Multiple imputation of missing values in household data with structural zeros
Section 4. Strategies for speeding up the MCMC sampler

The rejection sampling step in the Gibbs sampler in Section 2.2 can be inefficient when S MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=jr8tbaa@3CCE@ is large (Manrique-Vallier and Reiter, 2014; Hu et al., 2018), as the sampler tends to generate many impossible households before getting enough feasible ones. In addition, it takes computing time to check whether or not each sampled household satisfies all the structural zero rules. These computational costs are compounded when the sampler also incorporates missing values. In this section, we present two strategies that can reduce the number of impossible households that the algorithm generates, thereby speeding up the sampler. The Appendix includes simulation studies showing that both strategies can speed up the MCMC significantly.

4.1  Moving the household head to the household level

Many datasets include a variable recording the relationship of each individual to the household head. There can be only one household head in any household. This restriction can account for a large proportion of the combinations in S . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=jr8tjab=bW9Uiaac6caaaa@3F2A@ As a simple working example, consider a dataset that contains n = 1,000 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGUbGaaGypaiaabgdacaqGSaGaae imaiaabcdacaqGWaaaaa@36A0@ households of size two, resulting in a total of N = 2,000 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGobGaaGypaiaabkdacaqGSaGaae imaiaabcdacaqGWaaaaa@3681@ individuals. Suppose the data contain no household-level variables and two individual-level variables, age and relationship to household head. Also, suppose age has 100 levels while relationship to household head has 13 levels, which include household head, spouse of the household head, etc. Then, C MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=jq8dbaa@3CAE@ contains 13 2 × 100 2 = 1 .69 × 10 6 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaaIXaGaaG4mamaaCaaaleqabaGaaG OmaaaakiabgEna0kaaigdacaaIWaGaaGimamaaCaaaleqabaGaaGOm aaaakiaai2dacaqGXaGaaeOlaiaabAdacaqG5aGaey41aqRaaGymai aaicdadaahaaWcbeqaaiaaiAdaaaaaaa@4128@ combinations. Suppose the rule, “each household must contain exactly one head”, is the only structural zero rule defined on the dataset. Then, S MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=jr8tbaa@3CCE@ contains 1 .45 × 10 6 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaqGXaGaaeOlaiaabsdacaqG1aGaey 41aqRaaGymaiaaicdadaahaaWcbeqaaiaaiAdaaaaaaa@38B7@ impossible combinations, approximately 86% the size of C . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=jq8djaac6caaaa@3D60@ If, for example, the model assigns uniform probability to all combinations in C , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=jq8djaacYcaaaa@3D5E@ we would expect to sample about ( 0 .86 / 0 .14 ) * 1,000 6,143 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaqadaqaamaalyaabaGaaeimaiaab6 cacaqG4aGaaeOnaaqaaiaabcdacaqGUaGaaeymaiaabsdaaaaacaGL OaGaayzkaaGaaiOkaiaabgdacaqGSaGaaeimaiaabcdacaqGWaGaey isISRaaeOnaiaabYcacaqGXaGaaeinaiaabodaaaa@4214@ impossible households at every iteration to augment the n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGUbaaaa@325D@ feasible households.

Instead, we treat the variables for the household head as a household-level characteristic. This eliminates structural zero rules defined on the household head alone. Using the working example, moving the household head to the household level results in one new household-level variable, age of household head, which has 100 levels. The relationship to household head variable can be ignored for household heads. For others in the household, the relationship to household head variable now has 12 levels, with the level corresponding to “household head” removed. Thus, C MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=jq8dbaa@3CAE@ contains 12 × 100 2 = 1 .20 × 10 5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaaIXaGaaGOmaiabgEna0kaaigdaca aIWaGaaGimamaaCaaaleqabaGaaGOmaaaakiaai2dacaqGXaGaaeOl aiaabkdacaqGWaGaey41aqRaaGymaiaaicdadaahaaWcbeqaaiaaiw daaaaaaa@4026@ combinations, and S MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=jr8tbaa@3CCE@ contains zero impossible combinations. We wouldn’t even need to sample impossible households in the Gibbs sampler in Section 2.2.

In general, this strategy can reduce the size of S MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=jr8tbaa@3CCE@ significantly, albeit usually not to zero as in the simple example here since S MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=jr8tbaa@3CCE@ usually contains combinations resulting from other types of structural zero rules. This strategy is not a replacement for the rejection sampler in Section 2.2; rather, it is a data reformatting technique that can be combined with the sampler.

4.2  Setting an upper bound on the number of impossible households to sample

To reduce computation time, we can put an upper bound on the number of sampled cases in X 0 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=Dr8ynaaCaaaleqabaGaaGimaaaakiaaygW7 caGGUaaaaa@4005@ One way to achieve this is to replace n 1 h MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGUbWaaSbaaSqaaiaaigdacaWGOb aabeaaaaa@3431@ in step S1(f) of Section 2.2 with n 1 h × ψ h , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaWbdaqaaiaad6gadaWgaaWcbaGaaG ymaiaadIgaaeqaaOGaey41aqRaeqiYdK3aaSbaaSqaaiaadIgaaeqa aaGccaGLUJVaayz+4dGaaiilaaaa@3F08@ for some ψ h MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHipqEdaWgaaWcbaGaamiAaaqaba aaaa@3451@ such that 1 / ψ h MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaWcgaqaaiaaigdaaeaacqaHipqEda WgaaWcbaGaamiAaaqabaaaaaaa@3522@ is a positive integer, so that we sample only approximately n 0 h × ψ h MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaWbdaqaaiaad6gadaWgaaWcbaGaaG imaiaadIgaaeqaaOGaey41aqRaeqiYdK3aaSbaaSqaaiaadIgaaeqa aaGccaGLUJVaayz+4daaaa@3E57@ impossible households for each h H . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGObGaeyicI48efv3ySLgznfgDOf daryqr1ngBPrginfgDObYtUvgaiqaacqWFlecscaGGUaaaaa@3F0F@ However, doing so underestimates the actual probability mass assigned to S MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=jr8tbaa@3CCE@ by the model. We can illustrate this using the simple example of Section 4.1. Suppose the model assigns uniform probability to all combinations in C MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=jq8dbaa@3CAE@ as before. We set ψ 2 = 0 .5 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHipqEdaWgaaWcbaGaaGOmaaqaba GccaaI9aGaaeimaiaab6cacaqG1aGaaiilaaaa@37BD@ so that we sample approximately 3,072 = 6,143 × 0 .5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaqGZaGaaeilaiaabcdacaqG3aGaae Omaiaai2dadaWbdaqaaiaabAdacaqGSaGaaeymaiaabsdacaqGZaGa ey41aqRaaeimaiaab6cacaqG1aaacaGLUJVaayz+4daaaa@4289@ impossible households in every iteration of the MCMC sampler. The probability of generating one impossible household is 3,072 / ( 1,000 + 3,072 ) = 0 . 7 5 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaWcgaqaaiaabodacaqGSaGaaeimai aabEdacaqGYaaabaWaaeWaaeaacaqGXaGaaeilaiaabcdacaqGWaGa aeimaiabgUcaRiaabodacaqGSaGaaeimaiaabEdacaqGYaaacaGLOa Gaayzkaaaaaiaai2daciGGWaGaaiOlaiaacEdacaGG1aGaaiilaaaa @42C8@ a decrease from the actual value of 0.86. Therefore, we would underestimate the true contribution of { X 0 , G 0 , M 0 } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaGadaqaamrr1ngBPrwtHrhAXaqegu uDJXwAKbstHrhAG8KBLbaceaGae83fXJ1aaWbaaSqabeaacaaIWaaa aOGaaGzaVlaaiYcacaaMe8UaaC4ramaaCaaaleqabaGaaGimaaaaki aaygW7caaISaGaaGjbVlaah2eadaahaaWcbeqaaiaaicdaaaaakiaa wUhacaGL9baaaaa@4B1C@ to the likelihood.

To use the cap-and-weight approach, we need to apply a correction that re-weights the contribution of { X 0 , G 0 , M 0 } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaGadaqaamrr1ngBPrwtHrhAXaqegu uDJXwAKbstHrhAG8KBLbaceaGae83fXJ1aaWbaaSqabeaacaaIWaaa aOGaaGzaVlaaiYcacaaMe8UaaC4ramaaCaaaleqabaGaaGimaaaaki aaygW7caaISaGaaGjbVlaah2eadaahaaWcbeqaaiaaicdaaaaakiaa wUhacaGL9baaaaa@4B1C@ to the full joint likelihood. We do so using ideas akin to those used by Chambers and Skinner (2003) and Savitsky and Toth (2016), approximating the likelihood of the full unobserved data with a “pseudo” likelihood using weights (the 1 / ψ h s) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaWcgaqaaiaaigdaaeaacqaHipqEda WgaaWcbaGaamiAaaqabaaaaGqaaOGaa8xgGiaabohacaqGPaGaaeOl aaaa@3842@ The impossible households only contribute to the full joint likelihood through the discrete distributions in (2.3) to (2.6). The sufficient statistics for estimating the parameters of the discrete distributions in (2.3) to (2.6) are the observed counts for the corresponding variables in the set { X 1 , G 1 , M 1 , X 0 , G 0 , M 0 } , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaGadaqaamrr1ngBPrwtHrhAXaqegu uDJXwAKbstHrhAG8KBLbaceaGae83fXJ1aaWbaaSqabeaacaaIXaaa aOGaaGzaVlaaiYcacaaMe8UaaC4ramaaCaaaleqabaGaaGymaaaaki aaygW7caaISaGaaGjbVlaah2eadaahaaWcbeqaaiaaigdaaaGccaaM b8UaaGilaiaaysW7cqWFxepwdaahaaWcbeqaaiaaicdaaaGccaaMb8 UaaGilaiaaysW7caWHhbWaaWbaaSqabeaacaaIWaaaaOGaaGzaVlaa iYcacaaMe8UaaCytamaaCaaaleqabaGaaGimaaaaaOGaay5Eaiaaw2 haaiaacYcaaaa@5D94@ within each latent class for the household-level variables and within each latent class pair for the individual-level variables. Thus, for each h H , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGObGaeyicI48efv3ySLgznfgDOf daryqr1ngBPrginfgDObYtUvgaiqaacqWFlecscaGGSaaaaa@3F0D@ we can re-weight the contribution of impossible households by multiplying the observed counts for households of size h MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGObaaaa@3257@ in { X 0 , G 0 , M 0 } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaGadaqaamrr1ngBPrwtHrhAXaqegu uDJXwAKbstHrhAG8KBLbaceaGae83fXJ1aaWbaaSqabeaacaaIWaaa aOGaaGzaVlaaiYcacaaMe8UaaC4ramaaCaaaleqabaGaaGimaaaaki aaygW7caaISaGaaGjbVlaah2eadaahaaWcbeqaaiaaicdaaaaakiaa wUhacaGL9baaaaa@4B1C@ by 1 / ψ h MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaWcgaqaaiaaigdaaeaacqaHipqEda WgaaWcbaGaamiAaaqabaaaaaaa@3522@ for the corresponding variable and latent classes. This raises the likelihood contribution of impossible households of size h MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGObaaaa@3257@ to the power of 1 / ψ h . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaWcgaqaaiaaigdaaeaacqaHipqEda WgaaWcbaGaamiAaaqabaaaaOGaaGzaVlaac6caaaa@3768@ Clearly, 1 / ψ h MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaWcgaqaaiaaigdaaeaacqaHipqEda WgaaWcbaGaamiAaaqabaaaaaaa@3522@ need not be a positive integer. We require that only to make its multiplication with the observed counts free of decimals. We modify the Gibbs sampler to incorporate the cap-and-weight approach by replacing steps S1, S3, S4, S5 and S6; see the Appendix for the modified steps.

Setting each ψ h = 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHipqEdaWgaaWcbaGaamiAaaqaba GccaaI9aGaaGymaaaa@35DD@ corresponds to the original rejection sampler, so that the two approaches should provide very similar results when ψ h MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHipqEdaWgaaWcbaGaamiAaaqaba aaaa@3451@ near 1. Based on our experience, results of the cap-and-weight approach become significantly less accurate than the regular rejection sampler when ψ h < 1 / 4 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHipqEdaWgaaWcbaGaamiAaaqaba GccaaI8aWaaSGbaeaacaaIXaaabaGaaGinaaaacaGGUaaaaa@3762@ The time gained using this speedup approach in comparison to the regular sampler depends on the features of the data and the specified values for the weights { ψ h : h H } . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaGadaqaaiabeI8a5naaBaaaleaaca WGObaabeaakiaayIW7caaI6aGaaGjbVlaadIgacqGHiiIZtuuDJXwA K1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGabaiab=TqiibGaay5Eai aaw2haaiaac6caaaa@4813@ To select the ψ h s, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHipqEdaWgaaWcbaGaamiAaaqaba acbaGccaWFzaIaae4CaiaabYcaaaa@36C3@ we suggest trying out different values MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuGrYvMBJHgitnMCPbhDG0evam XvP5wqSXMqHnxAJn0BKvguHDwzZbqegqvATv2CG4uz3bIuV1wyUbqe dmvETj2BSbqegm0B1jxALjhiov2DaebbnrfifHhDYfgasaacH8rrpk 0dbbf9q8WrFfeuY=Hhbbf9v8vrpy0dd9qqpae9q8qqvqFr0dXdHiVc =bYP0xH8peuj0lXxfrpe0=vqpeeaY=brpwe9Fve9Fve8meaacaGacm GadaWaaiqacaabaiaafaaakeaaiiaajugybabaaaaaaaaapeGaa83e Gaaa@3ECD@ starting with values close to one MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuGrYvMBJHgitnMCPbhDG0evam XvP5wqSXMqHnxAJn0BKvguHDwzZbqegqvATv2CG4uz3bIuV1wyUbqe dmvETj2BSbqegm0B1jxALjhiov2DaebbnrfifHhDYfgasaacH8rrpk 0dbbf9q8WrFfeuY=Hhbbf9v8vrpy0dd9qqpae9q8qqvqFr0dXdHiVc =bYP0xH8peuj0lXxfrpe0=vqpeeaY=brpwe9Fve9Fve8meaacaGacm GadaWaaiqacaabaiaafaaakeaaiiaajugybabaaaaaaaaapeGaa83e Gaaa@3ECD@ in initial runs of the MCMC sampler on a small random sample of the data. Analysts should examine the convergence and mixing behavior of the chains in comparison to the chain with all the ψ h s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHipqEdaWgaaWcbaGaamiAaaqaba acbaGccaWFzaIaae4Caaaa@3614@ set to one, and select values that offer reasonable speedup while preserving convergence and mixing. This can be done quickly by comparing trace plots of a random set of parameters from the model that are not subject to label switching, such as α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHXoqyaaa@3309@ and β , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHYoGycaGGSaaaaa@33BB@ or by examining marginal, bivariate and trivariate probabilities estimated from synthetic data generated from the MCMC.


Report a problem on this page

Is something not working? Is there information outdated? Can't find what you're looking for?

Please contact us and let us know how we can help you.

Privacy notice

Date modified: