Semi-automated classification for multi-label open-ended questions
Section 4. The majority-voted-based ensemble of PCC for
semi-automated classification

The proposed method aims to ensemble multiple PCC models at much less computational cost. As mentioned in Section 3.2, the best label set (with the highest joint probability) for a single PCC can be found by a fast search strategy. In this paper, we use UCS, since the implementation is simple and the algorithm always finds the optimal solution. Using UCS, the proposed method obtains Y ^ j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaaceWHzbGbaKaadaWgaaWcbaGaamOAaa qabaaaaa@3329@ ( j = 1, , m ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaadaqadeqaaiaadQgacaaMe8UaaGypai aaysW7caaIXaGaaGilaiaaysW7cqWIMaYscaGGSaGaaGjbVlaad2ga aiaawIcacaGLPaaacaGGSaaaaa@3F75@ the label set predicted by the j th MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWGQbWaaWbaaSqabeaacaqG0bGaae iAaaaaaaa@341A@ PCC model and P ^ j , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaaceWGqbGbaKaadaWgaaWcbaGaamOAaa qabaGccaGGSaaaaa@33D6@ the estimated probability that Y ^ j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaaceWHzbGbaKaadaWgaaWcbaGaamOAaa qabaaaaa@3329@ is the true label set. Among the m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWGTbaaaa@320E@ predicted label sets, the proposed method chooses the most frequent label set for the final prediction. That is, Y ^ = mode ( { Y ^ 1 , , Y ^ m } ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaaceWHzbGbaKaacaaMe8UaaGypaiaays W7caqGTbGaae4BaiaabsgacaqGLbWaaeWabeaadaGadeqaaiqahMfa gaqcamaaBaaaleaacaaIXaaabeaakiaaiYcacaaMe8UaeSOjGSKaai ilaiaaysW7ceWHzbGbaKaadaWgaaWcbaGaamyBaaqabaaakiaawUha caGL9baaaiaawIcacaGLPaaacaGGUaaaaa@47AD@ In case there are ties in the mode, we choose the label set whose averaged probability estimate is the highest.

Semi-automatic classification requires a score that measures how easy/hard the prediction is. Whether a text answer is classified automatically or manually is determined based on this score. Next, a score is proposed: Let J MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWGkbaaaa@31EA@ be the set that contains all indices j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWGQbaaaa@320B@ ( 1 j m ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaadaqadeqaaiaaigdacaaMe8UaeyizIm QaaGjbVlaadQgacaaMe8UaeyizImQaaGjbVlaad2gaaiaawIcacaGL Paaaaaa@3EE0@ for which Y ^ j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaaceWHzbGbaKaadaWgaaWcbaGaamOAaa qabaaaaa@3329@ is the most frequent one ( MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaadaqadaqaaaGaayjkaiaawMcaaaaa@32A5@ i.e., J = { j : Y ^ j = Y ^ } ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaadaqadeqaaiaadQeacaaMe8UaaGypai aaysW7daGadeqaaiaadQgacaaMe8UaaGOoaiaaysW7ceWHzbGbaKaa daWgaaWcbaGaamOAaaqabaGccaaMe8UaaGypaiaaysW7ceWHzbGbaK aaaiaawUhacaGL9baaaiaawIcacaGLPaaacaGGUaaaaa@45F1@ . The proposed score for the prediction is

θ = ( i J P ^ j | J | ) ( | J | m ) ( 4.1 ) = i J P ^ j m . ( 4.2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaafaqaaeGacaaabaGaeqiUdehabaGaaG ypaiaaysW7daqadaqaamaalaaabaWaaabeaeaaceWGqbGbaKaadaWg aaWcbaGaamOAaaqabaaabaGaamyAaiabgIGiolaadQeaaeqaniabgg HiLdaakeaadaabdeqaaiaaykW7caWGkbGaaGPaVdGaay5bSlaawIa7 aaaaaiaawIcacaGLPaaacaaMc8+aaeWaaeaadaWcaaqaamaaemqaba GaaGPaVlaadQeacaaMc8oacaGLhWUaayjcSdaabaGaamyBaaaaaiaa wIcacaGLPaaacaaMf8UaaGzbVlaaywW7caaMf8UaaGzbVlaacIcaca aI0aGaaiOlaiaaigdacaGGPaaabaaabaGaaGypaiaaysW7daWcaaqa amaaqababaGabmiuayaajaWaaSbaaSqaaiaadQgaaeqaaaqaaiaadM gacqGHiiIZcaWGkbaabeqdcqGHris5aaGcbaGaamyBaaaacaaIUaGa aGzbVlaaywW7caaMf8UaaGzbVlaaywW7caaMf8UaaGjcVlaayIW7ca aMf8UaaiikaiaaisdacaGGUaGaaGOmaiaacMcaaaaaaa@781A@

The first factor of equation (4.1) is the average joint probability of the predicted label set. The second factor of equation (4.1) is the fraction of the PCC models that predict the predicted label set among the m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWGTbaaaa@320E@ models. Multiplying the two components makes sense: a prediction may be more accurate if the (average) probability related to the chosen label set is high (the first factor) and more individual chain models vote for the same label set (the second component). We call this approach Majority-vote-based Ensemble of Probabilistic Classifier Chains (MEPCC). We later show empirically that combining the two factors indeed improves performance over just using a single factor. Table 4.1 illustrates an example for 5 labels ( L = 5 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaadaqadeqaaiaadYeacaaMe8Uaeyypa0 JaaGjbVlaaiwdaaiaawIcacaGLPaaaaaa@3856@ and 7 PCC models ( m = 7 ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaadaqadeqaaiaad2gacaaMe8Uaeyypa0 JaaGjbVlaaiEdaaiaawIcacaGLPaaacaGGUaaaaa@392B@ The MEPCC approach stores the probability of one label set from each PCC model. Because MEPCC combines over the probabilities corresponding to the best label set from different PCC models, MEPCC can take advantage of the UCS (or any other) strategy. Note that a search strategy like UCS cannot be used for EPCC where all individual probabilities for all label combinations are required. More succinctly, MEPCC combines over the maximal probabilities of each PCC, whereas EPCC maximizes over the average probabilities, requiring evaluation of all individual probabilities. We summarize the procedure of MEPCC in Algorithm 1.


Table 4.1
An example of the MEPCC classification of a single observation with L=5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8qrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeqabeqadiWa ceGabeqabeGabeqadeaakeaacaWGmbGaaGypaiaaiwdaaaa@336D@ and m=7 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8qrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeqabeqadiWa ceGabeqabeGabeqadeaakeaacaWGTbGaaGypaiaaiEdaaaa@3390@
Table summary
This table displays the results of An example of the MEPCC classification of a single observation with L=5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8qrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeqabeqadiWa ceGabeqabeGabeqadeaakeaacaWGmbGaaGypaiaaiwdaaaa@336D@ and m=7 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8qrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeqabeqadiWa ceGabeqabeGabeqadeaakeaacaWGTbGaaGypaiaaiEdaaaa@3390@ . The information is grouped by PCC model (appearing as row headers), Prediction and y 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8qrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeqabeqadiWa ceGabeqabeGabeqadeaakeaacaWG5bWaaSbaaSqaaiaaigdaaeqaaa aa@32FB@ , y 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8qrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeqabeqadiWa ceGabeqabeGabeqadeaakeaacaWG5bWaaSbaaSqaaiaaigdaaeqaaa aa@32FB@ , y 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8qrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeqabeqadiWa ceGabeqabeGabeqadeaakeaacaWG5bWaaSbaaSqaaiaaigdaaeqaaa aa@32FB@ , y 4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8qrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeqabeqadiWa ceGabeqabeGabeqadeaakeaacaWG5bWaaSbaaSqaaiaaigdaaeqaaa aa@32FB@ , y 5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8qrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeqabeqadiWa ceGabeqabeGabeqadeaakeaacaWG5bWaaSbaaSqaaiaaigdaaeqaaa aa@32FB@ and P( y 1 ,, y 5 |x) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8qrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeqabeqadiWa ceGabeqabeGabeqadeaakeaacaWGqbGaaGikamaaeiqabaGaamyEam aaBaaaleaacaaIXaaabeaakiaaiYcacaaMe8UaeSOjGSKaaiilaiaa ysW7caWG5bWaaSbaaSqaaiaaiwdaaeqaaOGaaGPaVdGaayjcSdGaaG PaVlaahIhacaaIPaaaaa@4282@ (appearing as column headers).
PCC model Prediction y 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8qrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeqabeqadiWa ceGabeqabeGabeqadeaakeaacaWG5bWaaSbaaSqaaiaaigdaaeqaaa aa@32FB@ y 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8qrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeqabeqadiWa ceGabeqabeGabeqadeaakeaacaWG5bWaaSbaaSqaaiaaigdaaeqaaa aa@32FB@ y 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8qrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeqabeqadiWa ceGabeqabeGabeqadeaakeaacaWG5bWaaSbaaSqaaiaaigdaaeqaaa aa@32FB@ y 4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8qrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeqabeqadiWa ceGabeqabeGabeqadeaakeaacaWG5bWaaSbaaSqaaiaaigdaaeqaaa aa@32FB@ y 5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8qrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeqabeqadiWa ceGabeqabeGabeqadeaakeaacaWG5bWaaSbaaSqaaiaaigdaaeqaaa aa@32FB@ P( y 1 ,, y 5 |x) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8qrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeqabeqadiWa ceGabeqabeGabeqadeaakeaacaWGqbGaaGikamaaeiqabaGaamyEam aaBaaaleaacaaIXaaabeaakiaaiYcacaaMe8UaeSOjGSKaaiilaiaa ysW7caWG5bWaaSbaaSqaaiaaiwdaaeqaaOGaaGPaVdGaayjcSdGaaG PaVlaahIhacaaIPaaaaa@4282@
1 Y ^ 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaaceWHzbGbaKaadaWgaaWcbaGaaGymaa qabaaaaa@3518@ 1 1 0 0 1 0.875
2 Y ^ 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaaceWHzbGbaKaadaWgaaWcbaGaaGymaa qabaaaaa@3518@ 1 1 0 0 1 0.921
3 Y ^ 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaaceWHzbGbaKaadaWgaaWcbaGaaGymaa qabaaaaa@3518@ 0 0 1 1 0 0.743
4 Y ^ 4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaaceWHzbGbaKaadaWgaaWcbaGaaGymaa qabaaaaa@3518@ 0 0 0 1 0 0.882
5 Y ^ 5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaaceWHzbGbaKaadaWgaaWcbaGaaGymaa qabaaaaa@3518@ 0 0 0 1 0 0.643
6 Y ^ 6 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaaceWHzbGbaKaadaWgaaWcbaGaaGymaa qabaaaaa@3518@ 0 1 0 1 0 0.739
7 Y ^ 7 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaaceWHzbGbaKaadaWgaaWcbaGaaGymaa qabaaaaa@3518@ 1 1 0 0 1 0.824
final prediction Y ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaaceWHzbGbaKaaaaa@3431@ 1 1 0 0 1 θ= 0.875+0.921+0.824 7 =0.374 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacqaH4oqCcaaI9aWaaSaaaeaacaaIWa GaaGOlaiaaiIdacaaI3aGaaGynaiabgUcaRiaaicdacaaIUaGaaGyo aiaaikdacaaIXaGaey4kaSIaaGimaiaai6cacaaI4aGaaGOmaiaais daaeaacaaI3aaaaiaai2dacaaIWaGaaGOlaiaaiodacaaI3aGaaGin aaaa@47D4@

Table 4.2
Table summary
This table displays the results of Table 4.2. The information is grouped by Algorithme 1 Algorithm 1 The MEPCC algorithm.
Algorithm 1. The MEPCC algorithm
Input: Number of models m, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWGTbGaaiilaaaa@34E1@ an instance vector x, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWH4bGaaiilaaaa@34F0@ corresponding PCC models h j , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWGObWaaSbaaSqaaiaadQgaaeqaaO Gaaiilaaaa@3601@ the uniform cost search algorithm U MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWGvbaaaa@3419@
for j=1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWGQbGaaGypaiaaigdaaaa@35B0@ to m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWGTbaaaa@3431@ do
(a) Using h j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWGObWaaSbaaSqaaiaadQgaaeqaaa aa@3547@ and U, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWGvbGaaiilaaaa@34C9@ obtain Y ^ j = argmax Y P( Y|x ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaaceWHzbGbaKaadaWgaaWcbaGaamOAaa qabaGccaaMe8UaaGypaiaaysW7caqGHbGaaeOCaiaabEgacaqGTbGa aeyyaiaabIhadaWgaaWcbaGaaCywaaqabaGccaWGqbWaaeWabeaada abceqaaiaahMfacaaMc8oacaGLiWoacaaMc8UaaCiEaaGaayjkaiaa wMcaaaaa@48D0@
(b) Store P ^ j =P( Y ^ j |x ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaaceWGqbGbaKaadaWgaaWcbaGaamOAaa qabaGccaaMe8UaaGypaiaaysW7caWGqbWaaeWabeaadaabceqaaiqa hMfagaqcamaaBaaaleaacaWGQbaabeaakiaaykW7aiaawIa7aiaayk W7caWH4baacaGLOaGaayzkaaaaaa@434E@
end for
Obtain the label set Y ^ =mode( { Y ^ 1 ,, Y ^ m } ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaaceWHzbGbaKaacaaMe8UaaGypaiaays W7caqGTbGaae4BaiaabsgacaqGLbWaaeWabeaadaGadeqaaiqahMfa gaqcamaaBaaaleaacaaIXaaabeaakiaaiYcacaaMe8UaeSOjGSKaai ilaiaaysW7ceWHzbGbaKaadaWgaaWcbaGaamyBaaqabaaakiaawUha caGL9baaaiaawIcacaGLPaaaaaa@491E@
Obtain J={ j: Y ^ j = Y ^ } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWGkbGaaGjbVlaai2dacaaMe8+aai WabeaacaWGQbGaaGjbVlaaiQdacaaMe8UabCywayaajaWaaSbaaSqa aiaadQgaaeqaaOGaaGjbVlaai2dacaaMe8UabCywayaajaaacaGL7b GaayzFaaaaaa@45D8@
Obtain the score θ= i J P ^ j m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacqaH4oqCcaaMe8UaaGypaiaaysW7da WcgaqaamaaqababeWcbaGaamyAaiabgIGiolaadQeaaeqaniabggHi LdGccaaMc8UabmiuayaajaWaaSbaaSqaaiaadQgaaeqaaaGcbaGaam yBaaaaaaa@42A2@
Return Y ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaaceWHzbGbaKaaaaa@3431@ and θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacqaH4oqCaaa@34F5@

Date modified: