Growth Rates Preservation (GRP) temporal benchmarking: Drawbacks and alternative solutions
Section 2. Temporal benchmarking methods

This section explains the Denton PFD and GRP benchmarking procedures. Because temporal aggregation constraints are the same for Denton PFD and GRP, these are described first. Thereafter, the Denton PFD and GRP benchmarking procedures are explained.

We focus on univariate variants of these methods, in which temporal consistency is the main constraint of interest. The observations that are presented in the remainder of this paper are however also valid for the multivariate case, in which multiple time-series are reconciled simultaneously and additional constraints between time-series apply (see Di Fonzo and Marini, 2011 and Bikker, Daalmans and Mushkudiani, 2013).

2.1  General notation and temporal constraints

In general, temporal aggregation constraints can be expressed as a linear system of equalities A x = b , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peea0dXdcrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWHbbGaaCiEaiabg2da9iaahkgaca GGSaaaaa@35E3@ where x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peea0dXdcrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWH4baaaa@3278@ is the target vector of high-frequency values, b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peea0dXdcrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWHIbaaaa@3262@ is a vector of low-frequency values, and A MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peea0dXdcrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWHbbaaaa@3241@ is a temporal aggregation matrix converting high- into low-frequency values.

The specific form of these constraints depends on the nature of the variables involved. For flow variables, a sum of subannual values, e.g., four quarterly values, usually needs to be the same as one annual value. For stock variables, one of the subannual values, usually the first or the last, needs to be the same as the relevant annual value. For example, for quarterly/annual flow variables, assuming for the sake of simplicity that the available time span begins on the first quarter of the first year and ends on the fourth quarter of the last observed year, it is

A = [ 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 ] . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peea0dXdcrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWHbbGaaGjbVlaaysW7cqGH9aqpca aMe8UaaGjbVpaadmaabaqbaeqabqqdaaaaaaaabaGaaGymaaqaaiaa igdaaeaacaaIXaaabaGaaGymaaqaaiaaicdaaeaacaaIWaaabaGaaG imaaqaaiaaicdaaeaacqWIVlctaeaacaaIWaaabaGaaGimaaqaaiaa icdaaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaG imaaqaaiaaigdaaeaacaaIXaaabaGaaGymaaqaaiaaigdaaeaacqWI VlctaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaeS O7I0eabaGaeSO7I0eabaGaeSO7I0eabaGaeSO7I0eabaGaeSO7I0ea baGaeSO7I0eabaGaeSO7I0eabaGaeSO7I0eabaGaeSy8I8eabaGaeS O7I0eabaGaeSO7I0eabaGaeSO7I0eabaGaeSO7I0eabaGaaGimaaqa aiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaaba GaaGimaaqaaiaaicdaaeaacqWIVlctaeaacaaIXaaabaGaaGymaaqa aiaaigdaaeaacaaIXaaaaaGaay5waiaaw2faaiaac6caaaa@7584@

Denoting by p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peea0dXdcrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWHWbaaaa@3270@ a vector of preliminary values, in general it is A p b , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peea0dXdcrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWHbbGaaCiCaiabgcMi5kaahkgaca GGSaaaaa@369C@ otherwise no adjustment would be needed. We look for a vector of benchmarked estimates x * , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peea0dXdcrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWH4bWaaWbaaSqabeaacaGGQaaaaO Gaaiilaaaa@340D@ a particular outcome for x , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peea0dXdcrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWH4bGaaiilaaaa@3328@ which should be “as close as possible” to the preliminary values and that satisfies A x * = b . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peea0dXdcrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWHbbGaaCiEamaaCaaaleqabaGaai Okaaaakiabg2da9iaahkgacaGGUaaaaa@36CA@

Not all sub annual periods need to be covered by a benchmark. Thus, the number of rows in A MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peea0dXdcrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWHbbaaaa@3241@ may be smaller than the total number of annual periods, see e.g., Dagum and Cholette (2006) for more details.

In a benchmarking operation, characteristics of the original series p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peea0dXdcrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWHWbaaaa@3270@  should be considered. For example, in an economic time series framework, the preservation of the temporal dynamics (however defined) of the preliminary series is often a major interest of the practitioner.

2.2  Growth Rates Preservation (GRP) and Denton PFD

This section gives a formal description of GRP and Denton PFD.

Causey and Trager (1981; see also Monsour and Trager, 1979 and Trager, 1982) obtain the benchmarked values x t * , t = 1 , , n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peea0dXdcrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaqaaaaaaaaaWdbiaadIhapaWaa0baaS qaa8qacaWG0baapaqaaiaacQcaaaGccaaMb8UaaiilaiaaysW7caaM c8UaamiDaiabg2da9iaaigdacaGGSaGaaGjbVlablAciljaacYcaca aMe8UaaGPaVlaad6gaaaa@44C6@  as a solution to the following optimization problem:

min x t f F GRP ( x ) subject to A x = b , where f F GRP ( x ) = t = 2 n ( x t x t 1 p t p t 1 ) 2 . ( 2.1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peea0dXdcrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaWfqaqaaabaaaaaaaaapeGaaeyBai aabMgacaqGUbaal8aabaWdbiaadIhapaWaaSbaaWqaa8qacaWG0baa paqabaaaleqaaOWdbiaadAgapaWaa0baaSqaa8qacaqGgbaapaqaa8 qaciGGhbGaaiOuaiaaccfaaaGcdaqadaWdaeaapeGaaCiEaaGaayjk aiaawMcaaiaaywW7caqGZbGaaeyDaiaabkgacaqGQbGaaeyzaiaabo gacaqG0bGaaeiOaiaabshacaqGVbGaaGzbVlaahgeacaWH4bGaeyyp a0JaaCOyaiaacYcacaaMf8Uaae4DaiaabIgacaqGLbGaaeOCaiaabw gacaaMf8UaamOza8aadaqhaaWcbaWdbiaabAeaa8aabaWdbiaabEea caqGsbGaaeiuaaaakmaabmaapaqaa8qacaWH4baacaGLOaGaayzkaa GaaGjbVlaaysW7cqGH9aqpcaaMe8UaaGjbVpaawahabeWcpaqaa8qa caWG0bGaeyypa0JaaGOmaaWdaeaapeGaamOBaaqdpaqaa8qacqGHri s5aaGccaaMe8+aaeWaa8aabaWdbmaalaaapaqaa8qacaWG4bWdamaa BaaaleaapeGaamiDaaWdaeqaaaGcbaWdbiaadIhapaWaaSbaaSqaa8 qacaWG0bGaeyOeI0IaaGymaaWdaeqaaaaak8qacqGHsisldaWcaaWd aeaapeGaamiCa8aadaWgaaWcbaWdbiaadshaa8aabeaaaOqaa8qaca WGWbWdamaaBaaaleaapeGaamiDaiabgkHiTiaaigdaa8aabeaaaaaa k8qacaGLOaGaayzkaaWdamaaCaaaleqabaWdbiaaikdaaaGcpaGaaG zaV=qacaGGUaGaaGzbVlaaywW7caaMf8UaaiikaiaaikdacaGGUaGa aGymaiaacMcaaaa@8937@

The GRP criterion to be minimized, f F GRP ( x ) ,   MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peea0dXdcrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaqaaaaaaaaaWdbiaadAgapaWaa0baaS qaa8qacaqGgbaapaqaa8qacaqGhbGaaeOuaiaabcfaaaGcdaqadaWd aeaapeGaaCiEaaGaayjkaiaawMcaaiaacYcacaGGGcaaaa@3AAF@ explicitly relates to growth rates: it minimizes the sum of squared differences between growth rates of preliminary and benchmarked values. The subscript “F” in the minimization function stands for “Forward”, later in this paper a “Backward” minimization function will be defined.

Denton (1971) proposed a benchmarking procedure grounded on the Proportionate First Differences (PFD) between target and original series. Cholette (1984) slightly modified the result of Denton, in order to correctly deal with the starting conditions of the problem. The PFD benchmarked estimates are thus obtained as the solution to the constrained quadratic minimization problem

min x t f F PFD ( x )   subject to A x = b , where f F PFD ( x ) = t = 2 n ( x t p t x t 1 p t 1 ) 2 . ( 2.2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peea0dXdcrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaWfqaqaaabaaaaaaaaapeGaciyBai aacMgacaGGUbaal8aabaWdbiaadIhapaWaaSbaaWqaa8qacaWG0baa paqabaaaleqaaOWdbiaadAgapaWaa0baaSqaa8qacaqGgbaapaqaa8 qacaqGqbGaaeOraiaabseaaaGcdaqadaWdaeaapeGaaCiEaaGaayjk aiaawMcaaiaaywW7caGGGcGaae4CaiaabwhacaqGIbGaaeOAaiaabw gacaqGJbGaaeiDaiaabckacaqG0bGaae4BaiaaywW7caWHbbGaaCiE aiabg2da9iaahkgacaGGSaGaaGzbVlaabEhacaqGObGaaeyzaiaabk hacaqGLbGaaGzbVlaadAgapaWaa0baaSqaa8qacaqGgbaapaqaa8qa caqGqbGaaeOraiaabseaaaGcdaqadaWdaeaapeGaaCiEaaGaayjkai aawMcaaiaaysW7caaMe8Uaeyypa0JaaGjbVlaaysW7daGfWbqabSWd aeaapeGaamiDaiabg2da9iaaikdaa8aabaWdbiaad6gaa0Wdaeaape GaeyyeIuoaaOGaaGjbVpaabmaapaqaa8qadaWcaaWdaeaapeGaamiE a8aadaWgaaWcbaWdbiaadshaa8aabeaaaOqaa8qacaWGWbWdamaaBa aaleaapeGaamiDaaWdaeqaaaaak8qacqGHsisldaWcaaWdaeaapeGa amiEa8aadaWgaaWcbaWdbiaadshacqGHsislcaaIXaaapaqabaaake aapeGaamiCa8aadaWgaaWcbaWdbiaadshacqGHsislcaaIXaaapaqa baaaaaGcpeGaayjkaiaawMcaa8aadaahaaWcbeqaa8qacaaIYaaaaO GaaiOlaiaaywW7caaMf8UaaGzbVlaacIcacaaIYaGaaiOlaiaaikda caGGPaaaaa@8896@

The Denton PFD criterion to be minimized, f F PFD ( x ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peea0dXdcrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaqaaaaaaaaaWdbiaadAgapaWaa0baaS qaa8qacaqGgbaapaqaa8qacaqGqbGaaeOraiaabseaaaGcdaqadaWd aeaapeGaaCiEaaGaayjkaiaawMcaaiaacYcaaaa@397C@ is a sum of squared linear terms, which is easier to deal with than the nonlinear GRP objective function.


Date modified: