On combining independent probability samples
Section 3. Combining samples

Here we derive the design elements (e.g., inclusion probabilities of first and second order) for the combined sample. There are however different options to combine samples. We must e.g., choose between multiple or single count for the combined design. When combining independent samples selected from the same population we need to know the inclusion probabilities of all units in the samples, for all designs. Second order inclusion probabilities are needed for variance estimation. In some cases we also need to have unique identifiers (labels) for the units so they can be matched, e.g., when we use single count or when at least one separate design has unequal probabilities. Bankier (1986) considered the single count approach for the special case of combining two independently selected stratified simple random samples from the same frame. Roberts and Binder (2009) and O’Muircheartaigh and Pedlow (2002) discussed different options for combining independent samples from the same frame, but not with general sampling designs.

A somewhat similar problem is estimation based on samples from multiple overlapping frames, see e.g., the review articles by Lohr (2009, 2011) and the referenced articles therein. Even though having the same frame can be considered as a special case of multiple frames, we have not found derivations of the design elements (in particular second order inclusion probabilities and second order of expected number of inclusions) for the combination of general sampling designs. Below we present, for general probability sampling designs, in detail two main ways to combine probability samples and derive corresponding design features needed for unbiased estimation and unbiased variance estimation.

3.1  Combining with single count

Here we first combine two independent samples S ( 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaCa aaleqabaWaaeWaaeaacaaIXaaacaGLOaGaayzkaaaaaaaa@3940@ and S ( 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaCa aaleqabaWaaeWaaeaacaaIYaaacaGLOaGaayzkaaaaaaaa@3941@ selected from the same population, and look at the union of the two samples as our combined sample. Thus, the inclusion of a unit is only counted once even if it is included in more than one sample. The first order inclusion probabilities are

π i ( 1 , 2 ) = π i ( 1 ) + π i ( 2 ) π i ( 1 ) π i ( 2 ) , ( 3.1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWda3aa0 baaSqaaiaadMgaaeaadaqadaqaaiaaigdacaGGSaGaaGjbVlaaikda aiaawIcacaGLPaaaaaGccaaI9aGaeqiWda3aa0baaSqaaiaadMgaae aadaqadaqaaiaaigdaaiaawIcacaGLPaaaaaGccqGHRaWkcqaHapaC daqhaaWcbaGaamyAaaqaamaabmaabaGaaGOmaaGaayjkaiaawMcaaa aakiabgkHiTiabec8aWnaaDaaaleaacaWGPbaabaWaaeWaaeaacaaI XaaacaGLOaGaayzkaaaaaOGaeqiWda3aa0baaSqaaiaadMgaaeaada qadaqaaiaaikdaaiaawIcacaGLPaaaaaGccaaISaGaaGzbVlaaywW7 caaMf8UaaGzbVlaaywW7caGGOaGaaG4maiaac6cacaaIXaGaaiykaa aa@6144@

where π i ( 1 , 2 ) = Pr ( i S ( 1 ) S ( 2 ) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWda3aa0 baaSqaaiaadMgaaeaadaqadaqaaiaaigdacaGGSaGaaGjbVlaaikda aiaawIcacaGLPaaaaaGccaaI9aGaciiuaiaackhadaqadaqaaiaadM gacqGHiiIZcaWGtbWaaWbaaSqabeaadaqadaqaaiaaigdaaiaawIca caGLPaaaaaGccqGHQicYcaWGtbWaaWbaaSqabeaadaqadaqaaiaaik daaiaawIcacaGLPaaaaaaakiaawIcacaGLPaaaaaa@4CEB@ and π i ( l ) = Pr ( i S ( l ) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWda3aa0 baaSqaaiaadMgaaeaadaqadaqaaiabloriSbGaayjkaiaawMcaaaaa kiaai2daciGGqbGaaiOCamaabmaabaGaamyAaiabgIGiolaadofada ahaaWcbeqaamaabmaabaGaeS4eHWgacaGLOaGaayzkaaaaaaGccaGL OaGaayzkaaaaaa@45EA@ for l = 1, 2. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeS4eHWMaaG ypaiaaigdacaaISaGaaGjbVlaaikdacaGGUaaaaa@3C5B@ We let I i ( 1 ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysamaaDa aaleaacaWGPbaabaWaaeWaaeaacaaIXaaacaGLOaGaayzkaaaaaOGa aiilaaaa@3ADE@ I i ( 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysamaaDa aaleaacaWGPbaabaWaaeWaaeaacaaIYaaacaGLOaGaayzkaaaaaaaa @3A25@ and I i ( 1 , 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysamaaDa aaleaacaWGPbaabaWaaeWaaeaacaaIXaGaaiilaiaaysW7caaIYaaa caGLOaGaayzkaaaaaaaa@3D1D@ be the inclusion indicator for unit i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaaaa@36E5@ in S ( 1 ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaCa aaleqabaWaaeWaaeaacaaIXaaacaGLOaGaayzkaaaaaOGaaiilaaaa @39FA@ S ( 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaCa aaleqabaWaaeWaaeaacaaIYaaacaGLOaGaayzkaaaaaaaa@3941@ and S ( 1 ) S ( 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaCa aaleqabaWaaeWaaeaacaaIXaaacaGLOaGaayzkaaaaaOGaeyOkIGSa am4uamaaCaaaleqabaWaaeWaaeaacaaIYaaacaGLOaGaayzkaaaaaa aa@3E34@ respectively. The resulting design is no longer a fixed size design (even if the separate designs are of fixed size). The expected size of the union S ( 1 ) S ( 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaCa aaleqabaWaaeWaaeaacaaIXaaacaGLOaGaayzkaaaaaOGaeyOkIGSa am4uamaaCaaaleqabaWaaeWaaeaacaaIYaaacaGLOaGaayzkaaaaaa aa@3E34@ is given by E ( n ( 1 , 2 ) ) = i = 1 N π i ( 1 , 2 ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaabm aabaGaamOBamaaCaaaleqabaWaaeWaaeaacaaIXaGaaiilaiaaysW7 caaIYaaacaGLOaGaayzkaaaaaaGccaGLOaGaayzkaaGaaGypamaaqa dabaGaeqiWda3aa0baaSqaaiaadMgaaeaadaqadaqaaiaaigdacaGG SaGaaGjbVlaaikdaaiaawIcacaGLPaaaaaaabaGaamyAaiaai2daca aIXaaabaGaamOtaaqdcqGHris5aOGaaiilaaaa@4D81@ where n ( 1 , 2 ) = i = 1 N I i ( 1 , 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaCa aaleqabaWaaeWaaeaacaaIXaGaaiilaiaaysW7caaIYaaacaGLOaGa ayzkaaaaaOGaaGypamaaqadabaGaamysamaaDaaaleaacaWGPbaaba WaaeWaaeaacaaIXaGaaiilaiaaysW7caaIYaaacaGLOaGaayzkaaaa aaqaaiaadMgacaaI9aGaaGymaaqaaiaad6eaa0GaeyyeIuoaaaa@4985@ denotes the random size of the union. If we are interested in how much the samples will overlap on average, the expected size of the overlap is given by the sum i = 1 N π i ( 1 ) π i ( 2 ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabmaeaacq aHapaCdaqhaaWcbaGaamyAaaqaamaabmaabaGaaGymaaGaayjkaiaa wMcaaaaakiabec8aWnaaDaaaleaacaWGPbaabaWaaeWaaeaacaaIYa aacaGLOaGaayzkaaaaaaqaaiaadMgacaaI9aGaaGymaaqaaiaad6ea a0GaeyyeIuoakiaac6caaaa@4630@

The second order inclusion probabilities π i j ( 1 , 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWda3aa0 baaSqaaiaadMgacaWGQbaabaWaaeWaaeaacaaIXaGaaiilaiaaysW7 caaIYaaacaGLOaGaayzkaaaaaaaa@3EFB@ for the union S ( 1 ) S ( 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaCa aaleqabaWaaeWaaeaacaaIXaaacaGLOaGaayzkaaaaaOGaeyOkIGSa am4uamaaCaaaleqabaWaaeWaaeaacaaIYaaacaGLOaGaayzkaaaaaa aa@3E34@ can be written in terms of first and second order inclusion probabilities of the two respective designs. Let B = ( i S ( 1 ) S ( 2 ) , j S ( 1 ) S ( 2 ) ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqaiaai2 dadaqadaqaaiaadMgacqGHiiIZcaWGtbWaaWbaaSqabeaadaqadaqa aiaaigdaaiaawIcacaGLPaaaaaGccqGHQicYcaWGtbWaaWbaaSqabe aadaqadaqaaiaaikdaaiaawIcacaGLPaaaaaGccaaISaGaaGjbVlaa dQgacqGHiiIZcaWGtbWaaWbaaSqabeaadaqadaqaaiaaigdaaiaawI cacaGLPaaaaaGccqGHQicYcaWGtbWaaWbaaSqabeaadaqadaqaaiaa ikdaaiaawIcacaGLPaaaaaaakiaawIcacaGLPaaacaGGSaaaaa@5174@ then π i j ( 1 , 2 ) = Pr ( B ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWda3aa0 baaSqaaiaadMgacaWGQbaabaWaaeWaaeaacaaIXaGaaiilaiaaysW7 caaIYaaacaGLOaGaayzkaaaaaOGaaGypaiGaccfacaGGYbWaaeWaae aacaWGcbaacaGLOaGaayzkaaGaaiOlaaaa@449A@ By conditioning on the outcomes for i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaaaa@36E5@ and j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOAaaaa@36E6@ in S ( 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaCa aaleqabaWaaeWaaeaacaaIXaaacaGLOaGaayzkaaaaaaaa@3940@ we get the following four cases


Table 1
Table summary
This table displays the results of Table 1. The information is grouped by (equation) (appearing as row headers), (equation) (appearing as column headers).
m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipmeu0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieWacaWFTb aaaa@36D6@ A m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipmeu0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieWacaWFbb WaaSbaaSqaaiaa=1gaaeqaaaaa@37C4@ Pr( A m ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipmeu0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieqacaWFqb Gaa8NCamaabmaabaacbmGaa4xqamaaBaaaleaacaGFTbaabeaaaOGa ayjkaiaawMcaaaaa@3B23@ Pr( B| A m ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipmeu0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieqacaWFqb Gaa8NCamaabmaabaWaaqGaaeaaieWacaGFcbGaaGPaVdGaayjcSdGa aGPaVlaa+feadaWgaaWcbaGaa4xBaaqabaaakiaawIcacaGLPaaaaa a@4091@
1 i S ( 1 ) ,j S ( 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipmeu0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGPbGaey icI4Saam4uamaaCaaaleqabaWaaeWaaeaacaaIXaaacaGLOaGaayzk aaaaaOGaaGilaiaaysW7caWGQbGaeyicI4Saam4uamaaCaaaleqaba WaaeWaaeaacaaIXaaacaGLOaGaayzkaaaaaaaa@43A0@ π ij ( 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipmeu0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHapaCda qhaaWcbaGaamyAaiaadQgaaeaadaqadaqaaiaaigdaaiaawIcacaGL Paaaaaaaaa@3BE7@ 1
2 i S ( 1 ) ,j S ( 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipmeu0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGPbGaey icI4Saam4uamaaCaaaleqabaWaaeWaaeaacaaIXaaacaGLOaGaayzk aaaaaOGaaGilaiaaysW7caWGQbGaeyycI8Saam4uamaaCaaaleqaba WaaeWaaeaacaaIXaaacaGLOaGaayzkaaaaaaaa@43A2@ π i ( 1 ) π ij ( 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipmeu0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHapaCda qhaaWcbaGaamyAaaqaamaabmaabaGaaGymaaGaayjkaiaawMcaaaaa kiabgkHiTiabec8aWnaaDaaaleaacaWGPbGaamOAaaqaamaabmaaba GaaGymaaGaayjkaiaawMcaaaaaaaa@41FA@ π j ( 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipmeu0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHapaCda qhaaWcbaGaamOAaaqaamaabmaabaGaaGOmaaGaayjkaiaawMcaaaaa aaa@3AFA@
3 i S ( 1 ) ,j S ( 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipmeu0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGPbGaey ycI8Saam4uamaaCaaaleqabaWaaeWaaeaacaaIXaaacaGLOaGaayzk aaaaaOGaaGilaiaaysW7caWGQbGaeyicI4Saam4uamaaCaaaleqaba WaaeWaaeaacaaIXaaacaGLOaGaayzkaaaaaaaa@43A2@ π j ( 1 ) π ij ( 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipmeu0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHapaCda qhaaWcbaGaamOAaaqaamaabmaabaGaaGymaaGaayjkaiaawMcaaaaa kiabgkHiTiabec8aWnaaDaaaleaacaWGPbGaamOAaaqaamaabmaaba GaaGymaaGaayjkaiaawMcaaaaaaaa@41FB@ π i ( 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipmeu0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHapaCda qhaaWcbaGaamyAaaqaamaabmaabaGaaGOmaaGaayjkaiaawMcaaaaa aaa@3AF9@
4 i S ( 1 ) ,j S ( 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipmeu0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGPbGaey ycI8Saam4uamaaCaaaleqabaWaaeWaaeaacaaIXaaacaGLOaGaayzk aaaaaOGaaGilaiaaysW7caWGQbGaeyycI8Saam4uamaaCaaaleqaba WaaeWaaeaacaaIXaaacaGLOaGaayzkaaaaaaaa@43A4@ 1 π i ( 1 ) π j ( 1 ) + π ij ( 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipmeu0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaaIXaGaey OeI0IaeqiWda3aa0baaSqaaiaadMgaaeaadaqadaqaaiaaigdaaiaa wIcacaGLPaaaaaGccqGHsislcqaHapaCdaqhaaWcbaGaamOAaaqaam aabmaabaGaaGymaaGaayjkaiaawMcaaaaakiabgUcaRiabec8aWnaa DaaaleaacaWGPbGaamOAaaqaamaabmaabaGaaGymaaGaayjkaiaawM caaaaaaaa@49AB@ π ij ( 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipmeu0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHapaCda qhaaWcbaGaamyAaiaadQgaaeaadaqadaqaaiaaikdaaiaawIcacaGL Paaaaaaaaa@3BE8@

where π i j ( l ) = Pr ( i S ( l ) , j S ( l ) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWda3aa0 baaSqaaiaadMgacaWGQbaabaWaaeWaaeaacqWItecBaiaawIcacaGL PaaaaaGccaaI9aGaciiuaiaackhadaqadaqaaiaadMgacqGHiiIZca WGtbWaaWbaaSqabeaadaqadaqaaiabloriSbGaayjkaiaawMcaaaaa kiaaiYcacaaMe8UaamOAaiabgIGiolaadofadaahaaWcbeqaamaabm aabaGaeS4eHWgacaGLOaGaayzkaaaaaaGccaGLOaGaayzkaaaaaa@4F58@ for l = 1, 2. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeS4eHWMaaG ypaiaaigdacaaISaGaaGjbVlaaikdacaGGUaaaaa@3C5B@ The events A m , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBa aaleaacaWGTbaabeaakiaacYcaaaa@3895@ m = 1, 2, 3, 4 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBaiaai2 dacaaIXaGaaGilaiaaysW7caaIYaGaaGilaiaaysW7caaIZaGaaGil aiaaysW7caaI0aGaaiilaaaa@421B@ are disjoint and m = 1 4 Pr ( A m ) = 1. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabmaeqale aacaWGTbGaaGypaiaaigdaaeaacaaI0aaaniabggHiLdGcciGGqbGa aiOCamaabmaabaGaamyqamaaBaaaleaacaWGTbaabeaaaOGaayjkai aawMcaaiaai2dacaaIXaGaaiOlaaaa@42AD@ Thus, by the law of total probability, we have π i j ( 1 , 2 ) = Pr ( B ) = m = 1 4 Pr ( B | A m ) Pr ( A m ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWda3aa0 baaSqaaiaadMgacaWGQbaabaWaaeWaaeaacaaIXaGaaiilaiaaysW7 caaIYaaacaGLOaGaayzkaaaaaOGaaGypaiGaccfacaGGYbWaaeWaae aacaWGcbaacaGLOaGaayzkaaGaaGypamaaqadabeWcbaGaamyBaiaa i2dacaaIXaaabaGaaGinaaqdcqGHris5aOGaciiuaiaackhadaqada qaamaaeiaabaGaamOqaiaaykW7aiaawIa7aiaaykW7caWGbbWaaSba aSqaaiaad2gaaeqaaaGccaGLOaGaayzkaaGaciiuaiaackhadaqada qaaiaadgeadaWgaaWcbaGaamyBaaqabaaakiaawIcacaGLPaaacaGG Uaaaaa@5A99@ This gives us

π i j ( 1 , 2 ) = π i j ( 1 ) + π j ( 2 ) ( π i ( 1 ) π i j ( 1 ) ) + π i ( 2 ) ( π j ( 1 ) π i j ( 1 ) ) + π i j ( 2 ) ( 1 π i ( 1 ) π j ( 1 ) + π i j ( 1 ) ) . ( 3.2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWda3aa0 baaSqaaiaadMgacaWGQbaabaWaaeWaaeaacaaIXaGaaiilaiaaysW7 caaIYaaacaGLOaGaayzkaaaaaOGaaGypaiabec8aWnaaDaaaleaaca WGPbGaamOAaaqaamaabmaabaGaaGymaaGaayjkaiaawMcaaaaakiab gUcaRiabec8aWnaaDaaaleaacaWGQbaabaWaaeWaaeaacaaIYaaaca GLOaGaayzkaaaaaOWaaeWaaeaacqaHapaCdaqhaaWcbaGaamyAaaqa amaabmaabaGaaGymaaGaayjkaiaawMcaaaaakiabgkHiTiabec8aWn aaDaaaleaacaWGPbGaamOAaaqaamaabmaabaGaaGymaaGaayjkaiaa wMcaaaaaaOGaayjkaiaawMcaaiabgUcaRiabec8aWnaaDaaaleaaca WGPbaabaWaaeWaaeaacaaIYaaacaGLOaGaayzkaaaaaOWaaeWaaeaa cqaHapaCdaqhaaWcbaGaamOAaaqaamaabmaabaGaaGymaaGaayjkai aawMcaaaaakiabgkHiTiabec8aWnaaDaaaleaacaWGPbGaamOAaaqa amaabmaabaGaaGymaaGaayjkaiaawMcaaaaaaOGaayjkaiaawMcaai abgUcaRiabec8aWnaaDaaaleaacaWGPbGaamOAaaqaamaabmaabaGa aGOmaaGaayjkaiaawMcaaaaakmaabmaabaGaaGymaiabgkHiTiabec 8aWnaaDaaaleaacaWGPbaabaWaaeWaaeaacaaIXaaacaGLOaGaayzk aaaaaOGaeyOeI0IaeqiWda3aa0baaSqaaiaadQgaaeaadaqadaqaai aaigdaaiaawIcacaGLPaaaaaGccqGHRaWkcqaHapaCdaqhaaWcbaGa amyAaiaadQgaaeaadaqadaqaaiaaigdaaiaawIcacaGLPaaaaaaaki aawIcacaGLPaaacaaIUaGaaGzbVlaaywW7caGGOaGaaG4maiaac6ca caaIYaGaaiykaaaa@9108@

The equations (3.1) and (3.2) can be generalized to recursively obtain first and second order inclusion probabilities of the union of an arbitrary number k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaaaa@36E7@ of independent samples. After having derived probabilities for the union of the first two samples, we can combine the result with the probabilities of the third design using the same formulas and so on. To exemplify, let π i ( 1 , , l ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWda3aa0 baaSqaaiaadMgaaeaadaqadaqaaiaaigdacaGGSaGaaGjbVlablAci ljaacYcacaaMe8UaeS4eHWgacaGLOaGaayzkaaaaaaaa@41E0@ be the first order inclusion probability of unit i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaaaa@36E5@ in the union of the first l MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeS4eHWgaaa@3728@ samples. Then we have

π i ( 1 , , l + 1 ) = π i ( 1 , , l ) + π i ( l + 1 ) π i ( 1 , , l ) π i ( l + 1 ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWda3aa0 baaSqaaiaadMgaaeaadaqadaqaaiaaigdacaGGSaGaaGjbVlablAci ljaacYcacaaMe8UaeS4eHWMaey4kaSIaaGymaaGaayjkaiaawMcaaa aakiaai2dacqaHapaCdaqhaaWcbaGaamyAaaqaamaabmaabaGaaGym aiaacYcacaaMe8UaeSOjGSKaaiilaiaaysW7cqWItecBaiaawIcaca GLPaaaaaGccqGHRaWkcqaHapaCdaqhaaWcbaGaamyAaaqaamaabmaa baGaeS4eHWMaey4kaSIaaGymaaGaayjkaiaawMcaaaaakiabgkHiTi abec8aWnaaDaaaleaacaWGPbaabaWaaeWaaeaacaaIXaGaaiilaiaa ysW7cqWIMaYscaGGSaGaaGjbVlabloriSbGaayjkaiaawMcaaaaaki abec8aWnaaDaaaleaacaWGPbaabaWaaeWaaeaacqWItecBcqGHRaWk caaIXaaacaGLOaGaayzkaaaaaOGaaGilaaaa@6D2A@

as the first order inclusion probability of unit i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaaaa@36E5@ in the union of the first l + 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeS4eHWMaey 4kaSIaaGymaaaa@38C5@ samples. Similarly, for the second order inclusion probabilities we get the recursive formula

π i j ( 1 , , l + 1 ) = π i j ( 1 , , l ) + π j ( l + 1 ) ( π i ( 1 , , l ) π i j ( 1 , , l ) ) + π i ( l + 1 ) ( π j ( 1 , , l ) π i j ( 1 , , l ) ) + π i j ( l + 1 ) ( 1 π i ( 1 , , l ) π j ( 1 , , l ) + π i j ( 1 , , l ) ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiGaaa qaaiabec8aWnaaDaaaleaacaWGPbGaamOAaaqaamaabmaabaGaaGym aiaacYcacaaMe8UaeSOjGSKaaiilaiaaysW7cqWItecBcqGHRaWkca aIXaaacaGLOaGaayzkaaaaaaGcbaGaaGypaiabec8aWnaaDaaaleaa caWGPbGaamOAaaqaamaabmaabaGaaGymaiaacYcacaaMe8UaeSOjGS KaaiilaiaaysW7cqWItecBaiaawIcacaGLPaaaaaGccqGHRaWkcqaH apaCdaqhaaWcbaGaamOAaaqaamaabmaabaGaeS4eHWMaey4kaSIaaG ymaaGaayjkaiaawMcaaaaakmaabmaabaGaeqiWda3aa0baaSqaaiaa dMgaaeaadaqadaqaaiaaigdacaGGSaGaaGjbVlablAciljaacYcaca aMe8UaeS4eHWgacaGLOaGaayzkaaaaaOGaeyOeI0IaeqiWda3aa0ba aSqaaiaadMgacaWGQbaabaWaaeWaaeaacaaIXaGaaiilaiaaysW7cq WIMaYscaGGSaGaaGjbVlabloriSbGaayjkaiaawMcaaaaaaOGaayjk aiaawMcaaiabgUcaRiabec8aWnaaDaaaleaacaWGPbaabaWaaeWaae aacqWItecBcqGHRaWkcaaIXaaacaGLOaGaayzkaaaaaOWaaeWaaeaa cqaHapaCdaqhaaWcbaGaamOAaaqaamaabmaabaGaaGymaiaacYcaca aMe8UaeSOjGSKaaiilaiaaysW7cqWItecBaiaawIcacaGLPaaaaaGc cqGHsislcqaHapaCdaqhaaWcbaGaamyAaiaadQgaaeaadaqadaqaai aaigdacaGGSaGaaGjbVlablAciljaacYcacaaMe8UaeS4eHWgacaGL OaGaayzkaaaaaaGccaGLOaGaayzkaaaabaaabaGaaGjbVlabgUcaRi aaysW7cqaHapaCdaqhaaWcbaGaamyAaiaadQgaaeaadaqadaqaaiab loriSjabgUcaRiaaigdaaiaawIcacaGLPaaaaaGcdaqadaqaaiaaig dacqGHsislcqaHapaCdaqhaaWcbaGaamyAaaqaamaabmaabaGaaGym aiaacYcacaaMe8UaeSOjGSKaaiilaiaaysW7cqWItecBaiaawIcaca GLPaaaaaGccqGHsislcqaHapaCdaqhaaWcbaGaamOAaaqaamaabmaa baGaaGymaiaacYcacaaMe8UaeSOjGSKaaiilaiaaysW7cqWItecBai aawIcacaGLPaaaaaGccqGHRaWkcqaHapaCdaqhaaWcbaGaamyAaiaa dQgaaeaadaqadaqaaiaaigdacaGGSaGaaGjbVlablAciljaacYcaca aMe8UaeS4eHWgacaGLOaGaayzkaaaaaaGccaGLOaGaayzkaaGaaGOl aaaaaaa@CFA0@

Henceforth, for the combination of k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaaaa@36E7@ independent samples, we use the simplified notation π i = π i ( 1 , , k ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWda3aaS baaSqaaiaadMgaaeqaaOGaaGypaiabec8aWnaaDaaaleaacaWGPbaa baWaaeWaaeaacaaIXaGaaiilaiaaysW7cqWIMaYscaGGSaGaaGjbVl aadUgaaiaawIcacaGLPaaaaaGccaGGSaaaaa@4601@ π i j = π i j ( 1 , , k ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWda3aaS baaSqaaiaadMgacaWGQbaabeaakiaai2dacqaHapaCdaqhaaWcbaGa amyAaiaadQgaaeaadaqadaqaaiaaigdacaGGSaGaaGjbVlablAcilj aacYcacaaMe8Uaam4AaaGaayjkaiaawMcaaaaaaaa@4725@ and I i = I i ( 1 , , k ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysamaaBa aaleaacaWGPbaabeaakiaai2dacaWGjbWaa0baaSqaaiaadMgaaeaa daqadaqaaiaaigdacaGGSaGaaGjbVlablAciljaacYcacaaMe8Uaam 4AaaGaayjkaiaawMcaaaaakiaac6caaaa@4425@ Since the individual samples may overlap, the resulting design is not of fixed size. The unbiased combined single count (SC) estimator, which has Horvitz-Thompson form, is given by

Y ^ SC = i S y i π i . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmywayaaja WaaSbaaSqaaiaabofacaqGdbaabeaakiaai2dadaaeqbqabSqaaiaa dMgacqGHiiIZcaWGtbaabeqdcqGHris5aOWaaSaaaeaacaWG5bWaaS baaSqaaiaadMgaaeqaaaGcbaGaeqiWda3aaSbaaSqaaiaadMgaaeqa aaaakiaai6caaaa@44C0@

The variance is

V ( Y ^ SC ) = i = 1 N j = 1 N ( π i j π i π j ) y i π i y j π j , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaabm aabaGabmywayaajaWaaSbaaSqaaiaabofacaqGdbaabeaaaOGaayjk aiaawMcaaiaai2dadaaeWbqabSqaaiaadMgacaaI9aGaaGymaaqaai aad6eaa0GaeyyeIuoakmaaqahabeWcbaGaamOAaiaai2dacaaIXaaa baGaamOtaaqdcqGHris5aOWaaeWaaeaacqaHapaCdaWgaaWcbaGaam yAaiaadQgaaeqaaOGaeyOeI0IaeqiWda3aaSbaaSqaaiaadMgaaeqa aOGaeqiWda3aaSbaaSqaaiaadQgaaeqaaaGccaGLOaGaayzkaaWaaS aaaeaacaWG5bWaaSbaaSqaaiaadMgaaeqaaaGcbaGaeqiWda3aaSba aSqaaiaadMgaaeqaaaaakmaalaaabaGaamyEamaaBaaaleaacaWGQb aabeaaaOqaaiabec8aWnaaBaaaleaacaWGQbaabeaaaaGccaaISaaa aa@5DE9@

and an unbiased variance estimator is

V ^ ( Y ^ SC ) = i = 1 N j = 1 N ( π i j π i π j ) y i π i y j π j I i I j π i j . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaja WaaeWaaeaaceWGzbGbaKaadaWgaaWcbaGaae4uaiaaboeaaeqaaaGc caGLOaGaayzkaaGaaGypamaaqahabeWcbaGaamyAaiaai2dacaaIXa aabaGaamOtaaqdcqGHris5aOWaaabCaeqaleaacaWGQbGaaGypaiaa igdaaeaacaWGobaaniabggHiLdGcdaqadaqaaiabec8aWnaaBaaale aacaWGPbGaamOAaaqabaGccqGHsislcqaHapaCdaWgaaWcbaGaamyA aaqabaGccqaHapaCdaWgaaWcbaGaamOAaaqabaaakiaawIcacaGLPa aadaWcaaqaaiaadMhadaWgaaWcbaGaamyAaaqabaaakeaacqaHapaC daWgaaWcbaGaamyAaaqabaaaaOWaaSaaaeaacaWG5bWaaSbaaSqaai aadQgaaeqaaaGcbaGaeqiWda3aaSbaaSqaaiaadQgaaeqaaaaakmaa laaabaGaamysamaaBaaaleaacaWGPbaabeaakiaadMeadaWgaaWcba GaamOAaaqabaaakeaacqaHapaCdaWgaaWcbaGaamyAaiaadQgaaeqa aaaakiaai6caaaa@65C0@

For the combination of independent samples with positive first order inclusion probabilities we always have π i j > 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWda3aaS baaSqaaiaadMgacaWGQbaabeaakiaai6dacaaIWaaaaa@3B49@ for all pairs ( i , j ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WGPbGaaGilaiaaysW7caWGQbaacaGLOaGaayzkaaGaaiilaaaa@3C50@ which is the requirement for the above variance estimator to be unbiased. In terms of MSE it may be beneficial not to use the single count estimator, but instead use an estimator that accounts for the random sample size. However, here we restrict ourselves to using only unbiased estimators.

3.2  Combining with multiple count

We first look at how to combine two independent samples S ( 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaCa aaleqabaWaaeWaaeaacaaIXaaacaGLOaGaayzkaaaaaaaa@3940@ and S ( 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaCa aaleqabaWaaeWaaeaacaaIYaaacaGLOaGaayzkaaaaaaaa@3941@ selected from the same population, where we allow for each unit to possibly be included multiple times. The number of inclusions of unit i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaaaa@36E5@ in the combined sample is denoted by S i ( 1, 2 ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaDa aaleaacaWGPbaabaWaaeWaaeaacaaIXaGaaGilaiaaysW7caaIYaaa caGLOaGaayzkaaaaaOGaaiilaaaa@3DE7@ and it is the sum of the number of inclusions of unit i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaaaa@36E5@ in the two samples we combine, i.e., S i ( 1 , 2 ) = S i ( 1 ) + S i ( 2 ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaDa aaleaacaWGPbaabaWaaeWaaeaacaaIXaGaaiilaiaaysW7caaIYaaa caGLOaGaayzkaaaaaOGaaGypaiaadofadaqhaaWcbaGaamyAaaqaam aabmaabaGaaGymaaGaayjkaiaawMcaaaaakiabgUcaRiaadofadaqh aaWcbaGaamyAaaqaamaabmaabaGaaGOmaaGaayjkaiaawMcaaaaaki aacYcaaaa@480D@ where S i ( l ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaDa aaleaacaWGPbaabaWaaeWaaeaacqWItecBaiaawIcacaGLPaaaaaaa aa@3AA4@ is the number of inclusions of unit i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaaaa@36E5@ in sample l . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeS4eHWMaai Olaaaa@37DA@ The expected number of inclusions of unit i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaaaa@36E5@ in the combination is given by

E ( S i ( 1 , 2 ) ) = E i ( 1 , 2 ) = E i ( 1 ) + E i ( 2 ) , ( 3.3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaabm aabaGaam4uamaaDaaaleaacaWGPbaabaWaaeWaaeaacaaIXaGaaiil aiaaysW7caaIYaaacaGLOaGaayzkaaaaaaGccaGLOaGaayzkaaGaaG ypaiaadweadaqhaaWcbaGaamyAaaqaamaabmaabaGaaGymaiaacYca caaMe8UaaGOmaaGaayjkaiaawMcaaaaakiaai2dacaWGfbWaa0baaS qaaiaadMgaaeaadaqadaqaaiaaigdaaiaawIcacaGLPaaaaaGccqGH RaWkcaWGfbWaa0baaSqaaiaadMgaaeaadaqadaqaaiaaikdaaiaawI cacaGLPaaaaaGccaaISaGaaGzbVlaaywW7caaMf8UaaGzbVlaaywW7 caGGOaGaaG4maiaac6cacaaIZaGaaiykaaaa@5D87@

where E i ( l ) = E ( S i ( l ) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaDa aaleaacaWGPbaabaWaaeWaaeaacqWItecBaiaawIcacaGLPaaaaaGc caaI9aGaamyramaabmaabaGaam4uamaaDaaaleaacaWGPbaabaWaae WaaeaacqWItecBaiaawIcacaGLPaaaaaaakiaawIcacaGLPaaaaaa@4271@ is the expected number of inclusions for unit i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaaaa@36E5@ in sample S ( l ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaCa aaleqabaWaaeWaaeaacqWItecBaiaawIcacaGLPaaaaaGccaGGSaaa aa@3A70@ l = 1, 2. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeS4eHWMaaG ypaiaaigdacaaISaGaaGjbVlaaikdacaGGUaaaaa@3C5B@ The (possibly random) sample size is the sum i = 1 N S i ( 1 , 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabmaeaaca WGtbWaa0baaSqaaiaadMgaaeaadaqadaqaaiaaigdacaGGSaGaaGjb VlaaikdaaiaawIcacaGLPaaaaaaabaGaamyAaiaai2dacaaIXaaaba GaamOtaaqdcqGHris5aaaa@4261@ of all individual inclusions and the expected sample size is the sum i = 1 N E i ( 1 , 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabmaeaaca WGfbWaa0baaSqaaiaadMgaaeaadaqadaqaaiaaigdacaGGSaGaaGjb VlaaikdaaiaawIcacaGLPaaaaaaabaGaamyAaiaai2dacaaIXaaaba GaamOtaaqdcqGHris5aaaa@4253@ of all individual expected number of inclusions. It can be shown that

E ( S i ( 1 , 2 ) S j ( 1 , 2 ) ) = E i j ( 1 , 2 ) = E i j ( 1 ) + E i ( 1 ) E j ( 2 ) + E i ( 2 ) E j ( 1 ) + E i j ( 2 ) , ( 3.4 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaabm aabaGaam4uamaaDaaaleaacaWGPbaabaWaaeWaaeaacaaIXaGaaiil aiaaysW7caaIYaaacaGLOaGaayzkaaaaaOGaam4uamaaDaaaleaaca WGQbaabaWaaeWaaeaacaaIXaGaaiilaiaaysW7caaIYaaacaGLOaGa ayzkaaaaaaGccaGLOaGaayzkaaGaaGypaiaadweadaqhaaWcbaGaam yAaiaadQgaaeaadaqadaqaaiaaigdacaGGSaGaaGjbVlaaikdaaiaa wIcacaGLPaaaaaGccaaI9aGaamyramaaDaaaleaacaWGPbGaamOAaa qaamaabmaabaGaaGymaaGaayjkaiaawMcaaaaakiabgUcaRiaadwea daqhaaWcbaGaamyAaaqaamaabmaabaGaaGymaaGaayjkaiaawMcaaa aakiaadweadaqhaaWcbaGaamOAaaqaamaabmaabaGaaGOmaaGaayjk aiaawMcaaaaakiabgUcaRiaadweadaqhaaWcbaGaamyAaaqaamaabm aabaGaaGOmaaGaayjkaiaawMcaaaaakiaadweadaqhaaWcbaGaamOA aaqaamaabmaabaGaaGymaaGaayjkaiaawMcaaaaakiabgUcaRiaadw eadaqhaaWcbaGaamyAaiaadQgaaeaadaqadaqaaiaaikdaaiaawIca caGLPaaaaaGccaaISaGaaGzbVlaaywW7caaMf8Uaaiikaiaaiodaca GGUaGaaGinaiaacMcaaaa@7708@

where E i j ( l ) = E ( S i ( l ) S j ( l ) ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaDa aaleaacaWGPbGaamOAaaqaamaabmaabaGaeS4eHWgacaGLOaGaayzk aaaaaOGaaGypaiaadweadaqadaqaaiaadofadaqhaaWcbaGaamyAaa qaamaabmaabaGaeS4eHWgacaGLOaGaayzkaaaaaOGaam4uamaaDaaa leaacaWGQbaabaWaaeWaaeaacqWItecBaiaawIcacaGLPaaaaaaaki aawIcacaGLPaaacaGGSaaaaa@48C8@ l = 1, 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeS4eHWMaaG ypaiaaigdacaaISaGaaGjbVlaaikdaaaa@3BA9@ are the second order of expected number of inclusions in sample l . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeS4eHWMaai Olaaaa@37DA@ Obviously E i j ( l ) = π i j ( l ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaDa aaleaacaWGPbGaamOAaaqaamaabmaabaGaeS4eHWgacaGLOaGaayzk aaaaaOGaaGypaiabec8aWnaaDaaaleaacaWGPbGaamOAaaqaamaabm aabaGaeS4eHWgacaGLOaGaayzkaaaaaaaa@42D7@ if the design for sample l MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeS4eHWgaaa@3728@ is without replacement. Note that as S i ( ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaDa aaleaacaWGPbaabaWaaeWaaeaacqGHflY1aiaawIcacaGLPaaaaaaa aa@3BBD@ may take other values than 0 or 1 we have that E i i ( ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaDa aaleaacaWGPbGaamyAaaqaamaabmaabaGaeyyXICnacaGLOaGaayzk aaaaaaaa@3C9D@ is generally not equal to E i ( ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaDa aaleaacaWGPbaabaWaaeWaaeaacqGHflY1aiaawIcacaGLPaaaaaGc caGGSaaaaa@3C69@ but π i i ( ) = π i ( ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWda3aa0 baaSqaaiaadMgacaWGPbaabaWaaeWaaeaacqGHflY1aiaawIcacaGL PaaaaaGccaaI9aGaeqiWda3aa0baaSqaaiaadMgaaeaadaqadaqaai abgwSixdGaayjkaiaawMcaaaaakiaac6caaaa@45C8@ The equations (3.3) and (3.4) can be used recursively to obtain E i ( ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaDa aaleaacaWGPbaabaWaaeWaaeaacqGHflY1aiaawIcacaGLPaaaaaaa aa@3BAF@ and E i j ( ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaDa aaleaacaWGPbGaamOAaaqaamaabmaabaGaeyyXICnacaGLOaGaayzk aaaaaaaa@3C9E@ for the combination of an arbitrary number k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaaaa@36E7@ of independent samples. We then get the recursive formulas

E i ( 1 , …, l + 1 ) = E i ( 1 , …, l ) + E i ( l + 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaDa aaleaacaWGPbaabaWaaeWaaeaacaaIXaGaaiilaiaaysW7cqWIMaYs caaMe8UaeS4eHWMaey4kaSIaaGymaaGaayjkaiaawMcaaaaakiaai2 dacaWGfbWaa0baaSqaaiaadMgaaeaadaqadaqaaiaaigdacaGGSaGa aGjbVlablAciljaaysW7cqWItecBaiaawIcacaGLPaaaaaGccqGHRa WkcaWGfbWaa0baaSqaaiaadMgaaeaadaqadaqaaiabloriSjabgUca RiaaigdaaiaawIcacaGLPaaaaaaaaa@5418@

and

E i j ( 1 , , l + 1 ) = E i j ( 1 , , l ) + E i ( 1 , , l ) E j ( l + 1 ) + E j ( 1 , , l ) E i ( l + 1 ) + E i j ( l + 1 ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaDa aaleaacaWGPbGaamOAaaqaamaabmaabaGaaGymaiaacYcacaaMe8Ua eSOjGSKaaiilaiaaysW7cqWItecBcqGHRaWkcaaIXaaacaGLOaGaay zkaaaaaOGaaGypaiaadweadaqhaaWcbaGaamyAaiaadQgaaeaadaqa daqaaiaaigdacaGGSaGaaGjbVlablAciljaacYcacaaMe8UaeS4eHW gacaGLOaGaayzkaaaaaOGaey4kaSIaamyramaaDaaaleaacaWGPbaa baWaaeWaaeaacaaIXaGaaiilaiaaysW7cqWIMaYscaGGSaGaaGjbVl abloriSbGaayjkaiaawMcaaaaakiaadweadaqhaaWcbaGaamOAaaqa amaabmaabaGaeS4eHWMaey4kaSIaaGymaaGaayjkaiaawMcaaaaaki abgUcaRiaadweadaqhaaWcbaGaamOAaaqaamaabmaabaGaaGymaiaa cYcacaaMe8UaeSOjGSKaaiilaiaaysW7cqWItecBaiaawIcacaGLPa aaaaGccaWGfbWaa0baaSqaaiaadMgaaeaadaqadaqaaiabloriSjab gUcaRiaaigdaaiaawIcacaGLPaaaaaGccqGHRaWkcaWGfbWaa0baaS qaaiaadMgacaWGQbaabaWaaeWaaeaacqWItecBcqGHRaWkcaaIXaaa caGLOaGaayzkaaaaaOGaaGOlaaaa@7D59@

The previous results and (3.4) follow from the fact that S i ( 1 , , l + 1 ) = S i ( 1 , , l ) + S i ( l + 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaDa aaleaacaWGPbaabaWaaeWaaeaacaaIXaGaaiilaiaaysW7cqWIMaYs caGGSaGaaGjbVlabloriSjabgUcaRiaaigdaaiaawIcacaGLPaaaaa GccaaI9aGaam4uamaaDaaaleaacaWGPbaabaWaaeWaaeaacaaIXaGa aiilaiaaysW7cqWIMaYscaGGSaGaaGjbVlabloriSbGaayjkaiaawM caaaaakiabgUcaRiaadofadaqhaaWcbaGaamyAaaqaamaabmaabaGa eS4eHWMaey4kaSIaaGymaaGaayjkaiaawMcaaaaaaaa@55A3@ and that S i ( 1 , , l ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaDa aaleaacaWGPbaabaWaaeWaaeaacaaIXaGaaiilaiaaysW7cqWIMaYs caGGSaGaaGjbVlabloriSbGaayjkaiaawMcaaaaaaaa@40FB@ and S i ( l + 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaDa aaleaacaWGPbaabaWaaeWaaeaacqWItecBcqGHRaWkcaaIXaaacaGL OaGaayzkaaaaaaaa@3C41@ are independent. For example, we have

E i j ( 1 , , l + 1 ) = E ( S i ( 1 , , l + 1 ) S j ( 1 , , l + 1 ) ) = E ( ( S i ( 1 , , l ) + S i ( l + 1 ) ) ( S j ( 1 , , l ) + S j ( l + 1 ) ) ) = E ( S i ( 1 , , l ) S j ( 1 , , l ) + S i ( 1 , , l ) S j ( l + 1 ) + S j ( 1 , , l ) S i ( l + 1 ) + S i ( l + 1 ) S j ( l + 1 ) ) = E i j ( 1 , , l ) + E i ( 1 , , l ) E j ( l + 1 ) + E j ( 1 , , l ) E i ( l + 1 ) + E i j ( l + 1 ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabmGaaa qaaiaadweadaqhaaWcbaGaamyAaiaadQgaaeaadaqadaqaaiaaigda caGGSaGaaGjbVlablAciljaacYcacaaMe8UaeS4eHWMaey4kaSIaaG ymaaGaayjkaiaawMcaaaaakiaai2dacaWGfbWaaeWaaeaacaWGtbWa a0baaSqaaiaadMgaaeaadaqadaqaaiaaigdacaGGSaGaaGjbVlablA ciljaacYcacaaMe8UaeS4eHWMaey4kaSIaaGymaaGaayjkaiaawMca aaaakiaadofadaqhaaWcbaGaamOAaaqaamaabmaabaGaaGymaiaacY cacaaMe8UaeSOjGSKaaiilaiaaysW7cqWItecBcqGHRaWkcaaIXaaa caGLOaGaayzkaaaaaaGccaGLOaGaayzkaaaabaGaaGypaiaadweada qadaqaamaabmaabaGaam4uamaaDaaaleaacaWGPbaabaWaaeWaaeaa caaIXaGaaiilaiaaysW7cqWIMaYscaGGSaGaaGjbVlabloriSbGaay jkaiaawMcaaaaakiabgUcaRiaadofadaqhaaWcbaGaamyAaaqaamaa bmaabaGaeS4eHWMaey4kaSIaaGymaaGaayjkaiaawMcaaaaaaOGaay jkaiaawMcaamaabmaabaGaam4uamaaDaaaleaacaWGQbaabaWaaeWa aeaacaaIXaGaaiilaiaaysW7cqWIMaYscaGGSaGaaGjbVlabloriSb GaayjkaiaawMcaaaaakiabgUcaRiaadofadaqhaaWcbaGaamOAaaqa amaabmaabaGaeS4eHWMaey4kaSIaaGymaaGaayjkaiaawMcaaaaaaO GaayjkaiaawMcaaaGaayjkaiaawMcaaiaai2daaeaaaeaacaaMe8Ua aGjbVlaadweadaqadaqaaiaadofadaqhaaWcbaGaamyAaaqaamaabm aabaGaaGymaiaacYcacaaMe8UaeSOjGSKaaiilaiaaysW7cqWItecB aiaawIcacaGLPaaaaaGccaWGtbWaa0baaSqaaiaadQgaaeaadaqada qaaiaaigdacaGGSaGaaGjbVlablAciljaacYcacaaMe8UaeS4eHWga caGLOaGaayzkaaaaaOGaey4kaSIaam4uamaaDaaaleaacaWGPbaaba WaaeWaaeaacaaIXaGaaiilaiaaysW7cqWIMaYscaGGSaGaaGjbVlab loriSbGaayjkaiaawMcaaaaakiaadofadaqhaaWcbaGaamOAaaqaam aabmaabaGaeS4eHWMaey4kaSIaaGymaaGaayjkaiaawMcaaaaakiab gUcaRiaadofadaqhaaWcbaGaamOAaaqaamaabmaabaGaaGymaiaacY cacaaMe8UaeSOjGSKaaiilaiaaysW7cqWItecBaiaawIcacaGLPaaa aaGccaWGtbWaa0baaSqaaiaadMgaaeaadaqadaqaaiabloriSjabgU caRiaaigdaaiaawIcacaGLPaaaaaGccqGHRaWkcaWGtbWaa0baaSqa aiaadMgaaeaadaqadaqaaiabloriSjabgUcaRiaaigdaaiaawIcaca GLPaaaaaGccaWGtbWaa0baaSqaaiaadQgaaeaadaqadaqaaiablori SjabgUcaRiaaigdaaiaawIcacaGLPaaaaaaakiaawIcacaGLPaaaca aI9aaabaaabaGaaGjbVlaaysW7caWGfbWaa0baaSqaaiaadMgacaWG QbaabaWaaeWaaeaacaaIXaGaaiilaiaaysW7cqWIMaYscaGGSaGaaG jbVlabloriSbGaayjkaiaawMcaaaaakiabgUcaRiaadweadaqhaaWc baGaamyAaaqaamaabmaabaGaaGymaiaacYcacaaMe8UaeSOjGSKaai ilaiaaysW7cqWItecBaiaawIcacaGLPaaaaaGccaWGfbWaa0baaSqa aiaadQgaaeaadaqadaqaaiabloriSjabgUcaRiaaigdaaiaawIcaca GLPaaaaaGccqGHRaWkcaWGfbWaa0baaSqaaiaadQgaaeaadaqadaqa aiaaigdacaGGSaGaaGjbVlablAciljaacYcacaaMe8UaeS4eHWgaca GLOaGaayzkaaaaaOGaamyramaaDaaaleaacaWGPbaabaWaaeWaaeaa cqWItecBcqGHRaWkcaaIXaaacaGLOaGaayzkaaaaaOGaey4kaSIaam yramaaDaaaleaacaWGPbGaamOAaaqaamaabmaabaGaeS4eHWMaey4k aSIaaGymaaGaayjkaiaawMcaaaaakiaai6caaaaaaa@15C8@

For the combination of k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaaaa@36E7@ independent samples we now use the simplified notation E i = E i ( 1 , , k ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaBa aaleaacaWGPbaabeaakiaai2dacaWGfbWaa0baaSqaaiaadMgaaeaa daqadaqaaiaaigdacaGGSaGaaGjbVlablAciljaacYcacaaMe8Uaam 4AaaGaayjkaiaawMcaaaaakiaacYcaaaa@441B@ E i j = E i j ( 1 , , k ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaBa aaleaacaWGPbGaamOAaaqabaGccaaI9aGaamyramaaDaaaleaacaWG PbGaamOAaaqaamaabmaabaGaaGymaiaacYcacaaMe8UaeSOjGSKaai ilaiaaysW7caWGRbaacaGLOaGaayzkaaaaaOGaaiilaaaa@45F9@ and S i = S i ( 1 , , k ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaBa aaleaacaWGPbaabeaakiaai2dacaWGtbWaa0baaSqaaiaadMgaaeaa daqadaqaaiaaigdacaGGSaGaaGjbVlablAciljaacYcacaaMe8Uaam 4AaaGaayjkaiaawMcaaaaakiaac6caaaa@4439@ The total Y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywaaaa@36D5@ can be estimated without bias with the multiple count (MC) estimator, of which the Hansen-Hurwitz estimator (Hansen and Hurwitz, 1943) is a special case. It is given by

Y ^ MC = i = 1 N y i E i S i . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmywayaaja WaaSbaaSqaaiaab2eacaqGdbaabeaakiaai2dadaaeWbqabSqaaiaa dMgacaaI9aGaaGymaaqaaiaad6eaa0GaeyyeIuoakmaalaaabaGaam yEamaaBaaaleaacaWGPbaabeaaaOqaaiaadweadaWgaaWcbaGaamyA aaqabaaaaOGaam4uamaaBaaaleaacaWGPbaabeaakiaai6caaaa@45DB@

We get the Hansen-Hurwitz estimator if E i = n p i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaBa aaleaacaWGPbaabeaakiaai2dacaWGUbGaamiCamaaBaaaleaacaWG PbaabeaakiaacYcaaaa@3C68@ where n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaaaa@36EA@ is the number of units drawn and p i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaBa aaleaacaWGPbaabeaakiaacYcaaaa@38C0@ with i = 1 N p i = 1 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabmaeaaca WGWbWaaSbaaSqaaiaadMgaaeqaaOGaaGypaiaaigdaaSqaaiaadMga caaI9aGaaGymaaqaaiaad6eaa0GaeyyeIuoakiaacYcaaaa@3F91@ are probabilities for a single independent draw. The variance of Y ^ MC MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmywayaaja WaaSbaaSqaaiaab2eacaqGdbaabeaaaaa@38A7@ can be shown to be

V ( Y ^ MC ) = i = 1 N j = 1 N ( E i j E i E j ) y i E i y j E j . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaabm aabaGabmywayaajaWaaSbaaSqaaiaab2eacaqGdbaabeaaaOGaayjk aiaawMcaaiaai2dadaaeWbqabSqaaiaadMgacaaI9aGaaGymaaqaai aad6eaa0GaeyyeIuoakmaaqahabeWcbaGaamOAaiaai2dacaaIXaaa baGaamOtaaqdcqGHris5aOWaaeWaaeaacaWGfbWaaSbaaSqaaiaadM gacaWGQbaabeaakiabgkHiTiaadweadaWgaaWcbaGaamyAaaqabaGc caWGfbWaaSbaaSqaaiaadQgaaeqaaaGccaGLOaGaayzkaaWaaSaaae aacaWG5bWaaSbaaSqaaiaadMgaaeqaaaGcbaGaamyramaaBaaaleaa caWGPbaabeaaaaGcdaWcaaqaaiaadMhadaWgaaWcbaGaamOAaaqaba aakeaacaWGfbWaaSbaaSqaaiaadQgaaeqaaaaakiaai6caaaa@5926@

A variance estimator is

V ^ ( Y ^ MC ) = i = 1 N j = 1 N ( E i j E i E j ) y i E i y j E j S i S j E i j . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaja WaaeWaaeaaceWGzbGbaKaadaWgaaWcbaGaaeytaiaaboeaaeqaaaGc caGLOaGaayzkaaGaaGypamaaqahabeWcbaGaamyAaiaai2dacaaIXa aabaGaamOtaaqdcqGHris5aOWaaabCaeqaleaacaWGQbGaaGypaiaa igdaaeaacaWGobaaniabggHiLdGcdaqadaqaaiaadweadaWgaaWcba GaamyAaiaadQgaaeqaaOGaeyOeI0IaamyramaaBaaaleaacaWGPbaa beaakiaadweadaWgaaWcbaGaamOAaaqabaaakiaawIcacaGLPaaada WcaaqaaiaadMhadaWgaaWcbaGaamyAaaqabaaakeaacaWGfbWaaSba aSqaaiaadMgaaeqaaaaakmaalaaabaGaamyEamaaBaaaleaacaWGQb aabeaaaOqaaiaadweadaWgaaWcbaGaamOAaaqabaaaaOWaaSaaaeaa caWGtbWaaSbaaSqaaiaadMgaaeqaaOGaam4uamaaBaaaleaacaWGQb aabeaaaOqaaiaadweadaWgaaWcbaGaamyAaiaadQgaaeqaaaaakiaa i6caaaa@601C@

It follows directly that the above variance estimator is unbiased, because when combining independent samples with positive first order inclusion probabilities we always have E i j > 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaBa aaleaacaWGPbGaamOAaaqabaGccaaI+aGaaGimaaaa@3A56@ for all pairs ( i , j ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WGPbGaaGilaiaaysW7caWGQbaacaGLOaGaayzkaaGaaiOlaaaa@3C52@

3.3  Comparing the combined and separate estimators

Two examples that illustrate that the combined estimator is not necessarily as good as the best separate estimator.

Example 3: Assume that the first sample, S ( 1 ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbiqaceGaciGaciaabmqacmGabiabcaGcbaGaam4uamaaCa aaleqabaWaaeWaaeaacaaIXaaacaGLOaGaayzkaaaaaOGaaiilaaaa @39B8@  is of fixed size with π i ( 1 ) y i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbiqaceGaciGaciaabmqacmGabiabcaGcbaGaeqiWda3aa0 baaSqaaiaadMgaaeaadaqadaqaaiaaigdaaiaawIcacaGLPaaaaaGc cqGHDisTcaWG5bWaaSbaaSqaaiaadMgaaeqaaOGaaiilaaaa@3F2D@  and that the second is a simple random sample with π i ( 2 ) = n / N . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbiqaceGaciGaciaabmqacmGabiabcaGcbaGaeqiWda3aa0 baaSqaaiaadMgaaeaadaqadaqaaiaaikdaaiaawIcacaGLPaaaaaGc caaI9aWaaSGbaeaacaWGUbaabaGaamOtaaaacaGGUaaaaa@3E31@  Then the Horvitz-Thompson estimator Y ^ 1 = i S ( 1 ) y i / π i ( 1 ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbiqaceGaciGaciaabmqacmGabiabcaGcbaGabmywayaaja WaaSbaaSqaaiaaigdaaeqaaOGaaGypamaaqababeWcbaGaamyAaiab gIGiolaadofadaahaaadbeqaamaabmaabaGaaGymaaGaayjkaiaawM caaaaaaSqab0GaeyyeIuoakmaalyaabaGaamyEamaaBaaaleaacaWG PbaabeaaaOqaaiabec8aWnaaDaaaleaacaWGPbaabaWaaeWaaeaaca aIXaaacaGLOaGaayzkaaaaaaaakiaacYcaaaa@481E@  has zero variance, but the combined single count estimator with π i = π i ( 1 ) + π i ( 2 ) π i ( 1 ) π i ( 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbiqaceGaciGaciaabmqacmGabiabcaGcbaGaeqiWda3aaS baaSqaaiaadMgaaeqaaOGaaGypaiabec8aWnaaDaaaleaacaWGPbaa baWaaeWaaeaacaaIXaaacaGLOaGaayzkaaaaaOGaey4kaSIaeqiWda 3aa0baaSqaaiaadMgaaeaadaqadaqaaiaaikdaaiaawIcacaGLPaaa aaGccqGHsislcqaHapaCdaqhaaWcbaGaamyAaaqaamaabmaabaGaaG ymaaGaayjkaiaawMcaaaaakiabec8aWnaaDaaaleaacaWGPbaabaWa aeWaaeaacaaIYaaacaGLOaGaayzkaaaaaaaa@4FBC@  has positive variance. Thus the combined estimator is worse than the best separate estimator.

Example 4: Assume that the design for the first sample is stratified in such a way that there is no variation within strata. Then the separate estimator Y ^ 1 = i S ( 1 ) y i / π i ( 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbiqaceGaciGaciaabmqacmGabiabcaGcbaGabmywayaaja WaaSbaaSqaaiaaigdaaeqaaOGaaGypamaaqababeWcbaGaamyAaiab gIGiolaadofadaahaaadbeqaamaabmaabaGaaGymaaGaayjkaiaawM caaaaaaSqab0GaeyyeIuoakmaalyaabaGaamyEamaaBaaaleaacaWG PbaabeaaaOqaaiabec8aWnaaDaaaleaacaWGPbaabaWaaeWaaeaaca aIXaaacaGLOaGaayzkaaaaaaaaaaa@4764@  has zero variance. If the first sample is combined with a non-stratified second sample, then the resulting design does not have fixed sample sizes for the strata. Thus, the combined estimator has a positive variance.

These examples tell us that we need to be careful before combining very different designs, such as an unequal probability design with an equal probability design or a stratified with a non-stratified sampling design. Especially, we need to be careful if we plan to estimate the total directly based on the combined sample. When combining samples from relatively similar designs, it is however likely that the combined estimator becomes better than the best of the separate estimators.

Next, we investigate how to use the combined approach for estimation of the separate variances and then use the linear combination estimator. In fact, as we will see later, using the combined approach for variance estimation of separate variances can act stabilizing for the weights in the linear combination with weights based on estimated variances. There is a sort of pooling effect for the variance estimators when they are estimated with the same set of information.

3.4  Using the combined sample for estimation of variances of separate estimators

An alternative to estimating directly the total Y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywaaaa@36D5@ based on the combined design is to use the combined design to estimate the variances of the separate estimators, and then proceed with a linear combination of the separate estimators. We assume access to k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaaaa@36E7@ independent samples and that we want to estimate the variance of a separate estimator, whose variance is a double sum over the population units. There are two main options for the variance estimator; multiply by

I i I j π i j or S i S j E i j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca WGjbWaaSbaaSqaaiaadMgaaeqaaOGaamysamaaBaaaleaacaWGQbaa beaaaOqaaiabec8aWnaaBaaaleaacaWGPbGaamOAaaqabaaaaOGaaG jbVlaaysW7caqGVbGaaeOCaiaaysW7caaMe8+aaSaaaeaacaWGtbWa aSbaaSqaaiaadMgaaeqaaOGaam4uamaaBaaaleaacaWGQbaabeaaaO qaaiaadweadaWgaaWcbaGaamyAaiaadQgaaeqaaaaaaaa@4CB2@

in the variance formula to obtain an unbiased estimator of the variance based on the combination of all the k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaaaa@36E7@ samples S ( l ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaCa aaleqabaWaaeWaaeaacqWItecBaiaawIcacaGLPaaaaaGccaGGSaaa aa@3A70@ l = 1, , k . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeS4eHWMaaG ypaiaaigdacaaISaGaaGjbVlablAciljaacYcacaaMe8Uaam4Aaiaa c6caaaa@3FEE@ For example, assuming that the variance of Y ^ 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmywayaaja WaaSbaaSqaaiaaigdaaeqaaaaa@37CC@ is

V ( Y ^ 1 ) = i = 1 N j = 1 N ( π i j ( 1 ) π i ( 1 ) π j ( 1 ) ) y i π i ( 1 ) y j π j ( 1 ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaabm aabaGabmywayaajaWaaSbaaSqaaiaaigdaaeqaaaGccaGLOaGaayzk aaGaaGypamaaqahabeWcbaGaamyAaiaai2dacaaIXaaabaGaamOtaa qdcqGHris5aOWaaabCaeqaleaacaWGQbGaaGypaiaaigdaaeaacaWG obaaniabggHiLdGcdaqadaqaaiabec8aWnaaDaaaleaacaWGPbGaam OAaaqaamaabmaabaGaaGymaaGaayjkaiaawMcaaaaakiabgkHiTiab ec8aWnaaDaaaleaacaWGPbaabaWaaeWaaeaacaaIXaaacaGLOaGaay zkaaaaaOGaeqiWda3aa0baaSqaaiaadQgaaeaadaqadaqaaiaaigda aiaawIcacaGLPaaaaaaakiaawIcacaGLPaaadaWcaaqaaiaadMhada WgaaWcbaGaamyAaaqabaaakeaacqaHapaCdaqhaaWcbaGaamyAaaqa amaabmaabaGaaGymaaGaayjkaiaawMcaaaaaaaGcdaWcaaqaaiaadM hadaWgaaWcbaGaamOAaaqabaaakeaacqaHapaCdaqhaaWcbaGaamOA aaqaamaabmaabaGaaGymaaGaayjkaiaawMcaaaaaaaGccaaISaaaaa@6861@

we can use the combination of S ( l ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaCa aaleqabaWaaeWaaeaacqWItecBaiaawIcacaGLPaaaaaGccaGGSaaa aa@3A70@ l = 1, , k , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeS4eHWMaaG ypaiaaigdacaaISaGaaGjbVlablAciljaacYcacaaMe8Uaam4Aaiaa cYcaaaa@3FEC@ to estimate V ( Y ^ 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaabm aabaGabmywayaajaWaaSbaaSqaaiaaigdaaeqaaaGccaGLOaGaayzk aaaaaa@3A3A@ by the single count estimator

V ^ SC ( Y ^ 1 ) = i = 1 N j = 1 N ( π i j ( 1 ) π i ( 1 ) π j ( 1 ) ) y i π i ( 1 ) y j π j ( 1 ) I i I j π i j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaja WaaSbaaSqaaiaabofacaqGdbaabeaakmaabmaabaGabmywayaajaWa aSbaaSqaaiaaigdaaeqaaaGccaGLOaGaayzkaaGaaGypamaaqahabe WcbaGaamyAaiaai2dacaaIXaaabaGaamOtaaqdcqGHris5aOWaaabC aeqaleaacaWGQbGaaGypaiaaigdaaeaacaWGobaaniabggHiLdGcda qadaqaaiabec8aWnaaDaaaleaacaWGPbGaamOAaaqaamaabmaabaGa aGymaaGaayjkaiaawMcaaaaakiabgkHiTiabec8aWnaaDaaaleaaca WGPbaabaWaaeWaaeaacaaIXaaacaGLOaGaayzkaaaaaOGaeqiWda3a a0baaSqaaiaadQgaaeaadaqadaqaaiaaigdaaiaawIcacaGLPaaaaa aakiaawIcacaGLPaaadaWcaaqaaiaadMhadaWgaaWcbaGaamyAaaqa baaakeaacqaHapaCdaqhaaWcbaGaamyAaaqaamaabmaabaGaaGymaa GaayjkaiaawMcaaaaaaaGcdaWcaaqaaiaadMhadaWgaaWcbaGaamOA aaqabaaakeaacqaHapaCdaqhaaWcbaGaamOAaaqaamaabmaabaGaaG ymaaGaayjkaiaawMcaaaaaaaGcdaWcaaqaaiaadMeadaWgaaWcbaGa amyAaaqabaGccaWGjbWaaSbaaSqaaiaadQgaaeqaaaGcbaGaeqiWda 3aaSbaaSqaaiaadMgacaWGQbaabeaaaaaaaa@7148@

or the multiple count estimator

V ^ MC ( Y ^ 1 ) = i = 1 N j = 1 N ( π i j ( 1 ) π i ( 1 ) π j ( 1 ) ) y i π i ( 1 ) y j π j ( 1 ) S i S j E i j . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaja WaaSbaaSqaaiaab2eacaqGdbaabeaakmaabmaabaGabmywayaajaWa aSbaaSqaaiaaigdaaeqaaaGccaGLOaGaayzkaaGaaGypamaaqahabe WcbaGaamyAaiaai2dacaaIXaaabaGaamOtaaqdcqGHris5aOWaaabC aeqaleaacaWGQbGaaGypaiaaigdaaeaacaWGobaaniabggHiLdGcda qadaqaaiabec8aWnaaDaaaleaacaWGPbGaamOAaaqaamaabmaabaGa aGymaaGaayjkaiaawMcaaaaakiabgkHiTiabec8aWnaaDaaaleaaca WGPbaabaWaaeWaaeaacaaIXaaacaGLOaGaayzkaaaaaOGaeqiWda3a a0baaSqaaiaadQgaaeaadaqadaqaaiaaigdaaiaawIcacaGLPaaaaa aakiaawIcacaGLPaaadaWcaaqaaiaadMhadaWgaaWcbaGaamyAaaqa baaakeaacqaHapaCdaqhaaWcbaGaamyAaaqaamaabmaabaGaaGymaa GaayjkaiaawMcaaaaaaaGcdaWcaaqaaiaadMhadaWgaaWcbaGaamOA aaqabaaakeaacqaHapaCdaqhaaWcbaGaamOAaaqaamaabmaabaGaaG ymaaGaayjkaiaawMcaaaaaaaGcdaWcaaqaaiaadofadaWgaaWcbaGa amyAaaqabaGccaWGtbWaaSbaaSqaaiaadQgaaeqaaaGcbaGaamyram aaBaaaleaacaWGPbGaamOAaaqabaaaaOGaaGOlaaaa@7125@

Note that π i j = π i j ( 1 , , k ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWda3aaS baaSqaaiaadMgacaWGQbaabeaakiaai2dacqaHapaCdaqhaaWcbaGa amyAaiaadQgaaeaadaqadaqaaiaaigdacaGGSaGaaGjbVlablAcilj aacYcacaaMe8Uaam4AaaGaayjkaiaawMcaaaaakiaacYcaaaa@47DF@ I i = I i ( 1 , , k ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysamaaBa aaleaacaWGPbaabeaakiaai2dacaWGjbWaa0baaSqaaiaadMgaaeaa daqadaqaaiaaigdacaGGSaGaaGjbVlablAciljaacYcacaaMe8Uaam 4AaaGaayjkaiaawMcaaaaakiaacYcaaaa@4423@ E i j = E i j ( 1 , , k ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaBa aaleaacaWGPbGaamOAaaqabaGccaaI9aGaamyramaaDaaaleaacaWG PbGaamOAaaqaamaabmaabaGaaGymaiaacYcacaaMe8UaeSOjGSKaai ilaiaaysW7caWGRbaacaGLOaGaayzkaaaaaaaa@453F@ and S i = S i ( 1 , , k ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaBa aaleaacaWGPbaabeaakiaai2dacaWGtbWaa0baaSqaaiaadMgaaeaa daqadaqaaiaaigdacaGGSaGaaGjbVlablAciljaacYcacaaMe8Uaam 4AaaGaayjkaiaawMcaaaaakiaacYcaaaa@4437@ so the above variance estimators use all available information on the target variable. Hence, these variance estimators can be thought of as general pooled variance estimators. It follows directly that both estimators are unbiased because all designs have positive first order inclusion probabilities, which imply that all π i j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWda3aaS baaSqaaiaadMgacaWGQbaabeaaaaa@39BD@ and all E i j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaBa aaleaacaWGPbGaamOAaaqabaaaaa@38CA@ are strictly positive. Interestingly, the above variance estimators are unbiased even if the separate design 1 has some second order inclusion probabilities that are zero, which prevent unbiased variance estimation based on the sample S ( 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaCa aaleqabaWaaeWaaeaacaaIXaaacaGLOaGaayzkaaaaaaaa@3940@ alone.

Despite the appealing property of producing an unbiased variance estimator for any design, the above variance estimators cannot be recommended for designs with a high degree of zero second order inclusion probabilities (such as systematic sampling). The estimators can be very unstable for such designs and can produce a high proportion of negative variance estimates.

As we will see, if we intend to use a linear combination estimator, it is important that all variances are estimated in the same way. Then it is likely that the ratios, e.g.,

V ^ SC ( Y ^ 1 ) V ^ SC ( Y ^ 2 ) and V ^ MC ( Y ^ 1 ) V ^ MC ( Y ^ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaace WGwbGbaKaadaWgaaWcbaGaae4uaiaaboeaaeqaaOWaaeWaaeaaceWG zbGbaKaadaWgaaWcbaGaaGymaaqabaaakiaawIcacaGLPaaaaeaace WGwbGbaKaadaWgaaWcbaGaae4uaiaaboeaaeqaaOWaaeWaaeaaceWG zbGbaKaadaWgaaWcbaGaaGOmaaqabaaakiaawIcacaGLPaaaaaGaaG jbVlaaysW7caqGHbGaaeOBaiaabsgacaaMe8UaaGjbVpaalaaabaGa bmOvayaajaWaaSbaaSqaaiaab2eacaqGdbaabeaakmaabmaabaGabm ywayaajaWaaSbaaSqaaiaaigdaaeqaaaGccaGLOaGaayzkaaaabaGa bmOvayaajaWaaSbaaSqaaiaab2eacaqGdbaabeaakmaabmaabaGabm ywayaajaWaaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaaaaaaa @5790@

become stable (have small variance). The ratios become more stable because the estimators in the numerator and denominator are based on the same information and are estimated with the same weights for all the pairs ( i , j ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WGPbGaaGilaiaaysW7caWGQbaacaGLOaGaayzkaaaaaa@3BA0@ in all estimators. With estimated variances we get

α ^ i = [ j = 1 k V ^ ( Y ^ i ) V ^ ( Y ^ j ) ] 1 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqySdeMbaK aadaWgaaWcbaGaamyAaaqabaGccaaI9aWaamWaaeaadaaeWbqabSqa aiaadQgacaaI9aGaaGymaaqaaiaadUgaa0GaeyyeIuoakmaalaaaba GabmOvayaajaWaaeWaaeaaceWGzbGbaKaadaWgaaWcbaGaamyAaaqa baaakiaawIcacaGLPaaaaeaaceWGwbGbaKaadaqadaqaaiqadMfaga qcamaaBaaaleaacaWGQbaabeaaaOGaayjkaiaawMcaaaaaaiaawUfa caGLDbaadaahaaWcbeqaaiabgkHiTiaaigdaaaGccaaISaaaaa@4CE2@

so if the ratios of variance estimators have small variance then α ^ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqySdeMbaK aadaWgaaWcbaGaamyAaaqabaaaaa@38C0@ has small variance. The weighting in the linear combination Y ^ L * MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmywayaaja Waa0baaSqaaiaadYeaaeaacaGGQaaaaaaa@3891@ then becomes stabilized. As the following example demonstrates, the ratio of the variance estimators can even have zero variance. Thus it can sometimes provide the optimal weighting even if the variances are unknown.

Example 5: Assume we want to combine estimates resulting from two simple random samples of different sizes. This can of course be done optimally without estimating the variances, but as an example we will use the above approach to estimate the separate variances by use of the combined sample. In this case the use of the estimators V ^ SC ( Y ^ 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbiqaceGaciGaciaabmqacmGabiabcaGcbaGabmOvayaaja WaaSbaaSqaaiaabofacaqGdbaabeaakmaabmaabaGabmywayaajaWa aSbaaSqaaiaaigdaaeqaaaGccaGLOaGaayzkaaaaaa@3BDA@  and V ^ SC ( Y ^ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbiqaceGaciGaciaabmqacmGabiabcaGcbaGabmOvayaaja WaaSbaaSqaaiaabofacaqGdbaabeaakmaabmaabaGabmywayaajaWa aSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaaaaa@3BDB@  provides the optimal weighting, and so does V ^ MC ( Y ^ 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbiqaceGaciGaciaabmqacmGabiabcaGcbaGabmOvayaaja WaaSbaaSqaaiaab2eacaqGdbaabeaakmaabmaabaGabmywayaajaWa aSbaaSqaaiaaigdaaeqaaaGccaGLOaGaayzkaaaaaa@3BD4@  and V ^ MC ( Y ^ 2 ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbiqaceGaciGaciaabmqacmGabiabcaGcbaGabmOvayaaja WaaSbaaSqaaiaab2eacaqGdbaabeaakmaabmaabaGabmywayaajaWa aSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaGaaiOlaaaa@3C87@  This result follows from the fact that if both designs are simple random sampling we have

V ^ SC ( Y ^ 1 ) V ^ SC ( Y ^ 2 ) = V ^ MC ( Y ^ 1 ) V ^ MC ( Y ^ 2 ) = V ( Y ^ 1 ) V ( Y ^ 2 ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbiqaceGaciGaciaabmqacmGabiabcaGcbaWaaSaaaeaace WGwbGbaKaadaWgaaWcbaGaae4uaiaaboeaaeqaaOWaaeWaaeaaceWG zbGbaKaadaWgaaWcbaGaaGymaaqabaaakiaawIcacaGLPaaaaeaace WGwbGbaKaadaWgaaWcbaGaae4uaiaaboeaaeqaaOWaaeWaaeaaceWG zbGbaKaadaWgaaWcbaGaaGOmaaqabaaakiaawIcacaGLPaaaaaGaaG ypamaalaaabaGabmOvayaajaWaaSbaaSqaaiaab2eacaqGdbaabeaa kmaabmaabaGabmywayaajaWaaSbaaSqaaiaaigdaaeqaaaGccaGLOa GaayzkaaaabaGabmOvayaajaWaaSbaaSqaaiaab2eacaqGdbaabeaa kmaabmaabaGabmywayaajaWaaSbaaSqaaiaaikdaaeqaaaGccaGLOa Gaayzkaaaaaiaai2dadaWcaaqaaiaadAfadaqadaqaaiqadMfagaqc amaaBaaaleaacaaIXaaabeaaaOGaayjkaiaawMcaaaqaaiaadAfada qadaqaaiqadMfagaqcamaaBaaaleaacaaIYaaabeaaaOGaayjkaiaa wMcaaaaacaaISaaaaa@5939@

which is straightforward to verify. For two simple random samples the situation corresponds to using a pooled estimate for S 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbiqaceGaciGaciaabmqacmGabiabcaGcbaGaam4uamaaCa aaleqabaGaaGOmaaaaaaa@3776@  (the population variance of y ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbiqaceGaciGaciaabmqacmGabiabcaGcbaGaamyEaGqaai aa=Lcaaaa@3766@  in the expressions for the variance estimates, and this pooled estimate is then cancelled out in the calculation of the weights.

The conclusion is that this procedure is likely to provide a more stable weighting also for designs that deviate from simple random sampling as long as the involved designs have large entropy (a high degree of randomness). The problem of bias for the linear combination estimator with estimated variances will be reduced compared to using separate and thus independent variance estimators.

We believe that this can be a very interesting alternative, because the estimator of the total based on the combined design does not necessarily provide a smaller variance than the best of the separate estimators. With this strategy we can improve the separate variance estimators, especially for a smaller sample (if data is available for a larger sample). Hence the resulting linear combination with jointly estimated variances can be a very competitive strategy.

With single count we might use a ratio type variance estimator such as the following

V ^ R ( Y ^ 1 ) = N 2 γ 1, , k i = 1 N j = 1 N ( π i j ( 1 ) π i ( 1 ) π j ( 1 ) ) y i π i ( 1 ) y j π j ( 1 ) I i I j π i j , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaja WaaSbaaSqaaiaadkfaaeqaaOWaaeWaaeaaceWGzbGbaKaadaWgaaWc baGaaGymaaqabaaakiaawIcacaGLPaaacaaI9aWaaSaaaeaacaWGob WaaWbaaSqabeaacaaIYaaaaaGcbaGaeq4SdC2aaSbaaSqaaiaaigda caaISaGaaGjbVlablAciljaaiYcacaaMe8Uaam4AaaqabaaaaOWaaa bCaeqaleaacaWGPbGaaGypaiaaigdaaeaacaWGobaaniabggHiLdGc daaeWbqabSqaaiaadQgacaaI9aGaaGymaaqaaiaad6eaa0GaeyyeIu oakmaabmaabaGaeqiWda3aa0baaSqaaiaadMgacaWGQbaabaWaaeWa aeaacaaIXaaacaGLOaGaayzkaaaaaOGaeyOeI0IaeqiWda3aa0baaS qaaiaadMgaaeaadaqadaqaaiaaigdaaiaawIcacaGLPaaaaaGccqaH apaCdaqhaaWcbaGaamOAaaqaamaabmaabaGaaGymaaGaayjkaiaawM caaaaaaOGaayjkaiaawMcaamaalaaabaGaamyEamaaBaaaleaacaWG PbaabeaaaOqaaiabec8aWnaaDaaaleaacaWGPbaabaWaaeWaaeaaca aIXaaacaGLOaGaayzkaaaaaaaakmaalaaabaGaamyEamaaBaaaleaa caWGQbaabeaaaOqaaiabec8aWnaaDaaaleaacaWGQbaabaWaaeWaae aacaaIXaaacaGLOaGaayzkaaaaaaaakmaalaaabaGaamysamaaBaaa leaacaWGPbaabeaakiaadMeadaWgaaWcbaGaamOAaaqabaaakeaacq aHapaCdaWgaaWcbaGaamyAaiaadQgaaeqaaaaakiaaiYcaaaa@7C49@

where γ 1, , k = i = 1 N j = 1 N I i I j π i j . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdC2aaS baaSqaaiaaigdacaaISaGaaGjbVlablAciljaacYcacaaMe8Uaam4A aaqabaGccaaI9aWaaabmaeqaleaacaWGPbGaaGypaiaaigdaaeaaca WGobaaniabggHiLdGcdaaeWaqabSqaaiaadQgacaaI9aGaaGymaaqa aiaad6eaa0GaeyyeIuoakmaaleaaleaacaWGjbWaaSbaaWqaaiaadM gaaeqaaSGaamysamaaBaaameaacaWGQbaabeaaaSqaaiabec8aWnaa BaaameaacaWGPbGaamOAaaqabaaaaOGaaiOlaaaa@5311@ For multiple count we can replace I i I j / π i j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSGbaeaaca WGjbWaaSbaaSqaaiaadMgaaeqaaOGaamysamaaBaaaleaacaWGQbaa beaaaOqaaiabec8aWnaaBaaaleaacaWGPbGaamOAaaqabaaaaaaa@3DB8@ with S i S j / E i j . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSGbaeaaca WGtbWaaSbaaSqaaiaadMgaaeqaaOGaam4uamaaBaaaleaacaWGQbaa beaaaOqaaiaadweadaWgaaWcbaGaamyAaiaadQgaaeqaaaaakiaac6 caaaa@3D95@ This ratio estimator uses the known size of the population of pairs ( i , j ) { 1, 2, , N } 2 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WGPbGaaGilaiaaysW7caWGQbaacaGLOaGaayzkaaGaeyicI48aaiWa ceaacaaIXaGaaGilaiaaysW7caaIYaGaaGilaiaaysW7cqWIMaYsca GGSaGaaGjbVlaad6eaaiaawUhacaGL9baadaahaaWcbeqaaiaaikda aaGccaGGSaaaaa@4B29@ which is N 2 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtamaaCa aaleqabaGaaGOmaaaakiaacYcaaaa@386D@ and divides by the sum of the sample weights for the pairs. Note that E ( γ 1, , k ) = N 2 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaabm aabaGaeq4SdC2aaSbaaSqaaiaaigdacaaISaGaaGjbVlablAciljaa cYcacaaMe8Uaam4AaaqabaaakiaawIcacaGLPaaacaaI9aGaamOtam aaCaaaleqabaGaaGOmaaaakiaac6caaaa@44B3@ This correction is useful because the number of pairs in the estimator may be random (since the union of the samples may have random size). This rescales the sample (of pairs) weights to sum to N 2 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtamaaCa aaleqabaGaaGOmaaaakiaac6caaaa@386F@ This will introduce some bias (as usual for ratio estimators), but the idea is that this will reduce the variance of the variance estimator. However, this approach is only useful if we are interested in the separate variance as the correction term will be the same for all separate variance estimators. Hence it does not change the weighting of a linear combination estimator with estimated variances.


Date modified: