Statistical inference with non-probability survey samples
Section 6. Variance estimation

Variance estimation under the two sample S A MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGtbWaaSbaaSqaaiaadgeaaeqaaa aa@3377@ and S B MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGtbWaaSbaaSqaaiaadkeaaeqaaa aa@3378@ setup involves at least two different sources of variation. The probability sampling design for the reference sample S B MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGtbWaaSbaaSqaaiaadkeaaeqaaa aa@3378@ remains one of the sources regardless of the approaches used for non-probability survey samples. Estimation of the variance component due to the use of S B MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGtbWaaSbaaSqaaiaadkeaaeqaaa aa@3378@ requires either suitable variance approximation formulas or replication weights as part of the dataset from the reference probability sample. Our discussion in this section assumes that a design-based variance estimator for the survey weighted point estimator based on S B MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGtbWaaSbaaSqaaiaadkeaaeqaaa aa@3378@ is available.

6.1  Variance estimation for mass imputation estimators

Variance estimation for the model-based prediction estimator μ ^ y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacuaH8oqBgaqcamaaBaaaleaacaWG5b aabeaaaaa@349D@ involves first deriving the asymptotic variance formula for Var ( μ ^ y μ y ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaqGwbGaaeyyaiaabkhacaaMc8+aae WaaeaacuaH8oqBgaqcamaaBaaaleaacaWG5baabeaakiaaysW7cqGH sislcaaMe8UaeqiVd02aaSbaaSqaaiaadMhaaeqaaaGccaGLOaGaay zkaaaaaa@415E@ under the assumed outcome regression model or the imputation model ξ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaH+oaEaaa@3370@ and the probability sampling design p , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGWbGaaiilaaaa@3352@ and then using plug-in estimators for various unknown population quantities.

The mass imputation estimator μ ^ y MI = N ^ B 1 i S B d i B y i * MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacuaH8oqBgaqcamaaBaaaleaacaWG5b GaaeytaiaabMeaaeqaaOGaaGjbVlabg2da9iaaysW7ceWGobGbaKaa daqhaaWcbaGaamOqaaqaaiabgkHiTiaaigdaaaGcdaaeqaqaaiaads gadaqhaaWcbaGaamyAaaqaaiaadkeaaaGccaWG5bWaa0baaSqaaiaa dMgaaeaacaGGQaaaaaqaaiaadMgacqGHiiIZcaWGtbWaaSbaaWqaai aadkeaaeqaaaWcbeqdcqGHris5aaaa@49A9@ given in (3.5) is a special type of model-based prediction estimator, where the model ξ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaH+oaEaaa@3370@ refers to the one used for imputation and is not necessarily the same as the outcome regression model. The imputation method plays a key role in deriving the asymptotic variance formula, and the variance estimator needs to be constructed accordingly. Noting that μ ^ y MI MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacuaH8oqBgaqcamaaBaaaleaacaWG5b GaaeytaiaabMeaaeqaaaaa@3639@ is a Hájek type estimator due to the use of the estimated population size N ^ B , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaaceWGobGbaKaadaWgaaWcbaadcaWGcb aakeqaaiaacYcaaaa@3449@ derivations of the asymptotic variance formula start with putting the true value N MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGobaaaa@3280@ in first and then dealing with μ ^ y MI MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacuaH8oqBgaqcamaaBaaaleaacaWG5b GaaeytaiaabMeaaeqaaaaa@3639@ as a ratio estimator. Kim et al. (2021) considered variance estimation for μ ^ y = N 1 i S B d i B y i * , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacuaH8oqBgaqcamaaBaaaleaacaWG5b aabeaakiaaysW7cqGH9aqpcaaMe8UaamOtamaaCaaaleqabaGaeyOe I0IaaGymaaaakmaaqababaGaamizamaaDaaaleaacaWGPbaabaGaam OqaaaakiaadMhadaqhaaWcbaGaamyAaaqaaiaacQcaaaaabaGaamyA aiabgIGiolaadofadaWgaaadbaGaamOqaaqabaaaleqaniabggHiLd GccaGGSaaaaa@47F0@ where y i * = m ( x i , β ^ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWG5bWaa0baaSqaaiaadMgaaeaaca GGQaaaaOGaaGjbVlabg2da9iaaysW7caWGTbGaaGPaVpaabmaabaGa aCiEamaaBaaaleaacaWGPbaabeaakiaaiYcacaaMe8UabCOSdyaaja aacaGLOaGaayzkaaaaaa@425A@ is the imputed value for y i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWG5bWaaSbaaSqaaiaadMgaaeqaaa aa@33C5@ based on the semiparametric model (3.1). The asymptotic variance formula is developed in two steps. First, a linearized version of μ ^ y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacuaH8oqBgaqcamaaBaaaleaacaWG5b aabeaaaaa@349D@ is obtained by using a Taylor series expansion at β * , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWHYoWaaWbaaSqabeaacaGGQaaaaO Gaaiilaaaa@3480@ where β * MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWHYoWaaWbaaSqabeaacaGGQaaaaa aa@33C6@ is the probability limit of β ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaaceWHYoGbaKaaaaa@32FB@ such that β ^ = β * + O p ( n A 1 / 2 ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaaceWHYoGbaKaacaaMe8Uaeyypa0JaaG jbVlaahk7adaahaaWcbeqaaiaacQcaaaGccaaMe8Uaey4kaSIaaGjb Vlaad+eadaWgaaWcbaGaamiCaaqabaGcdaqadaqaaiaad6gadaqhaa WcbaGaamyqaaqaaiabgkHiTmaalyaabaGaaGymaaqaaiaaikdaaaaa aaGccaGLOaGaayzkaaGaaiOlaaaa@45DE@ Second, two variance components are derived for Var ( μ ^ y μ y ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaqGwbGaaeyyaiaabkhacaaMc8+aae WaaeaacuaH8oqBgaqcamaaBaaaleaacaWG5baabeaakiaaysW7cqGH sislcaaMe8UaeqiVd02aaSbaaSqaaiaadMhaaeqaaaGccaGLOaGaay zkaaaaaa@415E@ based on the linearized version using the semiparametric model (3.1) and the sampling design for S B . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGtbWaaSbaaSqaaiaadkeaaeqaaO GaaiOlaaaa@3434@ The process is tedious, which is the case for most model-based variance estimation methods. A bootstrap variance estimator turns out to be more attractive for practical applications. See Kim et al. (2021) for further details.

