Measuring the price of digital computing equipment and devices in the Consumer Price Index

Release date: February 21, 2023

Skip to text

Text begins

The Consumer Price Index (CPI) measures the change in prices of consumer goods and services over time. To accurately reflect trends in the market and consumer behavior, Statistics Canada periodically updates the methods applied to various components of the CPI.

The digital computing equipment and devices index (DCEDI) represents 0.56% of the 2021 basket, and 6.03% of the recreation, education, and reading index, a major component of the CPI. It is comprised of two sub-indices:

  1. The computer equipment, software, and supplies index (CESSI), which makes up 0.37% of the 2021 CPI basket. This index tracks prices of computer equipment products such as laptops, desktops, monitors, and printers.
  2. The multipurpose digital devices index (MDDI), which makes up 0.19% of the 2021 CPI basket. This index tracks prices of products such as tablets, smartwatches, and smartphones.

Enhancements to the Index

The DCEDI in the CPI measures the monthly changes over time in the price of laptops, desktops, monitors, printers, smartphones, smartwatches, and tablets. As part of modernization initiatives, Statistics Canada plans to implement enhancements to the estimation of the DCEDI, including:

These enhancements will bolster the quality of the DCEDI by increasing the index’s sample size and coverage through timelier receipt of data. Prices will be collectedNote  from retailer websites. Weights used in aggregating monthly prices will be updated periodically from other surveys and/or sources such as Statistics Canada’s retail sales data, market data on brand and product expenditures, and supplementary data collected online.

The New Methodology

The nature of the consumer electronics industry and its rate of technological advancement cause the frequent replacement of outgoing items with new and improved products. To estimate pure price movements and control for these quality changesNote  , statistical models are used for quality adjustment by imputing monthly prices of incoming and outgoing items. Apart from printersNote  , all products in the DCEDI are subject to this model-based quality adjustment process.

In the case of laptops, desktops, monitors, smartphones, smartwatches, and tablets, the log of monthly prices in a window corresponding to a set of monthly periodsNote  are modelled as a function of a set of explanatory variables using an XGBoostNote   algorithm, which was found to outperform other algorithms without increasing operational burden.

Each product (e.g., laptops) has a separate model that uses explanatory variables specific to that product in order to estimate a price. For example, the following characteristics are currently used to model laptops: brand, retailer, display size, ram size, drive space, number of cores, processor speed, vertical resolution, weight, operating system, and whether the laptop has a touch screen. The decision of which variables to use were based on a combination of subject matter expertise, their explanatory power in modeling prices, and operational requirementsNote  .

Initially, price changes for each observation, ( Δ p ˜ t,i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKabm iCayaaiaWaaSbaaSqaaiaadshacaGGSaGaamyAaaqabaaaaa@3B24@ ), are calculated as the current period log price less the previous period log price, where, in the case of entries and exits, the missing period price is imputed via a statistical model:

Δ p ˜ t,i ={ p t,i p t1,i ,if i is in both periods, or           p ^ t,i p t1,i ,if i is not in current period, or  p t,i p ^ t1,i ,if i is not in previous period.     MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyiLdqKabm iCayaaiaWaaSbaaSqaaiaadshacaGGSaGaamyAaaqabaGccqGH9aqp daGabaqaauaabeqadeaaaeaacaWGWbWaaSbaaSqaaiaadshacaGGSa GaamyAaaqabaGccqGHsislcaWGWbWaaSbaaSqaaiaadshacqGHsisl caaIXaGaaiilaiaadMgaaeqaaOGaaiilaiaabMgacaqGMbGaaeiiai aadMgacaqGGaGaaeyAaiaabohacaqGGaGaaeyAaiaab6gacaqGGaGa aeOyaiaab+gacaqG0bGaaeiAaiaabccacaqGWbGaaeyzaiaabkhaca qGPbGaae4BaiaabsgacaqGZbGaaeilaiaabccacaqGVbGaaeOCaiaa bccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaae iiaiaabccaaeaaceWGWbGbaKaadaWgaaWcbaGaamiDaiaacYcacaWG PbaabeaakiabgkHiTiaadchadaWgaaWcbaGaamiDaiabgkHiTiaaig dacaGGSaGaamyAaaqabaGccaGGSaGaaeyAaiaabAgacaqGGaGaamyA aiaabccacaqGPbGaae4CaiaabccacaqGUbGaae4BaiaabshacaqGGa GaaeyAaiaab6gacaqGGaGaae4yaiaabwhacaqGYbGaaeOCaiaabwga caqGUbGaaeiDaiaabccacaqGWbGaaeyzaiaabkhacaqGPbGaae4Bai aabsgacaqGSaGaaeiiaiaab+gacaqGYbGaaeiiaaqaaiaadchadaWg aaWcbaGaamiDaiaacYcacaWGPbaabeaakiabgkHiTiqadchagaqcam aaBaaaleaacaWG0bGaeyOeI0IaaGymaiaacYcacaWGPbaabeaakiaa cYcacaqGPbGaaeOzaiaabccacaWGPbGaaeiiaiaabMgacaqGZbGaae iiaiaab6gacaqGVbGaaeiDaiaabccacaqGPbGaaeOBaiaabccacaqG WbGaaeOCaiaabwgacaqG2bGaaeyAaiaab+gacaqG1bGaae4Caiaabc cacaqGWbGaaeyzaiaabkhacaqGPbGaae4BaiaabsgacaGGUaGaaeii aiaabccacaqGGaGaaeiiaaaaaiaawUhaaaaa@B631@

where,

p t,i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaBa aaleaacaWG0bGaaiilaiaadMgaaeqaaaaa@39AE@  is the log observed price of the i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaaaa@36E5@ observation in period t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@36F0@ ,

and p ^ t,i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiCayaaja WaaSbaaSqaaiaadshacaGGSaGaamyAaaqabaaaaa@39BE@  is the log price of the i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaaaa@36E5@ observation imputed using the model estimated in period t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@36F0@ .

In the next steps, indicesNote  for each brand within each product are calculated (for example, laptops from brand X). These are then aggregated to product level price relatives, which are then finally aggregated to elementary product level price relatives. The brand relatives are calculated as the exponential of the arithmetic mean of differences in log price between periodsNote  :

I t,brand,product =exp( i s t,brand,product Δ p ˜ t,i w t,i ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysamaaBa aaleaacaWG0bGaaiilaiaadkgacaWGYbGaamyyaiaad6gacaWGKbGa aiilaiaadchacaWGYbGaam4BaiaadsgacaWG1bGaam4yaiaadshaae qaaOGaeyypa0JaciyzaiaacIhacaGGWbWaaeWaaeaadaaeqbqaaiab fs5aejqadchagaacamaaBaaaleaacaWG0bGaaiilaiaadMgaaeqaaO Gaey4fIOIaam4DamaaBaaaleaacaWG0bGaaiilaiaadMgaaeqaaaqa aiaadMgacqGHiiIZcaWGZbWaaSbaaWqaaiaadshacaGGSaGaamOyai aadkhacaWGHbGaamOBaiaadsgacaGGSaGaamiCaiaadkhacaWGVbGa amizaiaadwhacaWGJbGaamiDaaqabaaaleqaniabggHiLdaakiaawI cacaGLPaaaaaa@6747@

where,

S t,brand,product MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaBa aaleaacaWG0bGaaiilaiaadkgacaWGYbGaamyyaiaad6gacaWGKbGa aiilaiaadchacaWGYbGaam4BaiaadsgacaWG1bGaam4yaiaadshaae qaaaaa@4498@  is the set of observations with observed or imputed prices in period t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@36F0@  of a given brand within the product,

and w t,i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DamaaBa aaleaacaWG0bGaaiilaiaadMgaaeqaaaaa@39B6@  is the observation’s weight, constructed to ensure an observation’s representativeness within each product-brand.

For the estimation of each product level index, the arithmetic mean of each product’s brand price relatives is then taken, with their corresponding expenditure weights, to obtain a product level index I t,product MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysamaaBa aaleaacaWG0bGaaiilaiaadchacaWGYbGaam4BaiaadsgacaWG1bGa am4yaiaadshaaeqaaaaa@3F3D@  , i.e.:

I t,product = brandproduct I t,brand,product w t,brand,product MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysamaaBa aaleaacaWG0bGaaiilaiaadchacaWGYbGaam4BaiaadsgacaWG1bGa am4yaiaadshaaeqaaOGaeyypa0ZaaabuaeaacaWGjbWaaSbaaSqaai aadshacaGGSaGaamOyaiaadkhacaWGHbGaamOBaiaadsgacaGGSaGa amiCaiaadkhacaWGVbGaamizaiaadwhacaWGJbGaamiDaaqabaGccq GHxiIkcaWG3bWaaSbaaSqaaiaadshacaGGSaGaamOyaiaadkhacaWG HbGaamOBaiaadsgacaGGSaGaamiCaiaadkhacaWGVbGaamizaiaadw hacaWGJbGaamiDaaqabaaabaGaamOyaiaadkhacaWGHbGaamOBaiaa dsgacqGHiiIZcaWGWbGaamOCaiaad+gacaWGKbGaamyDaiaadogaca WG0baabeqdcqGHris5aaaa@6D82@

where,
w t,brand,product MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DamaaBa aaleaacaWG0bGaaiilaiaadkgacaWGYbGaamyyaiaad6gacaWGKbGa aiilaiaadchacaWGYbGaam4BaiaadsgacaWG1bGaam4yaiaadshaae qaaaaa@44BB@  is a constant quality price-updated expenditure weight.Note 

The elementary product class index follows a similar approach to that of product level index calculations described above, i.e. a weighted arithmetic mean of the corresponding product relatives. The elementary product classNote  index movement at time t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@36F0@ , I t,element MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysamaaBa aaleaacaWG0bGaaiilaiaadwgacaWGSbGaamyzaiaad2gacaWGLbGa amOBaiaadshaaeqaaaaa@3F27@  can be expressed as:

I t,element = product  element I t,product   w t,product MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysamaaBa aaleaacaWG0bGaaiilaiaadwgacaWGSbGaamyzaiaad2gacaWGLbGa amOBaiaadshaaeqaaOGaeyypa0ZaaabuaeaacaWGjbWaaSbaaSqaai aadshacaGGSaGaamiCaiaadkhacaWGVbGaamizaiaadwhacaWGJbGa amiDaaqabaGccqGHxiIkaSqaaiaadchacaWGYbGaam4Baiaadsgaca WG1bGaam4yaiaadshacaqGGaGaeyicI4SaaeiiaiaadwgacaWGSbGa amyzaiaad2gacaWGLbGaamOBaiaadshaaeqaniabggHiLdGccaqGGa Gaam4DamaaBaaaleaacaWG0bGaaiilaiaadchacaWGYbGaam4Baiaa dsgacaWG1bGaam4yaiaadshaaeqaaaaa@66B6@

In summary

Through the incorporation of web-scraped data and methodological updates, the new approach to estimating the components of the digital computing equipment and devices index constitutes an important enhancement towards the measurement of price change for goods which are critical to the digital economy. This enhanced methodology will be used in place of the previous methods for the corresponding elementary product classes of the DCEDI. Due to the changes in methodology and data, users are advised not to make year over year index comparisons until a full year has passed since implementation.

Statistics Canada continues to work with price experts, national statistical organizations, and other partners to ensure data and methods used in the calculation of the CPI are aligned with international standards and best practices. The agency is continuing to monitor prices for digital computing equipment and devices to ensure the ongoing accuracy and relevance of the CPI.

For additional information, users may contact the Consumer Prices Division at statcan.cpddisseminationunit-dpcunitedediffusion.statcan@statcan.gc.ca.


Date modified: