Monte Carlo simulations, and the 
standard error of the bias is shown in parentheses. 

 
Table 1 

Bias of Variance Estimators 
(as a Percentage of the True Variance) 

 

Estimator 0β̂  1β̂  2β̂  3β̂  4β̂  

 ρ = 0 

OLS 0.0 0.0 0.0 0.0 0.0 

Linearization  – 9.6  – 13.2  – 32.5  – 13.3  – 1.8 

Jackknife 11.7 17.2 51.2 17.6 2.1 

Kott (1994) 4.0 2.5  – 1.0 2.2 4.7 

   (standard error) (0.2) (0.1) (0.3) (0.2) (0.1) 

Kott (1996) 0.0 0.0 0.0 0.0 0.0 

BRL 0.0 0.0 0.0 0.0 0.0 

 ρ = 1/9 

OLS  – 50.2  – 49.7  – 50.7  – 37.7 4.1 

Linearization  – 10.3  – 14.2  – 33.2  – 17.1  – 2.5 

Jackknife 11.0 16.4 50.1 19.8 3.2 

Kott (1994) 3.9 2.7  – 0.8 1.5 4.6 

   (standard error) (0.2) (0.1) (0.3) (0.2) (0.1) 

Kott (1996)  – 0.8  – 1.2  – 1.0  – 4.4  – 0.7 

BRL  – 0.7  – 1.0  – 0.8  – 1.2 0.1 

 ρ =1/3 

OLS  – 75.8  – 75.5  – 76.2  – 65.3 13.8 

Linearization  – 10.7  – 14.8  – 33.5  – 19.9  – 4.1 

Jackknife 10.7 15.9 49.5 21.4 5.9 

Kott (1994) 3.6 2.4  – 0.6 1.4 4.4 

   (standard error) (0.2) (0.1) (0.3) (0.2) (0.1) 

Kott (1996)  – 1.2  – 1.9  – 1.5  – 7.7  – 2.3 

BRL  – 1.0  – 1.5  – 1.3  – 2.1 0.4 
 

Note: All values are exact except for Kott (1994), which is 
based on 100,000 simulation replications.  

The OLS variances are unbiased for ρ  =  0, but they are 
badly biased for ρ  =  1/9 and 1/3. As discussed in Wu, Holt, 
and Holmes (1988), the OLS variances are too small by 

roughly a factor of 1/[1   +   ρ (m  –  1) ICCx], where ICCx 
denotes the intra-cluster correlation for an x variable. Hence, 
for PSU-level variables (including the intercept), the OLS 
variances are too small by roughly a factor of 1 / DEFF. 
Similarly, the bias is smaller, but still substantial for x3, the 
individual-level variable with large intra-cluster correlation. 
The positive bias for the OLS variance of 4β̂  results from 
the slight negative intra-cluster correlation for x4. 

Linearization and the jackknife each suffer from large 
biases, relatively independent of ρ, but the biases point in 
opposite directions. For each estimator, the magnitude of the 
bias varies greatly among the coefficients. The largest biases 
(in absolute value) occur for ,β̂2  which depends mainly on 
the data from three PSUs. The next greatest biases occur for 

,β̂ 3  followed closely by 1β̂  and 0β̂ .  
Except for ,β̂4  Kott (1994) has much smaller magnitude 

bias than linearization. However, the method tends to over-
compensate, often resulting in notable positive bias. An 
exception is ,β̂2  for which Kott’s estimator remains biased 
low. 

By design, Kott (1996) and BRL eliminate the bias for 
ρ  =  0. Consequently, choice among these alternatives 
should rest mainly on how well they hold down bias for 
V  ≠  I. Both methods reduce the magnitude of bias 
dramatically relative to linearization for ρ  =  1/9 and 1/3. 
Although differences between the two methods are often 
small, BRL does uniformly better, with its worst bias being 

1.2−  percent. While Kott (1996) is practically indis-
tinguishable from BRL for the PSU-level variables, it 
performs substantially worse for 3β̂  and 4β̂ . 

The linearization, jackknife, BRL and Kott estimators are 
highly correlated with similar coefficients of variation. For 
any given regression coefficient, the correlation among the 
variance estimators always exceeded 0.969, with most 
exceeding 0.99 (not shown). The smallest correlations 
tended to be between the jackknife and other estimators. 
The coefficients of variation (also not shown) were largest 
for Kott (1994) and tended to be smallest for linearization 
and Kott (1996) (except for the intercept). For the intercept, 
the jackknife had the smallest coefficient of variation. The 
relative variance of the BRL estimator was similar to that of 
the alternative nonparametric methods. Its coefficient of 
variation was between 1 and 6 percent larger than that of the 
linearization estimator but about 5 to 10 percent smaller 
than that of Kott (1994). Thus, the five nonparametric 
variance estimators tend to differ from each other mainly by 
constant factors, and Table 1 summarizes the main 
difference among these variance estimators. 

Table 2 shows the Satterthwaite degrees of freedom for 
each of the five coefficients for the linearization, jackknife, 
BRL and Kott variance estimators. For all estimators the 
degrees of freedom were calculated assuming V  =  I and 
consequently depend only on the design matrix and not on 
the values of y. The approximations are similar for linear-
ization and BRL although the linearization degrees of 
freedom tend to be slightly larger reflecting the fact that for 
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this design matrix the relative variances of the BRL esti-
mators are marginally larger than those for linearization.  
Kott’s approximation derives the coefficient of variation for 
a linearization-type estimator based on the true errors rather 
than the residuals. As a result, Kott’s approximate degrees 
of freedom, which are larger than those for linearization or 
BRL, tend to overstate the precision of his estimator (see 
Kott 1994, section 6). Across all four estimators, the 
approximations are smallest for 2β̂ . 

 
Table 2 

Degrees-of-Freedom for Selected Estimators  
 

Method 0β̂  1β̂  2β̂  3β̂  4β̂  

Satterthwaite (LIN)  9.02 14.45  3.30 11.56 16.65 
Satterthwaite 
(Jackknife) 

 9.52 13.30  2.62   9.06 16.23 

Satterthwaite (BRL)  9.24 14.08  2.90 10.26 16.45 
Kott’s method 10.33 16.41  4.32 11.36 17.44  

Table 3 shows that Type I error rates for the standard 
linearization method with (n  –  1) degrees of freedom 
consistently exceed 5 percent for all three values of ρ. Type 
I errors are most common for ,β̂2  where they reach as high 
as 16 percent, but they also occur much too frequently for 

,β̂0  ,β̂1  and ,β̂3  ranging from 7.0 to 8.8 percent. The 
magnitude of this problem correlates closely with the size of 
the bias of the linearization estimator (see Table 1). Type I 
error rates are much lower, 5.7 to 6.4 percent, for tests based 
on the Satterthwaite degrees of freedom. Thus using the 
alternative degrees of freedom improved the Type I error 
rates by about 30 to 88 percent. 

There is a less consistent pattern for the Type I error 
probabilities for the jackknife. The jackknife with (n – 1) 
degrees of freedom tends to be conservative for 1β̂  and 3β̂ , 
in accord with the positive bias in the jackknife variance. In 
contrast, the probability of Type I error is much too large for 

,β̂2  and a bit too large in two of three cases for the intercept 
.β̂0  The apparent explanation is that the choice of (n – 1) as 

the degrees of freedom for the reference ondistributi−t  
sometimes counteracts the bias in the jackknife variance.  
This conclusion is supported by the very low Type I error 
rates for the jackknife with Satterthwaite degrees of 
freedom; smaller degrees of freedom combined with large 
positive biases result in very conservative tests. 

BRL with (n – 1) degrees of freedom improves substan-
tially on linearization with the same degrees of freedom.  
Because BRL is unbiased when ρ  =  0, comparing the fifth 
row of the table against the first demonstrates the reduction 
in Type I errors that results from removing the bias of 
linearization. Excluding 4β̂ , BRL reduces Type I error rates 
by about 45 to 88 percent. However, BRL with (n – 1) 
degrees of freedom remains consistently liberal, especially 
for 2β̂ . Comparison of rows 2 and 5 of each section shows 
the relative impact of bias reduction and the Satterthwaite 

adjustment. For 0β̂  and ,β̂2  degrees of freedom are more 
important, while bias matters more for 1β̂  and .β̂3   
Performance for BRL with the Satterthwaite approximation 
is very good, except for ,β̂2  where the Type I error falls to 
about 3 percent.  

Table 3 
Type I Error Rates for Tests of the Null Hypothesis that β = 0  

Estimator Df 0β̂  1β̂  2β̂  3β̂  4β̂  

  ρ = 0 

Linearization n – 1  7.54  7.00 15.99  7.35  5.38 

Linearization Satt  5.75  6.45   6.33  6.28  5.18 

Jackknife n – 1  5.01  3.92   7.58  4.52  5.02 

Jackknife Satt  3.80  3.43   1.41  3.26  4.77 

Kott (1994) Kott  4.87  5.03   7.13  5.21  4.67 

Kott (1996) Kott  5.11  5.08   4.85  4.76  5.07 

BRL n – 1  6.28  5.37 11.25  5.90  5.21 

BRL Satt  4.73  4.86   3.12  4.72  5.00 

  ρ = 1/9 

Linearization n – 1  7.81  7.14 16.19  8.18  5.34 

Linearization Satt  6.03  6.60   6.43  7.05  5.14 

Jackknife n – 1  5.31  4.06   7.63  4.49  4.77 

Jackknife Satt  4.11  3.61   1.48  3.24  4.51 

Kott (1994) Kott  5.07  5.03   7.00  5.51  4.56 

Kott (1996) Kott  5.42  5.28   5.14  5.32  5.01 

BRL n – 1  6.52  5.50 11.27  6.23  5.08 

BRL Satt  5.04  5.00   3.19  4.93  4.84 

   ρ = 1/3 

Linearization n – 1  8.10  7.28 16.39  8.79  5.66 

Linearization Satt  6.30  6.78   6.62  7.53  5.44 

Jackknife n – 1  5.45  4.11   7.76  4.56  4.67 

Jackknife Satt  4.13  3.61   1.51 3.35  4.46 

Kott (1994) Kott  5.14  5.06   7.02  5.80  4.84 

Kott (1996) Kott  5.59  5.44  5.14  5.88  5.31 

BRL n – 1  6.76  5.63 11.55  6.45  5.19 

BRL Satt  5.18  5.14   3.30  5.26  4.98 

Note: Entries with a true value of 5.00 percent have standard 
errors of 0.07 percent. 

 
Tests based on Kott’s 1994 estimator with his proposed 

degrees of freedom perform very well for the coefficients 
where the variance estimator is biased upward. It appears 
that the upward bias in the variance estimator is offset by the 
upward bias in the approximate degrees of freedom.  Kott’s 
variance estimator is slightly negatively biased for 2β̂  and 
therefore the upward bias in the degrees of freedom 
compounds the bias in the estimator resulting in a Type I 
error rate of about 7 percent for all three values of ρ.  

Tests based on Kott’s 1996 estimator also perform well. 
For almost all the coefficients and all values of ρ the Type I 
error rate is close to 5 percent. The exception is the test for 

3β̂  when ρ  =  1/3, which has an error rate of 5.88 percent 
as a result of the moderate bias in the variance estimator. 
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7. Example from the Partners in Care 
    Experiment  

We illustrate the methods in this paper using data from 
Partners in Care, a longitudinal experiment assessing the 
effect of “quality improvement” programs on care for 
depression in managed care organizations (MCOs) (Wells 
et al. 2000). The experiment followed 1,356 patients who 
screened positive for depression in 1996 – 1997 in 43 clinics 
of seven MCOs. Clinics were assigned at random to one of 
three experimental cells: usual care, a quality improvement 
program supplemented by resources for medication follow-
up, or a quality improvement program supplemented by 
resources for access to psychotherapists. Clinics were 
assigned at random after forming 27 clinic sets – three for 
each of nine blocks (six MCOs constituted single blocks, 
and one MCO was divided into three blocks based on ethnic 
mix of the clinics). Within blocks of more than three clinics, 

clinic sets were combined to match as closely as possible on 
anticipated sample size and patient characteristics. See 
Wells et al. (2000) for additional details.   

We present results from an OLS regression on the mental 
health summary score from the SF-12 (Ware, Kosinski, and 
Keller 1995) for 1,048 patients at 6 – month follow-up.  
Scores were standardized to have mean 50 and standard 
deviation 10 in a general population, with higher scores 
indicating better health. As in Wells et al. (2000), the 
explanatory variable of primary interest is an intervention 
indicator that estimates the combined effect of medication 
or therapy versus care as usual. The first two columns of 
Table 4 show OLS coefficients and standard errors for the 
intervention effect and all the covariates used by, but not 
reported in, Wells et al. (2000). Our regression differs from 
theirs because we do not weight for nonresponse or impute 
for missing values of the outcome variable, but the results 
for the intervention effect agree reasonably closely. 

 
Table 4 

Comparison of OLS, Linearization, and BRL Inference for Partner-in-Care Example 
 

P-value 
Explanatory Variable jβ̂  OLSSE  OLS

LIN

SE

SE
 

OLS

BRL

SE

SE
 

DFBRL OLS LIN BRL 
PSU-Level         
Intercept 28.795  3.409  1.03  1.06  23.7  0.000  0.000 0.000  
Intervention 1.724  0.746  0.73  0.84  15.4  0.021  0.003 0.015  
Block 1 1.386  1.867  0.63  0.80  2.7  0.458  0.244 0.426  
Block 2  – 0.031  1.576  0.88  1.07  3.6  0.984  0.982 0.986  
Block 3  – 1.042  1.230  0.53  0.61  3.9  0.397  0.117 0.241  
Block 4 0.038  1.231  0.62  0.73  4.5  0.976  0.961 0.968  
Block 5  – 3.707  1.503  0.66  0.78  4.7  0.014  0.001 0.027  
Block 6  – 0.025  1.562  1.15  1.32  4.9  0.987  0.989 0.991  
Block 7  – 2.784  1.644  0.84  0.97  7.0  0.090  0.051 0.126  
Block 8 0.822  1.233  0.93  1.03  12.0  0.505  0.476 0.527  
Demographic         
Black 0.972  1.448  0.74  0.79  7.6  0.502  0.369 0.419  
Hispanic 0.202  1.004  0.73  0.75  24.3  0.841  0.785 0.791  
Other nonwhite  – 1.033  1.409  0.77  0.80  21.6  0.463  0.349 0.369  
Female  – 0.502  0.803  1.09  1.12  23.1  0.532  0.571 0.581  
Log of net worth + $1,000 0.015  0.215  0.87  0.89  23.6  0.943  0.936 0.937  
Less than high school  – 1.690  1.217  1.00  1.04  25.3  0.165  0.173 0.192  
Some college  – 1.140  0.879  0.77  0.78  26.0  0.195  0.097 0.108  
College graduate  – 0.703  1.047  0.78  0.79  21.1  0.502  0.393 0.404  
Age 0.059  0.032  0.91  0.93  26.5  0.064  0.047 0.056  
Married 0.541  0.748  1.05  1.07  28.5  0.470  0.496 0.504  
Baseline Health         
1 chronic condition (of 19)  – 0.973  1.039  0.92  0.94  23.7  0.349  0.313 0.327  
2 chronic conditions 0.198  1.116  0.87  0.90  23.0  0.859  0.840 0.846  
3+ chronic conditions  – 0.201  1.132  0.90  0.91  24.0  0.859  0.844 0.847  
Depression and dysthymia  – 5.305  1.335  0.93  0.95  25.8  0.000  0.000 0.000  
Depression or dysthymia  – 3.882  0.982  1.12  1.15  23.7  0.000  0.001 0.002  
Prior depression only -2.396  1.109  1.02  1.05  21.2  0.031  0.040 0.052  
Mental component of SF-12 0.287  0.036  1.11  1.14  26.6  0.000  0.000 0.000  
Physical comp of SF-12 0.079  0.036  0.88  0.89  24.6  0.029  0.017 0.022  
Anxiety disorder  – 2.438  0.749  1.20  1.23  26.3  0.001  0.010 0.014  
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Because patients from the same clinics could have 
similar outcomes, OLS standard errors could easily be too 
low – especially for PSU-level variables like Intervention.  
Columns 3 and 4 of Table 4 show the ratios of linearization 
and BRL standard errors to the OLS standard errors. We use 
clinic as the PSU because there is very little reason to expect 
correlations of errors across clinics after controlling for 
block.   

Using the method of Wu, Holt and Holmes (1988), we 
estimate the intra-clinic correlation of the errors as  – 0.0026, 
easily consistent with a true value of 0.  Nonetheless, there 
is no reason to expect any of the correct standard errors to 
fall much below those obtained from OLS.  Column 3 of 
Table 4 shows that the linearization standard errors 
frequently fall far below those obtained from OLS  – 
especially for the PSU-level explanatory variables at the top 
of the table. Similarly, linearization with a reference 1−nt  
often produces much smaller P – values than does OLS.  

BRL improves over linearization. BRL standard errors 
are always larger and sometimes substantially larger than 
the linearization standard errors. For example, the BRL 
estimates for PSU-level explanatory variables are on 
average 15 percent larger than the linearization estimates.  
On the other hand, BRL standard errors for PSU-level 
variables are still often smaller than the OLS estimates.  
Thus, even though BRL estimators should be nearly 
unbiased, the variability in the estimators results in estimates 
for some coefficients that are small. The variability is also 
reflected in degrees of freedom that are very small for the 
block indicators and, while larger for patient level variables, 
are still considerably less than 42, the number of clusters 
minus one. The degrees of freedom are especially small, 7.6, 
for the indictor variable Black (equal to one if the patient 
was African American and zero otherwise). Plots analogous 
to Figure 1 show that Black was concentrated in three 
clusters. The Black indicator equals zero for all the patients 
in 24 of 43 clusters, and 48 of the 78 African Americans in 
the sample were found in just three clusters.   As discussed 
in sections 2 and 4, the concentration of Black into a small 
number of clusters results in high variance for both 
estimators and large bias in the linearization estimator, both 
of which can be seen in Table 4. 

 
8. Discussion  

Although linearization is a valuable tool that provides 
consistent standard errors and valid inference as the number 
of PSUs grows large in multi-stage samples, users should 
recognize problems with the method. Estimated variances of 
linear regression coefficients (including domain means) tend 
to be biased low – especially for coefficients (or linear 
combinations of coefficients) that depend largely on data 
from a small number of PSUs. Depending on the design, 
large biases can persist even when the total number of PSUs 
is quite large. The standard jackknife for multi-stage 
samples tends to have at least as large bias in the opposite 
direction. Similarly, using a reference t distribution with 

degrees of freedom equal to one less than the number of 
PSUs may greatly understate the uncertainty in the 
estimated variance. Because the two problems (bias and 
overstated degrees of freedom) tend to occur in tandem for 
linearization, confidence intervals and statistical tests based 
on that method may be far too liberal. 

Bias reduced linearization (BRL) produces unbiased 
variance estimates in the event that errors are homoskedastic 
and uncorrelated, and it tends to greatly reduce bias for other 
covariance structures investigated in our simulations.  In our 
simulations, BRL consistently exhibited smaller biases than 
linearization by 90 percent or more and tended to improve 
substantially on Kott’s 1994 adjusted linearization method. 
Results for BRL were comparable to those for Kott’s 1996 
method. 

When BRL was used with the estimated Satterthwaite 
degrees of freedom, statistical inference improved greatly in 
comparison with the standard use of linearization. Bias 
reduction and Satterthwaite degrees of freedom seemed to 
contribute about equally to the improved performance.  
Although Satterthwaite’s approximation may overcom-
pensate, leading to conservative inference in certain 
situations, the problem does not seem noteworthy until the 
Satterthwaite degrees of freedom drop below 5 (based, in 
part, on simulations not reported in this paper). In such 
cases, analysts might choose to estimate critical values using 
simulations based on Theorem 4. 

It is important to note some limitations of our simulation 
results. First, we only report results for four distinct 
explanatory variables plus an intercept. We choose those 
variables to span a wide variety of situations. Although 
some might describe x2 as extreme or pathological, it is not 
outside the range of situations that we have seen in our own 
consulting work.  Variables like x2 can results from group-
randomized trials (see section 7) or observational data 
where only a few PSUs exhibit a particular trait or from use 
of a series of dummy variables to represent levels of a 
categorical variable. Second, we present results only for 
n  =  20 PSUs.  To the extent that X remains similar as n 
increases (e.g., by replication), Equation (4) implies that the 
bias declines in proportion to 1/(n – 1). Also, the results 
observed for n  =  20 could occur for much larger n if the 
bulk of the variation in X is contributed by a few PSUs, and 
the determination of β̂l ′  depends similarly on a small 
number of PSUs.  Finally, to reduce the number of factors 
affecting the results, we simplified the design in several 
ways: constant PSU sizes, no weights or strata, and little 
multicollinearity. We suspect that relaxing any of those 
constraints would actually tend to make standard lineari-
zation and the jackknife perform worse. We do not believe 
that the choice of m  =  10 for the PSU size had much 
impact either way on our findings. 

Although we believe that our proposed methods will 
prove valuable to analysts of multi-stage samples, these 
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methods will not completely solve the inference problem for 
unweighted linear regression. Both authors have frequently 
observed the disturbing situation where standard lineari-
zation methods produced shorter confidence intervals than 
methods that ignore the design. Certainly, the bias of vL and 
improper use of n – 1 degrees of freedom contribute to the 
frequency of this phenomenon, but our methods would not 
eliminate its occurrence (see section 7). Linearization, like 
sample reuse methods, necessarily produces estimators with 
high variance for some or possibly all coefficients in certain 
designs. When confronted with situations like the coeffi-
cients for our x2, where the Satterthwaite degrees of freedom 
fall near 3 or lower, analysts should seriously consider 
whether they can afford the large variability, and corre-
sponding loss of power, that comes with nonparametric 
variance estimators. Parametric alternatives like hierarchical 
linear models or inference based on estimating a common 
intra-class correlation across all the PSUs (Wu, Holt and 
Holmes 1988) should produce more stable results.   

Although this paper has focused on unweighted linear 
regression for samples without stratification, we have no 
reason to expect that the bias and degrees-of-freedom 
problems of linearization would be lessened by stratification 
or for either weighted least squares or generalized linear 
models (GLMs). As shown in McCaffrey, Bell and Botts 
(2001) the BRL method extends immediately to weighted 
linear regression by using H  =  X (X′ WX)–1 X′ W in the 
main condition of Theorem 3. Because solutions to GLMs, 
such as logistic regression, are equivalent to the final steps 
of iteratively reweighted least squares (McCullagh and 
Nelder 1989), the obvious choice for these models is to use 
BRL based on the final weights and to set U  =  W)–1. 
Nevertheless, Theorem 3 does not extend to GLMs because 
the weights are estimated from the data, and we have not 
investigated the properties of BRL in this context.   

Korn and Graubard (1995) suggest vL
1/2 as a standard 

error estimator for stratified samples in situations where the 
stratification is non-informative. The same reasoning applies 
to .2/1

BRLv  Fuller (1975) proposed an alternative design 
consistent standard error estimator for stratified samples. 
Bell and McCaffrey (2002, pages 32 – 33) show that by 
adjusting the vector of residuals for each stratum, BRL can 
reduce or remove the model bias that can exist in Fuller’s 
estimator. 
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Appendix  
Proofs of Theorems 2 and 4  
Proof of Theorem 2. Following the first steps of the proof 
of Theorem 1, equation (6) implies that 
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The term for r  =  0 equals l ′ (X′ X)–1l  =  Var( β̂l ′ ). The 
term for r  =  1 equals 0. By the binomial theorem, 
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so that the remaining terms can be paired, for 
r  =  2,  4,  6,  …, to give 
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which is positive definite, so that the whole expression must 
be positive. Consequently, we have shown that E(vJK)  > 
Var( β̂l ′ ) with equality if and only if ,0)( 1 =′′ −

il DXX  
which is true if and only if iil XXXX ′′′ −1)(  is constant 
across i.   
Proof of Theorem 4. 
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Let P equal the matrix of eigenvectors and Λ denote the 
diagonal matrix with elements λ1,  …,  λM equal to the 
eigenvalues of V1/2∑ = ′n

i ii1 gg V1/2  =  B' B where B'  =  V1/2 

[g1  g2 ... gn]. Let u  =  P' V 
–1/2y where V 

–1/2VV 
–1/2   =  I 

defines V 
–1/2, then the elements of u are independent normal 

variables with variance 1 and  
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Let λi be any nonzero eigenvalue of B' B, then there exits 
a nonzero vector z such that B' Bz = λi z and BB' Bz = 
λi  Bz. Because Bz ≠ 0, λi is an eigenvalue of BB'.  
Similarly, any nonzero eigenvalue of BB' is also an 
eigenvalue of B' B. Therefore, the nonzero eigenvalues of 
B' B equal the nonzero eigenvalues of BB' = {gi' Vg  j}. 
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