6.2  Variance estimation for IPW estimators

The commonly used IPW estimator μ ^ IPW 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacuaH8oqBgaqcamaaBaaaleaamiaabM eacaqGqbGaae4vaiaaikdaaOqabaaaaa@36EA@ given in (4.8) is valid under the assumed model q MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGXbaaaa@32A3@ for the propensity scores. An explicit asymptotic variance formula for μ ^ IPW 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacuaH8oqBgaqcamaaBaaaleaamiaabM eacaqGqbGaae4vaiaaikdaaOqabaaaaa@36EA@ can be derived under the joint q p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGXbGaamiCaaaa@3398@ -framework when the propensity scores are estimated using the pseudo maximum likelihood method or an estimating equation based method as discussed in Section 4.1. The theoretical tool is the sandwich-type variance formula for point estimators defined as the solution to a combined system of estimating equations for both μ y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaH8oqBdaWgaaWcbaGaamyEaaqaba aaaa@348D@ and α 0 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWHXoWaaSbaaSqaaiaaicdaaeqaaO GaaiOlaaaa@348C@

Consider the parametric form π i A = π ( x i , α ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaHapaCdaqhaaWcbaGaamyAaaqaai aadgeaaaGccaaMe8Uaeyypa0JaaGjbVlabec8aWjaaykW7daqadaqa aiaahIhadaWgaaWcbaGaamyAaaqabaGccaaISaGaaGjbVlaahg7aai aawIcacaGLPaaaaaa@43EB@ for the propensity scores, where the model parameters α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWHXoaaaa@32EA@ are estimated through the estimating equations (4.4) with user-specified functions h ( x , α ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWHObGaaGPaVlaacIcacaWH4bGaai ilaiaaysW7caWHXoGaaiykaiaac6caaaa@3AAF@ The first major step in deriving the asymptotic variance formula for μ ^ IPW 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacuaH8oqBgaqcamaaBaaaleaamiaabM eacaqGqbGaae4vaiaaikdaaOqabaaaaa@36EA@ is to write down the system of joint estimating equations for both μ y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaH8oqBdaWgaaWcbaGaamyEaaqaba aaaa@348D@ and α 0 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWHXoWaaSbaaSqaaiaaicdaaeqaaO GaaiOlaaaa@348C@ Let η = ( μ , α ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWH3oGaaGjbVlabg2da9iaaysW7da qadaqaaiabeY7aTjaaiYcacaaMe8UabCySdyaafaaacaGLOaGaayzk aaWaaWbaaSqabeaakiadaITHYaIOaaaaaa@40F2@ be the vector of the combined parameters. The estimator η ^ = ( μ ^ IPW 2 , α ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaaceWH3oGbaKaacaaMe8Uaeyypa0JaaG jbVpaabmaabaGafqiVd0MbaKaadaWgaaWcbaadcaqGjbGaaeiuaiaa bEfacaaIYaaakeqaaiaaiYcacaaMe8UabCySdyaafaaacaGLOaGaay zkaaWaaWbaaSqabeaakiadaITHYaIOaaaaaa@4489@ is the solution to the system of joint estimating equations Φ n ( η ) = 0 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWHMoWaaSbaaSqaaiaad6gaaeqaaO WaaeWaaeaacaWH3oaacaGLOaGaayzkaaGaaGjbVlabg2da9iaaysW7 caWHWaGaaiilaaaa@3C5D@ where

Φ n ( η ) = ( N 1 i = 1 N R i ( y i μ ) / π i A N 1 i = 1 N R i h ( x i , α ) N 1 i S B d i B π i A h ( x i , α ) ) . ( 6.1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWHMoWaaSbaaSqaaiaad6gaaeqaaO WaaeWaaeaacaWH3oaacaGLOaGaayzkaaGaaGjbVlaaysW7caaI9aGa aGjbVlaaysW7daqadaqaauaabeqaceaaaeaacaWGobWaaWbaaSqabe aacqGHsislcaaIXaaaaOWaaabmaeaadaWcgaqaaiaadkfadaWgaaWc baGaamyAaaqabaGcdaqadaqaaiaadMhadaWgaaWcbaGaamyAaaqaba GccaaMe8UaeyOeI0IaaGjbVlabeY7aTbGaayjkaiaawMcaaaqaaiab ec8aWnaaDaaaleaacaWGPbaabaGaamyqaaaaaaaabaGaamyAaiaai2 dacaaIXaaabaGaamOtaaqdcqGHris5aaGcbaGaamOtamaaCaaaleqa baGaeyOeI0IaaGymaaaakmaaqadabaGaamOuamaaBaaaleaacaWGPb aabeaakiaahIgacaaMc8+aaeWaaeaacaWH4bWaaSbaaSqaaiaadMga aeqaaOGaaGilaiaaysW7caWHXoaacaGLOaGaayzkaaaaleaacaWGPb Gaeyypa0JaaGymaaqaaiaad6eaa0GaeyyeIuoakiaaysW7cqGHsisl caaMe8UaamOtamaaCaaaleqabaGaeyOeI0IaaGymaaaakmaaqababa GaamizamaaDaaaleaacaWGPbaabaGaamOqaaaakiabec8aWnaaDaaa leaacaWGPbaabaGaamyqaaaakiaahIgacaaMc8+aaeWaaeaacaWH4b WaaSbaaSqaaiaadMgaaeqaaOGaaGilaiaaysW7caWHXoaacaGLOaGa ayzkaaaaleaacaWGPbGaeyicI4Saam4uamaaBaaameaacaWGcbaabe aaaSqab0GaeyyeIuoaaaaakiaawIcacaGLPaaacaaMc8UaaiOlaiaa ywW7caaMf8UaaGzbVlaaywW7caaMf8UaaiikaiaaiAdacaGGUaGaaG ymaiaacMcaaaa@94F5@

The factor N 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGobWaaWbaaSqabeaacqGHsislca aIXaaaaaaa@3455@ is redundant but useful in facilitating asymptotic orders. The estimating functions defined by (6.1) are unbiased under the joint q p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGXbGaamiCaaaa@3398@ -framework, i.e., E q p { Φ ( η 0 ) } = 0 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGfbWaaSbaaSqaaiaadghacaWGWb aabeaakmaacmaabaGaaCOPdiaayIW7caaMc8UaaiikaiaahE7adaWg aaWcbaGaaGimaaqabaGccaGGPaaacaGL7bGaayzFaaGaaGjbVlabg2 da9iaaysW7caWHWaGaaiilaaaa@442C@ where η 0 = ( μ y , α 0 ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWH3oWaaSbaaSqaaiaaicdaaeqaaO GaaGjbVlabg2da9iaaysW7daqadaqaaiabeY7aTnaaBaaaleaacaWG 5baabeaakiaaiYcacaaMe8UaaCySdmaaDaaaleaacaaIWaaabaacca Gae8NmGikaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacqWFYaIOaaGc caGGUaaaaa@44C9@ There are two major consequences from the unbiasedness of the estimating equations system. First, consistency of the estimator η ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaaceWH3oGbaKaaaaa@3300@ can be argued using the theory of general estimating functions similar to those presented in Section 3.2 of Tsiatis (2006). Second, the asymptotic variance-covariance matrix of η ^ , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaaceWH3oGbaKaacaGGSaaaaa@33B0@ denoted as AV ( η ^ ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaqGbbGaaeOvaiaaykW7daqadaqaai qahE7agaqcaaGaayjkaiaawMcaaiaacYcaaaa@3861@ has the standard sandwich form and is given by

AV ( η ^ ) = [ E { ϕ n ( η 0 ) } ] 1 Var { Φ n ( η 0 ) } [ E { ϕ n ( η 0 ) } ] 1 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaqGbbGaaeOvamaabmaabaGabC4Tdy aajaaacaGLOaGaayzkaaGaaGjbVlaaysW7cqGH9aqpcaaMe8UaaGjb VpaadmaabaGaamyraiaaykW7daGadaqaaGGabiab=v9aMnaaBaaale aacaWGUbaabeaakiaacIcacaWH3oWaaSbaaSqaaiaaicdaaeqaaOGa aiykaaGaay5Eaiaaw2haaaGaay5waiaaw2faamaaCaaaleqabaGaey OeI0IaaGymaaaakiaabAfacaqGHbGaaeOCaiaaykW7daGadaqaaiaa hA6adaWgaaWcbaGaamOBaaqabaGccaaMi8UaaiikaiaahE7adaWgaa WcbaGaaGimaaqabaGccaGGPaaacaGL7bGaayzFaaWaamWaaeaacaWG fbGaaGPaVpaacmaabaGae8x1dy2aaSbaaSqaaiaad6gaaeqaaOGaaG PaVlaacIcacaWH3oWaaSbaaSqaaiaaicdaaeqaaOGaaiykaaGaay5E aiaaw2haamaaCaaaleqabaGccWaGyBOmGikaaaGaay5waiaaw2faam aaCaaaleqabaGaeyOeI0IaaGymaaaakiaacYcaaaa@6E40@

where ϕ n ( η ) = Φ n ( η ) / η , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaaiiqacqWFvpGzdaWgaaWcbaGaamOBaa qabaGccaGGOaGaaC4TdiaacMcacaaMe8Uaeyypa0JaaGjbVpaalyaa baGaeyOaIyRaaCOPdmaaBaaaleaacaWGUbaabeaakiaacIcacaWH3o GaaiykaaqaaiabgkGi2kaahE7aaaGaaiilaaaa@452C@ which depends on the forms of π i A = π ( x i , α ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaHapaCdaqhaaWcbaGaamyAaaqaai aadgeaaaGccaaMe8Uaeyypa0JaaGjbVlabec8aWjaaykW7caGGOaGa aCiEamaaBaaaleaacaWGPbaabeaakiaaiYcacaaMe8UaaCySdiaacM caaaa@43BB@ and h ( x i , α ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaaMi8UaaCiAaiaaykW7caGGOaGaaC iEamaaBaaaleaacaWGPbaabeaakiaaiYcacaaMe8UaaCySdiaacMca caGGUaaaaa@3D6A@ The term Var { Φ n ( η 0 ) } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaqGwbGaaeyyaiaabkhacaaMc8+aai WaaeaacaWHMoWaaSbaaSqaaiaad6gaaeqaaOGaaiikaiaahE7adaWg aaWcbaGaaGimaaqabaGccaGGPaaacaGL7bGaayzFaaaaaa@3E02@ consists of two components, one due to the propensity score model q MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGXbaaaa@32A3@ and the other from the probability sampling design for S B . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGtbWaaSbaaSqaaWGaamOqaaGcbe aacaGGUaaaaa@3440@ More specifically, we have Var { Φ n ( η 0 ) } = V q ( A 1 ) + V p ( A 2 ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaqGwbGaaeyyaiaabkhacaaMc8+aai WaaeaacaWHMoWaaSbaaSqaaiaad6gaaeqaaOGaaiikaiaahE7adaWg aaWcbaGaaGimaaqabaGccaGGPaaacaGL7bGaayzFaaGaaGjbVlaai2 dacaaMe8UaamOvamaaBaaaleaacaWGXbaabeaakiaacIcacaWHbbWa aSbaaSqaaiaaigdaaeqaaOGaaiykaiaaysW7cqGHRaWkcaaMe8Uaam OvamaaBaaaleaacaWGWbaabeaakiaacIcacaWHbbWaaSbaaSqaaiaa ikdaaeqaaOGaaiykaiaacYcaaaa@50C5@ where V q ( ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGwbWaaSbaaSqaaiaadghaaeqaaO GaaiikaiabgwSixlaacMcaaaa@3757@ denotes the variance under the propensity score model q MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGXbaaaa@32A3@ and V p ( ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGwbWaaSbaaSqaaiaadchaaeqaaO GaaiikaiabgwSixlaacMcaaaa@3756@ represents the design-based variance under the probability sampling design p , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGWbGaaiilaaaa@3352@ and

A 1 = 1 N i = 1 N R i ( ( y i μ ) / π i A h ( x i , α ) ) , A 2 = 1 N i S B d i B ( 0 π i A h ( x i , α ) ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWHbbWaaSbaaSqaaiaaigdaaeqaaO GaaGjbVlaaysW7cqGH9aqpcaaMe8UaaGjbVpaalaaabaGaaGymaaqa aiaad6eaaaWaaabCaeaacaWGsbWaaSbaaSqaaiaadMgaaeqaaOWaae WaaeaafaqabeGabaaabaWaaSGbaeaacaGGOaGaamyEamaaBaaaleaa caWGPbaabeaakiaaysW7cqGHsislcaaMe8UaeqiVd0Maaiykaaqaai abec8aWnaaDaaaleaacaWGPbaabaGaamyqaaaaaaaakeaacaWHObGa aGjcVlaaykW7caGGOaGaaCiEamaaBaaaleaacaWGPbaabeaakiaaiY cacaaMe8UaaCySdiaacMcaaaaacaGLOaGaayzkaaaaleaacaWGPbGa eyypa0JaaGymaaqaaiaad6eaa0GaeyyeIuoakiaaiYcacaaMf8UaaC yqamaaBaaaleaacaaIYaaabeaakiaaysW7caaMe8UaaGypaiaaysW7 caaMe8+aaSaaaeaacaaIXaaabaGaamOtaaaadaaeqbqaaiaadsgada qhaaWcbaGaamyAaaqaaiaadkeaaaGcdaqadaqaauaabeqaceaaaeaa caaIWaaabaGaeqiWda3aa0baaSqaaiaadMgaaeaacaWGbbaaaOGaaC iAaiaaykW7caGGOaGaaCiEamaaBaaaleaacaWGPbaabeaakiaaiYca caaMe8UaaCySdiaacMcaaaaacaGLOaGaayzkaaaaleaacaWGPbGaey icI4Saam4uamaaBaaameaacaWGcbaabeaaaSqab0GaeyyeIuoakiaa ykW7caaIUaaaaa@8538@

The analytic expression for V q ( A 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGwbWaaSbaaSqaaiaadghaaeqaaO GaaiikaiaahgeadaWgaaWcbaGaaGymaaqabaGccaGGPaaaaa@36C8@ follows immediately from V q ( R i ) = π i A ( 1 π i A ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGwbWaaSbaaSqaaiaadghaaeqaaO GaaiikaiaadkfadaWgaaWcbaGaamyAaaqabaGccaGGPaGaaGjbVlab g2da9iaaysW7cqaHapaCdaqhaaWcbaGaamyAaaqaaiaadgeaaaGcca GGOaGaaGymaiaaysW7cqGHsislcaaMe8UaeqiWda3aa0baaSqaaiaa dMgaaeaacaWGbbaaaOGaaiykaaaa@4893@ and the independence among R 1 , , R N . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGsbWaaSbaaSqaaiaaigdaaeqaaO GaaGilaiaaysW7cqWIMaYscaaISaGaaGjbVlaadkfadaWgaaWcbaad caWGobaakeqaaiaac6caaaa@3BBB@ The design-based variance component V p ( A 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGwbWaaSbaaSqaaiaadchaaeqaaO GaaiikaiaahgeadaWgaaWcbaGaaGOmaaqabaGccaGGPaaaaa@36C8@ requires additional information on the survey design for S B MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGtbWaaSbaaSqaaiaadkeaaeqaaa aa@3378@ or a suitable variance approximation formula with the given design.

The asymptotic variance formula for the IPW estimator μ ^ IPW 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacuaH8oqBgaqcamaaBaaaleaamiaabM eacaqGqbGaae4vaiaaikdaaOqabaaaaa@36EA@ is the first diagonal element of the matrix AV ( η ^ ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaqGbbGaaeOvaiaaykW7caqGOaGabC 4TdyaajaGaaeykaiaab6caaaa@3830@ The final variance estimator for μ ^ IPW 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacuaH8oqBgaqcamaaBaaaleaamiaabM eacaqGqbGaae4vaiaaikdaaOqabaaaaa@36EA@ can then be obtained by replacing various population quantities with sample-based moment estimators. Chen et al. (2020) presented the variance estimator with explicit expressions when π i A = π ( x i , α ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaHapaCdaqhaaWcbaGaamyAaaqaai aadgeaaaGccaaMe8Uaeyypa0JaaGjbVlabec8aWjaaykW7caGGOaGa aCiEamaaBaaaleaacaWGPbaabeaakiaaiYcacaaMe8UaaCySdiaacM caaaa@43BB@ are modelled by the logistic regression and the α ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaaceWHXoGbaKaaaaa@32FA@ is obtained by the pseudo maximum likelihood method.

6.3  Variance estimation for doubly robust estimators

It turns out that variance estimation for the doubly robust estimator is a challenging problem. While double robustness is a desirable property for point estimation, it creates a dilemma for variance estimation. The estimator μ ^ DR 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacuaH8oqBgaqcamaaBaaaleaamiaabs eacaqGsbGaaGOmaaGcbeaaaaa@360D@ given in (4.11) is consistent if either the propensity score model q MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGXbaaaa@32A3@ or the outcome regression model ξ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaH+oaEaaa@3370@ is correctly specified. There is no need to know which model is correctly specified, which is the most crucial part behind double robustness. This ambiguous feature, however, becomes a problem for variance estimation. The asymptotic variance formula under the model q MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGXbaaaa@32A3@ is usually different from the one under the model ξ , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaH+oaEcaGGSaaaaa@3420@ and consequently, it is difficult to construct a consistent variance estimator with unknown scenarios on model specifications.

There have been several strategies proposed in the literature on variance estimation for the doubly robust estimators. A naive approach is to use the variance estimator derived under the assumed propensity score model q MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGXbaaaa@32A3@ and take the risk that such a variance estimator might have non-negligible biases under the outcome regression model. One good news is that, under the propensity score model, the estimation of the parameters β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWHYoaaaa@32EB@ for the outcome regression model has no impact asymptotically on the variance of doubly robust estimators. This can be seen by using μ ^ DR 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacuaH8oqBgaqcamaaBaaaleaamiaabs eacaqGsbGaaGymaaGcbeaaaaa@360C@ of (4.10) as an example. Let m ^ i = m ( x i , β ^ ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaaceWGTbGbaKaadaWgaaWcbaGaamyAaa qabaGccaaMe8Uaeyypa0JaaGjbVlaad2gacaaMc8+aaeWabeaacaWH 4bWaaSbaaSqaaiaadMgaaeqaaOGaaGilaiaaysW7ceWHYoGbaKaaai aawIcacaGLPaaacaGGSaaaaa@4260@ where β ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaaceWHYoGbaKaaaaa@32FB@ is obtained based on the working model (3.1) which is not necessarily correct. Let β * MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWHYoWaaWbaaSqabeaacaGGQaaaaa aa@33C6@ be the probability limit of β ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaaceWHYoGbaKaaaaa@32FB@ such that β ^ = β * + O p ( n A 1 / 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaaceWHYoGbaKaacaaMe8Uaeyypa0JaaG jbVlaahk7adaahaaWcbeqaaiaacQcaaaGccaaMe8Uaey4kaSIaaGjb Vlaad+eadaWgaaWcbaGaamiCaaqabaGcdaqadaqaaiaad6gadaqhaa WcbaGaamyqaaqaaiabgkHiTmaalyaabaGaaGymaaqaaiaaikdaaaaa aaGccaGLOaGaayzkaaaaaa@452C@ regardless of the true outcome regression model (White, 1982). Let m i * = m ( x i , β * ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGTbWaa0baaSqaaiaadMgaaeaaca GGQaaaaOGaaGjbVlabg2da9iaaysW7caWGTbGaaGPaVpaabmaabaGa aCiEamaaBaaaleaacaWGPbaabeaakiaaiYcacaaMe8UaaCOSdmaaCa aaleqabaGaaiOkaaaaaOGaayjkaiaawMcaaaaa@4323@ and a ( x , β ) = m ( x , β ) / β . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWHHbGaaGPaVlaacIcacaWH4bGaai ilaiaaysW7caWHYoGaaiykaiaaysW7cqGH9aqpcaaMe8+aaSGbaeaa cqGHciITcaWGTbGaaGPaVlaacIcacaWH4bGaaiilaiaaysW7caWHYo GaaiykaaqaaiabgkGi2kaahk7aaaGaaiOlaaaa@4B3B@ It can be seen that

1 N i S B d i B m ^ i 1 N i S A m ^ i π ^ i A = 1 N i S B d i B m i * 1 N i S A m i * π ^ i A + { B ( β * ) } ( β ^ β * ) + o p ( n A 1 / 2 ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaadaWcaaqaaiaaigdaaeaacaWGobaaai aaysW7daaeqbqaaiaaykW7caWGKbWaa0baaSqaaiaadMgaaeaacaWG cbaaaOGabmyBayaajaWaaSbaaSqaaiaadMgaaeqaaaqaaiaadMgacq GHiiIZcaWGtbWaaSbaaWqaaiaadkeaaeqaaaWcbeqdcqGHris5aOGa aGjbVlaaysW7cqGHsislcaaMe8UaaGjbVpaalaaabaGaaGymaaqaai aad6eaaaGaaGjbVpaaqafabaGaaGPaVpaalaaabaGabmyBayaajaWa aSbaaSqaaiaadMgaaeqaaaGcbaGafqiWdaNbaKaadaqhaaWcbaGaam yAaaqaaiaadgeaaaaaaaqaaiaadMgacqGHiiIZcaWGtbWaaSbaaWqa aiaadgeaaeqaaaWcbeqdcqGHris5aOGaaGjbVlaaysW7cqGH9aqpca aMe8UaaGjbVpaalaaabaGaaGymaaqaaiaad6eaaaGaaGjbVpaaqafa baGaaGPaVlaadsgadaqhaaWcbaGaamyAaaqaaiaadkeaaaGccaWGTb Waa0baaSqaaiaadMgaaeaacaGGQaaaaaqaaiaadMgacqGHiiIZcaWG tbWaaSbaaWqaaiaadkeaaeqaaaWcbeqdcqGHris5aOGaaGjbVlaays W7cqGHsislcaaMe8UaaGjbVpaalaaabaGaaGymaaqaaiaad6eaaaGa aGjbVpaaqafabaGaaGPaVpaalaaabaGaamyBamaaDaaaleaacaWGPb aabaGaaiOkaaaaaOqaaiqbec8aWzaajaWaa0baaSqaaiaadMgaaeaa caWGbbaaaaaaaeaacaWGPbGaeyicI4Saam4uamaaBaaameaacaWGbb aabeaaaSqab0GaeyyeIuoakiaaysW7caaMe8Uaey4kaSIaaGjbVlaa ysW7daGadaqaaiaahkeacaaMc8+aaeWaaeaacaWHYoWaaWbaaSqabe aacaGGQaaaaaGccaGLOaGaayzkaaaacaGL7bGaayzFaaWaaWbaaSqa beaakiadaITHYaIOaaWaaeWaaeaaceWHYoGbaKaacaaMe8UaeyOeI0 IaaGjbVlaahk7adaahaaWcbeqaaiaacQcaaaaakiaawIcacaGLPaaa caaMe8UaaGjbVlabgUcaRiaaysW7caaMe8Uaam4BamaaBaaaleaaca WGWbaabeaakmaabmaabaGaamOBamaaDaaaleaacaWGbbaabaGaeyOe I0YaaSGbaeaacaaIXaaabaGaaGOmaaaaaaaakiaawIcacaGLPaaaca GGSaaaaa@B5CB@

where

B ( β * ) = 1 N i S B d i B a ( x i , β * ) 1 N i S A a ( x i , β * ) π ^ i A . ( 6.2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWHcbGaaGPaVpaabmaabaGaaCOSdm aaCaaaleqabaGaaiOkaaaaaOGaayjkaiaawMcaaiaaysW7caaMe8Ua eyypa0JaaGjbVlaaysW7daWcaaqaaiaaigdaaeaacaWGobaaaiaays W7daaeqbqaaiaaykW7caWGKbWaa0baaSqaaiaadMgaaeaacaWGcbaa aOGaaCyyaiaaykW7daqadaqaaiaahIhadaWgaaWcbaGaamyAaaqaba GccaaISaGaaGjbVlaahk7adaahaaWcbeqaaiaacQcaaaaakiaawIca caGLPaaaaSqaaiaadMgacqGHiiIZcaWGtbWaaSbaaWqaaiaadkeaae qaaaWcbeqdcqGHris5aOGaaGjbVlaaysW7cqGHsislcaaMe8UaaGjb VpaalaaabaGaaGymaaqaaiaad6eaaaGaaGjbVpaaqafabaGaaGPaVp aalaaabaGaaCyyaiaaykW7daqadaqaaiaahIhadaWgaaWcbaGaamyA aaqabaGccaaISaGaaGjbVlaahk7adaahaaWcbeqaaiaacQcaaaaaki aawIcacaGLPaaaaeaacuaHapaCgaqcamaaDaaaleaacaWGPbaabaGa amyqaaaaaaaabaGaamyAaiabgIGiolaadofadaWgaaadbaGaamyqaa qabaaaleqaniabggHiLdGccaaMe8UaaiOlaiaaywW7caaMf8UaaGzb VlaaywW7caaMf8UaaiikaiaaiAdacaGGUaGaaGOmaiaacMcaaaa@8586@

Since the two terms on the right hand side of (6.2) are both consistent estimators of N 1 i = 1 N a ( x i , β * ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGobWaaWbaaSqabeaacqGHsislca aIXaaaaOWaaabmaeaacaaMe8UaaCyyaiaaykW7daqadaqaaiaahIha daWgaaWcbaGaamyAaaqabaGccaaISaGaaGjbVlaahk7adaahaaWcbe qaaiaacQcaaaaakiaawIcacaGLPaaaaSqaaiaadMgacaaI9aGaaGym aaqaaiaad6eaa0GaeyyeIuoakiaacYcaaaa@4674@ we conclude that B ( β * ) = o p ( 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWHcbGaaGPaVpaabmaabaGaaCOSdm aaCaaaleqabaGaaiOkaaaaaOGaayjkaiaawMcaaiaaysW7caaI9aGa aGjbVlaad+gadaWgaaWcbaGaamiCaaqabaGccaGGOaGaaGymaiaacM caaaa@3FC3@ and

1 N i S B d i B m ^ i 1 N i S A m ^ i π ^ i A = 1 N i S B d i B m i * 1 N i S A m i * π ^ i A + o p ( n A 1 / 2 ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaadaWcaaqaaiaaigdaaeaacaWGobaaai aaysW7daaeqbqaaiaaykW7caWGKbWaa0baaSqaaiaadMgaaeaacaWG cbaaaOGabmyBayaajaWaaSbaaSqaaiaadMgaaeqaaaqaaiaadMgacq GHiiIZcaWGtbWaaSbaaWqaaiaadkeaaeqaaaWcbeqdcqGHris5aOGa aGjbVlaaysW7cqGHsislcaaMe8UaaGjbVpaalaaabaGaaGymaaqaai aad6eaaaGaaGjbVpaaqafabaGaaGPaVpaalaaabaGabmyBayaajaWa aSbaaSqaaiaadMgaaeqaaaGcbaGafqiWdaNbaKaadaqhaaWcbaGaam yAaaqaaiaadgeaaaaaaaqaaiaadMgacqGHiiIZcaWGtbWaaSbaaWqa aiaadgeaaeqaaaWcbeqdcqGHris5aOGaaGjbVlaaysW7caaI9aGaaG jbVlaaysW7daWcaaqaaiaaigdaaeaacaWGobaaaiaaysW7daaeqbqa aiaaykW7caWGKbWaa0baaSqaaiaadMgaaeaacaWGcbaaaOGaamyBam aaDaaaleaacaWGPbaabaGaaiOkaaaaaeaacaWGPbGaeyicI4Saam4u amaaBaaameaacaWGcbaabeaaaSqab0GaeyyeIuoakiaaysW7caaMe8 UaeyOeI0IaaGjbVlaaysW7daWcaaqaaiaaigdaaeaacaWGobaaaiaa ysW7daaeqbqaaiaaykW7daWcaaqaaiaad2gadaqhaaWcbaGaamyAaa qaaiaacQcaaaaakeaacuaHapaCgaqcamaaDaaaleaacaWGPbaabaGa amyqaaaaaaaabaGaamyAaiabgIGiolaadofadaWgaaadbaGaamyqaa qabaaaleqaniabggHiLdGccaaMe8UaaGjbVlabgUcaRiaaysW7caaM e8Uaam4BamaaBaaaleaacaWGWbaabeaakmaabmaabaGaamOBamaaDa aaleaacaWGbbaabaGaeyOeI0YaaSGbaeaacaaIXaaabaGaaGOmaaaa aaaakiaawIcacaGLPaaacaaIUaaaaa@9A33@

It follows that

μ ^ DR 1 = 1 N i S A y i m i * π ^ i A + 1 N i S B d i B m i * + o p ( n A 1 / 2 ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacuaH8oqBgaqcamaaBaaaleaamiaabs eacaqGsbGaaGymaaGcbeaacaaMe8UaaGjbVlabg2da9iaaysW7caaM e8+aaSaaaeaacaaIXaaabaGaamOtaaaacaaMe8+aaabuaeaacaaMc8 +aaSaaaeaacaWG5bWaaSbaaSqaaiaadMgaaeqaaOGaaGjbVlabgkHi TiaaysW7caWGTbWaa0baaSqaaiaadMgaaeaacaGGQaaaaaGcbaGafq iWdaNbaKaadaqhaaWcbaGaamyAaaqaaiaadgeaaaaaaaqaaiaadMga cqGHiiIZcaWGtbWaaSbaaWqaaiaadgeaaeqaaaWcbeqdcqGHris5aO GaaGjbVlaaysW7cqGHRaWkcaaMe8UaaGjbVpaalaaabaGaaGymaaqa aiaad6eaaaGaaGjbVpaaqafabaGaaGPaVlaadsgadaqhaaWcbaGaam yAaaqaaiaadkeaaaGccaWGTbWaa0baaSqaaiaadMgaaeaacaGGQaaa aaqaaiaadMgacqGHiiIZcaWGtbWaaSbaaWqaaiaadkeaaeqaaaWcbe qdcqGHris5aOGaaGjbVlaaysW7cqGHRaWkcaaMe8UaaGjbVlaad+ga daWgaaWcbaGaamiCaaqabaGcdaqadaqaaiaad6gadaqhaaWcbaGaam yqaaqaaiabgkHiTmaalyaabaGaaGymaaqaaiaaikdaaaaaaaGccaGL OaGaayzkaaGaaGOlaaaa@7CB8@

The same arguments apply to μ ^ DR 2 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacuaH8oqBgaqcamaaBaaaleaamiaabs eacaqGsbGaaGOmaaGcbeaacaGGUaaaaa@36BF@ We can treat β ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaaceWHYoGbaKaaaaa@32FB@ as if it is fixed in deriving the asymptotic variance for μ ^ DR 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacuaH8oqBgaqcamaaBaaaleaamiaabs eacaqGsbGaaGymaaGcbeaaaaa@360C@ and μ ^ DR 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacuaH8oqBgaqcamaaBaaaleaamiaabs eacaqGsbGaaGOmaaGcbeaaaaa@360D@ under the assumed propensity score model. The techniques described in Section 6.2 can be directly used where the first estimating function in (6.1) is replaced by the one for defining μ ^ DR 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacuaH8oqBgaqcamaaBaaaleaamiaabs eacaqGsbGaaGymaaGcbeaaaaa@360C@ or μ ^ DR 2 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacuaH8oqBgaqcamaaBaaaleaamiaabs eacaqGsbGaaGOmaaGcbeaacaGGUaaaaa@36BF@ See Theorem 2 of Chen et al. (2020) for further details. The variance estimator derived under the propensity score model, however, is generally biased under the outcome regression model.

Chen et al. (2020) also described a technique using the original idea presented in Kim and Haziza (2014) for the construction of the so-called doubly robust variance estimator. The technique is a delicate one with some theoretical attractiveness but has various issues for practical applications. We use μ ^ DR 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacuaH8oqBgaqcamaaBaaaleaamiaabs eacaqGsbGaaGymaaGcbeaaaaa@360C@ as an example to illustrate the steps for the construction of the doubly robust variance estimator. Let

μ ^ ( α , β ) = 1 N i = 1 N R i y i m ( x i , β ) π ( x i , α ) + 1 N i S B d i B m ( x i , β ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacuaH8oqBgaqcaiaaykW7daqadaqaai aahg7acaGGSaGaaGjbVlaahk7aaiaawIcacaGLPaaacaaMe8UaaGjb Vlabg2da9iaaysW7caaMe8+aaSaaaeaacaaIXaaabaGaamOtaaaaca aMe8+aaabCaeaacaaMc8UaamOuamaaBaaaleaacaWGPbaabeaakmaa laaabaGaamyEamaaBaaaleaacaWGPbaabeaakiaaysW7cqGHsislca aMe8UaamyBaiaaykW7daqadaqaaiaahIhadaWgaaWcbaGaamyAaaqa baGccaaISaGaaGjbVlaahk7aaiaawIcacaGLPaaaaeaacqaHapaCca aMc8+aaeWaaeaacaWH4bWaaSbaaSqaaiaadMgaaeqaaOGaaGilaiaa ysW7caaMi8UaaCySdaGaayjkaiaawMcaaaaaaSqaaiaadMgacaaI9a GaaGymaaqaaiaad6eaa0GaeyyeIuoakiaaysW7caaMe8Uaey4kaSIa aGjbVlaaysW7daWcaaqaaiaaigdaaeaacaWGobaaaiaaysW7daaeqb qaaiaaykW7caWGKbWaa0baaSqaaiaadMgaaeaacaWGcbaaaOGaamyB aiaaykW7daqadaqaaiaahIhadaWgaaWcbaGaamyAaaqabaGccaaISa GaaGjbVlaahk7aaiaawIcacaGLPaaaaSqaaiaadMgacqGHiiIZcaWG tbWaaSbaaWqaaiaadkeaaeqaaaWcbeqdcqGHris5aOGaaiOlaaaa@8A19@

It follows that μ ^ DR 1 = μ ^ ( α ^ , β ^ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacuaH8oqBgaqcamaaBaaaleaamiaabs eacaqGsbGaaGymaaGcbeaacaaMe8UaaGypaiaaysW7cuaH8oqBgaqc aiaaykW7caGGOaGabCySdyaajaGaaiilaiaaysW7ceWHYoGbaKaaca GGPaaaaa@436F@ if α ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaaceWHXoGbaKaaaaa@32FA@ and β ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaaceWHYoGbaKaaaaa@32FB@ are from the original estimation methods. The first step is to modify the estimation of α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWHXoaaaa@32EA@ and β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWHYoaaaa@32EB@ such that α ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaaceWHXoGbaKaaaaa@32FA@ and β ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaaceWHYoGbaKaaaaa@32FB@ are obtained as solutions to

μ ^ ( α , β ) α = 0 and μ ^ ( α , β ) β = 0 . ( 6.3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaadaWcaaqaaiabgkGi2kqbeY7aTzaaja GaaGPaVpaabmaabaGaaCySdiaacYcacaaMe8UaaCOSdaGaayjkaiaa wMcaaaqaaiabgkGi2kaahg7aaaGaaGjbVlaaysW7caaI9aGaaGjbVl aaysW7caWHWaGaaGzbVlaabggacaqGUbGaaeizaiaaywW7daWcaaqa aiabgkGi2kqbeY7aTzaajaGaaGPaVpaabmaabaGaaCySdiaacYcaca aMe8UaaCOSdaGaayjkaiaawMcaaaqaaiabgkGi2kaahk7aaaGaaGjb VlaaysW7cqGH9aqpcaaMe8UaaGjbVlaahcdacaGGUaGaaGzbVlaayw W7caaMf8UaaGzbVlaaywW7caGGOaGaaGOnaiaac6cacaaIZaGaaiyk aaaa@6E82@

Under the logistic regression model q MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGXbaaaa@32A3@ where logit{ π( x i ,α) }= x i α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaqGSbGaae4BaiaabEgacaqGPbGaae iDaiaaykW7daGadaqaaiabec8aWjaaykW7caGGOaGaaCiEamaaBaaa leaacaWGPbaabeaakiaaiYcacaaMe8UaaCySdiaacMcaaiaawUhaca GL9baacaaMe8Uaeyypa0JaaGjbVlaahIhadaqhaaWcbaGaamyAaaqa aGGaaiab=jdiIcaakiaahg7aaaa@4D63@ and the linear regression model ξ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaH+oaEaaa@3370@ where m( x i ,β )= x i β, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGTbGaaGPaVpaabmaabaGaaCiEam aaBaaaleaacaWGPbaabeaakiaaiYcacaaMe8UaaCOSdaGaayjkaiaa wMcaaiaaysW7cqGH9aqpcaaMe8UaaCiEamaaDaaaleaacaWGPbaaba accaGae8NmGikaaOGaaCOSdiaacYcaaaa@4510@ the equation system (6.3) becomes

1 N i=1 N R i { 1 π( x i ,α ) 1 }( y i x i β ) x i =0,(6.4) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaadaWcaaqaaiaaigdaaeaacaWGobaaai aaysW7daaeWbqaaiaadkfadaWgaaWcbaGaamyAaaqabaGcdaGadaqa amaalaaabaGaaGymaaqaaiabec8aWjaaykW7daqadaqaaiaahIhada WgaaWcbaGaamyAaaqabaGccaaISaGaaGjbVlaahg7aaiaawIcacaGL PaaaaaGaaGjbVlabgkHiTiaaysW7caaIXaaacaGL7bGaayzFaaGaaG jbVpaabmaabaGaamyEamaaBaaaleaacaWGPbaabeaakiaaysW7cqGH sislcaaMe8UaaCiEamaaDaaaleaacaWGPbaabaaccaGae8NmGikaaO GaaCOSdaGaayjkaiaawMcaaiaaysW7caWH4bWaaSbaaSqaaiaadMga aeqaaaqaaiaadMgacaaI9aGaaGymaaqaaiaad6eaa0GaeyyeIuoaki aaysW7caaMe8Uaeyypa0JaaGjbVlaaysW7caWHWaGaaiilaiaaywW7 caaMf8UaaGzbVlaaywW7caaMf8UaaiikaiaaiAdacaGGUaGaaGinai aacMcaaaa@744A@

1 N i = 1 N R i x i π ( x i , α ) 1 N i S B d i B x i = 0 . ( 6.5 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaadaWcaaqaaiaaigdaaeaacaWGobaaai aaysW7daaeWbqaaiaaykW7daWcaaqaaiaadkfadaWgaaWcbaGaamyA aaqabaGccaWH4bWaaSbaaSqaaiaadMgaaeqaaaGcbaGaeqiWdaNaaG PaVpaabmaabaGaaCiEamaaBaaaleaacaWGPbaabeaakiaaiYcacaaM e8UaaCySdaGaayjkaiaawMcaaaaaaSqaaiaadMgacaaI9aGaaGymaa qaaiaad6eaa0GaeyyeIuoakiaaysW7caaMe8UaeyOeI0IaaGjbVlaa ysW7daWcaaqaaiaaigdaaeaacaWGobaaaiaaysW7daaeqbqaaiaayk W7caWGKbWaa0baaSqaaiaadMgaaeaacaWGcbaaaOGaaCiEamaaBaaa leaacaWGPbaabeaaaeaacaWGPbGaeyicI4Saam4uamaaBaaameaaca WGcbaabeaaaSqab0GaeyyeIuoakiaaysW7caaMe8Uaeyypa0JaaGjb VlaaysW7caWHWaGaaiOlaiaaywW7caaMf8UaaGzbVlaaywW7caaMf8 UaaiikaiaaiAdacaGGUaGaaGynaiaacMcaaaa@75BE@

The estimating equations in (6.5) are unbiased under the joint q p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGXbGaamiCaaaa@3398@ -framework. They are identical to (4.5) discussed in Section 4.1.2. The estimating equations in (6.4) are also unbiased under the outcome regression model, but they are different from the quasi score equations given in (3.2). The estimators α ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaaceWHXoGbaKaaaaa@32FA@ and β ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaaceWHYoGbaKaaaaa@32FB@ obtained as solutions to (6.4) and (6.5) are less stable than those from standard methods. In addition, the equations system (6.4) and (6.5) will not have a solution if α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWHXoaaaa@32EA@ and β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWHYoaaaa@32EB@ are not of the same dimension, since the number of equations in (6.4) is decided by the dimension of α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWHXoaaaa@32EA@ and the number of equations in (6.5) is the same as the dimension of β . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWHYoGaaiOlaaaa@339D@ The final estimator μ ^ DR = μ ^ ( α ^ , β ^ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacuaH8oqBgaqcamaaBaaaleaamiaabs eacaqGsbaakeqaaiaaysW7cqGH9aqpcaaMe8UafqiVd0MbaKaacaaM c8+aaeWabeaaceWHXoGbaKaacaGGSaGaaGjbVlqahk7agaqcaaGaay jkaiaawMcaaaaa@4324@ also suffers from efficiency losses when α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWHXoaaaa@32EA@ and β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWHYoaaaa@32EB@ are estimated by solving (6.4) and (6.5).

The reason behind the use of the equations system (6.3) is purely technical. It can be shown through a first order Taylor series expansion that the estimators α ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaaceWHXoGbaKaaaaa@32FA@ and β ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaaceWHYoGbaKaaaaa@32FB@ obtained from (6.3) have no impact asymptotically on the variance of μ ^ DR = μ ^ ( α ^ , β ^ ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacuaH8oqBgaqcamaaBaaaleaamiaabs eacaqGsbaakeqaaiaaysW7cqGH9aqpcaaMe8UafqiVd0MbaKaacaaM c8+aaeWabeaaceWHXoGbaKaacaGGSaGaaGjbVlqahk7agaqcaaGaay jkaiaawMcaaiaac6caaaa@43D6@ This technical maneuver enables that simple explicit expressions for the variance V q p ( μ ^ DR ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGwbWaaSbaaSqaaiaadghacaWGWb aabeaakmaabmaabaGafqiVd0MbaKaadaWgaaWcbaadcaqGebGaaeOu aaGcbeaaaiaawIcacaGLPaaaaaa@39D6@ under the q p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGXbGaamiCaaaa@3398@ framework and for the prediction variance V ξ p ( μ ^ DR μ y ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGwbWaaSbaaSqaaiabe67a4jaadc haaeqaaOWaaeWaaeaacuaH8oqBgaqcamaaBaaaleaamiaabseacaqG sbaakeqaaiaaysW7cqGHsislcaaMe8UaeqiVd02aaSbaaSqaaiaadM haaeqaaaGccaGLOaGaayzkaaaaaa@4194@ under the ξ p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaH+oaEcaWGWbaaaa@3465@ framework can easily be obtained. Construction of the doubly robust variance estimator for μ ^ DR MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacuaH8oqBgaqcamaaBaaaleaamiaabs eacaqGsbaakeqaaaaa@3551@ starts with the plug-in estimator for V q p ( μ ^ DR ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGwbWaaSbaaSqaaiaadghacaWGWb aabeaakmaabmaabaGafqiVd0MbaKaadaWgaaWcbaadcaqGebGaaeOu aaGcbeaaaiaawIcacaGLPaaaaaa@39D6@ under the propensity scores model q . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGXbGaaiOlaaaa@3355@ A bias-correction term is then added to obtain a valid estimator for V ξ p ( μ ^ DR μ y ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGwbWaaSbaaSqaaiabe67a4jaadc haaeqaaOWaaeWaaeaacuaH8oqBgaqcamaaBaaaleaamiaabseacaqG sbaakeqaaiaaysW7cqGHsislcaaMe8UaeqiVd02aaSbaaSqaaiaadM haaeqaaaGccaGLOaGaayzkaaaaaa@4194@ under the outcome regression model ξ . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaH+oaEcaGGUaaaaa@3422@ The happy ending of the story is that the bias-correction term has the analytic form N 2 i = 1 N ( R i / π i A 1 ) σ i 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGobWaaWbaaSqabeaacqGHsislca aIYaaaaOWaaabmaeaacaaMc8+aaeWaaeaadaWcgaqaaiaadkfadaWg aaWcbaGaamyAaaqabaaakeaacqaHapaCdaqhaaWcbaGaamyAaaqaai aadgeaaaGccqGHsislcaaIXaaaaaGaayjkaiaawMcaaiaaysW7cqaH dpWCdaqhaaWcbaGaamyAaaqaaiaaikdaaaaabaGaamyAaiaai2daca aIXaaabaGaamOtaaqdcqGHris5aaaa@4936@ where σ i 2 = E ξ ( y i | x i ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaHdpWCdaqhaaWcbaGaamyAaaqaai aaikdaaaGccaaMe8Uaeyypa0JaaGjbVlaadweadaWgaaWcbaGaeqOV dGhabeaakmaabmaabaGaamyEamaaBaaaleaacaWGPbaabeaakiaays W7daabbaqaaiaaysW7caWH4bWaaSbaaSqaaiaadMgaaeqaaaGccaGL hWoaaiaawIcacaGLPaaacaGGSaaaaa@4762@ which is negligible under the propensity score model q . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGXbGaaiOlaaaa@3355@ The bias-corrected variance estimator is valid under either the propensity score model or the outcome regression model.

A doubly robust variance estimator for the commonly used μ ^ DR 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacuaH8oqBgaqcamaaBaaaleaamiaabs eacaqGsbGaaGOmaaGcbeaaaaa@360D@ is not available in the literature. A practical solution is to use bootstrap methods. Chen et al. (2022) demonstrated that standard with-replacement bootstrap procedures applied separately to S A MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGtbWaaSbaaSqaaiaadgeaaeqaaa aa@3377@ and S B MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGtbWaaSbaaSqaaiaadkeaaeqaaa aa@3378@ provide doubly robust confidence intervals using the pseudo empirical likelihood approach to non-probability survey samples when the reference sample is selected by single stage unequal probability sampling designs. Complications will arise when the probability sample S B MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGtbWaaSbaaSqaaiaadkeaaeqaaa aa@3378@ uses stratified multi-stage sampling methods, a known challenge for variance estimation with complex surveys. Construction of doubly robust variance estimators for the doubly robust estimator μ ^ DR 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacuaH8oqBgaqcamaaBaaaleaamiaabs eacaqGsbGaaGOmaaGcbeaaaaa@360D@ under general settings deserves efforts in future research.


Date modified: