Linearization versus bootstrap for variance estimation of the change between Gini indexes
Section 5. Conclusion

In this paper, we considered the estimation of the change between Gini indexes. We presented the class of composite estimators introduced by Goga, Deville and Ruiz-Gazen (2009), and studied more particularly the intersection estimator which makes use of the common sample only, and the union estimator which makes use of the whole available samples. We justified both heuristically and through the simulation study in Section 4.2 that the intersection estimator can be close to the optimal estimator, while the union estimator exhibits poor performances in all the scenarios considered. The intersection estimator is also easy to compute, while the optimal estimator involves unknown quantities which need to be estimated in practice. We therefore advocate for the use of the intersection estimator for estimating the change between Gini indexes.

We also compared linearization and bootstrap for variance estimation and for producing confidence intervals. In the scenarios that we considered in the simulation study, the linearization performed better with usually smaller relative biases for the variance estimator, and better coverage rates with normality-based confidence intervals than with percentile confidence intervals. Bootstrap t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqGHsislcaWG0baaaa@33D7@ confidence intervals (not considered in the simulation study) would be a competitor of interest, but due to the intensive computational work involved, they are less attractive for a data user. Linearization has also the advantage to offer a unified approach suitable for any sampling design, while a specific sampling design usually requires a specific bootstrap procedure, as illustrated with the BWO for SI sampling and the BWR for multistage sampling.

From the simulation study, we note that the coverage rates may not be well respected neither with linearization nor bootstrap, particularly in the multistage context and even with large sample sizes. There is a need for confidence intervals with better coverage rates under a reasonable computational burden. This is a matter for further research.

Acknowledgements

We thank Anne Ruiz-Gazen for helpful discussion. We also thank two referees and an Associate Editor for useful comments and suggestions which led to a significant improvement of the paper.

Appendix

Proof of equation (3.6)

From (3.3), we have Δ t ^ co = N ( A X ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaqiaaqaaiabfs5aejaadshaaiaawk WaamaaCaaaleqabaGaae4yaiaab+gaaaGccaaI9aGaamOtaiaayIW7 caaMi8+aaeWaaeaacaWGbbWaaWbaaSqabeaatuuDJXwAK1uy0Hwmae Hbfv3ySLgzG0uy0Hgip5wzaGabbiab=rQivcaakiaadIfaaiaawIca caGLPaaacaGGSaaaaa@4B5A@ where X MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGybaaaa@32CE@ = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaaI9aaaaa@32B8@ ( y ¯ 2, s 2 y ¯ 2, s 3 , y ¯ 1, s 1 y ¯ 1, s 3 , y ¯ 2, s 3 y ¯ 1, s 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaqadaqaaiqadMhagaqeamaaBaaale aacaaIYaGaaGilaiaaykW7caWGZbWaaSbaaWqaaiaaikdacqGHIaYT aeqaaaWcbeaakiabgkHiTiqadMhagaqeamaaBaaaleaacaaIYaGaaG ilaiaaykW7caWGZbWaaSbaaWqaaiaaiodaaeqaaaWcbeaakiaaygW7 caaISaGaaGPaVlqadMhagaqeamaaBaaaleaacaaIXaGaaGilaiaayk W7caWGZbWaaSbaaWqaaiaaigdacqGHIaYTaeqaaaWcbeaakiabgkHi TiqadMhagaqeamaaBaaaleaacaaIXaGaaGilaiaaykW7caWGZbWaaS baaWqaaiaaiodaaeqaaaWcbeaakiaaygW7caaISaGaaGPaVlqadMha gaqeamaaBaaaleaacaaIYaGaaGilaiaaykW7caWGZbWaaSbaaWqaai aaiodaaeqaaaWcbeaakiabgkHiTiqadMhagaqeamaaBaaaleaacaaI XaGaaGilaiaaykW7caWGZbWaaSbaaWqaaiaaiodaaeqaaaWcbeaaaO GaayjkaiaawMcaaaaa@661F@ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaqhaaWcbaaabaWefv3ySLgznfgDOf daryqr1ngBPrginfgDObYtUvgaiqqacqWFKksLaaaaaa@3D88@ and A = ( b , a , 1 ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGbbGaaGypamaabmaabaGaamOyai aaiYcacaaMe8UaeyOeI0IaamyyaiaaiYcacaaMe8UaaGymaaGaayjk aiaawMcaamaaCaaaleqabaWefv3ySLgznfgDOfdaryqr1ngBPrginf gDObYtUvgaiqqacqWFKksLaaGccaaMb8UaaiOlaaaa@4ADF@ This leads to

V { Δ t ^ co } = N 2 { A V ( X ) A } . ( A .1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGwbWaaiWaaeaadaqiaaqaaiabfs 5aejaadshaaiaawkWaamaaCaaaleqabaGaae4yaiaab+gaaaaakiaa wUhacaGL9baacaaMe8UaaGPaVlaai2dacaaMe8UaaGPaVlaad6eada ahaaWcbeqaaiaaikdaaaGcdaGadaqaaiaadgeadaahaaWcbeqaamrr 1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbaceeGae8hPIujaaO GaamOvaiaayIW7daqadaqaaiaadIfaaiaawIcacaGLPaaacaaMi8Ua aGjcVlaadgeaaiaawUhacaGL9baacaaMi8UaaGOlaiaaywW7caaMf8 UaaGzbVlaaywW7caGGOaGaaeyqaiaac6cacaaIXaGaaiykaaaa@6646@

We compute the elements in V ( X ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGwbGaaGjcVlaayIW7daqadaqaai aadIfaaiaawIcacaGLPaaaaaa@3854@ separately. We have

V ( y ¯ 2, s 3 y ¯ 1, s 3 ) = ( 1 n 3 1 N ) S y 2 y 1 , U 2 = ( 1 n 3 1 N ) ( S y 2 , U 2 + S y 1 , U 2 2 S y 1 y 2 , U ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaafaqaaeGacaaabaGaamOvaiaayIW7ca aMi8+aaeWaaeaaceWG5bGbaebadaWgaaWcbaGaaGOmaiaaiYcacaaM c8Uaam4CamaaBaaameaacaaIZaaabeaaaSqabaGccqGHsislceWG5b GbaebadaWgaaWcbaGaaGymaiaaiYcacaaMc8Uaam4CamaaBaaameaa caaIZaaabeaaaSqabaaakiaawIcacaGLPaaaaeaacaaI9aGaaGjbVl aaykW7daqadaqaamaalaaabaGaaGymaaqaaiaad6gadaWgaaWcbaGa aG4maaqabaaaaOGaeyOeI0YaaSaaaeaacaaIXaaabaGaamOtaaaaai aawIcacaGLPaaacaWGtbWaa0baaSqaaiaadMhadaWgaaadbaGaaGOm aaqabaWccqGHsislcaWG5bWaaSbaaWqaaiaaigdaaeqaaSGaaGzaVl aaiYcacaaMc8UaamyvaaqaaiaaikdaaaaakeaaaeaacaaI9aGaaGjb VlaaykW7daqadaqaamaalaaabaGaaGymaaqaaiaad6gadaWgaaWcba GaaG4maaqabaaaaOGaeyOeI0YaaSaaaeaacaaIXaaabaGaamOtaaaa aiaawIcacaGLPaaadaqadaqaaiaadofadaqhaaWcbaGaamyEamaaBa aameaacaaIYaaabeaaliaaygW7caaISaGaaGPaVlaadwfaaeaacaaI YaaaaOGaey4kaSIaam4uamaaDaaaleaacaWG5bWaaSbaaWqaaiaaig daaeqaaSGaaGzaVlaaiYcacaaMc8UaamyvaaqaaiaaikdaaaGccqGH sislcaaIYaGaam4uamaaBaaaleaacaWG5bWaaSbaaWqaaiaaigdaae qaaSGaamyEamaaBaaameaacaaIYaaabeaaliaaygW7caaISaGaaGPa VlaadwfaaeqaaaGccaGLOaGaayzkaaGaaGOlaaaaaaa@848A@

Also, since E ( y ¯ 2, s 2 y ¯ 2, s 3 | s 2 ) = 0 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGfbGaaGjcVlaayIW7daqadaqaai qadMhagaqeamaaBaaaleaacaaIYaGaaGilaiaaykW7caWGZbWaaSba aWqaaiaaikdacqGHIaYTaeqaaaWcbeaakiabgkHiTiqadMhagaqeam aaBaaaleaacaaIYaGaaGilaiaaykW7caWGZbWaaSbaaWqaaiaaioda aeqaaaWcbeaakmaaeeaabaGaaGPaVlaadohadaWgaaWcbaGaaGOmaa qabaaakiaawEa7aaGaayjkaiaawMcaaiaai2dacaaIWaGaaiilaaaa @4D7D@ we have

V ( y ¯ 2, s 2 y ¯ 2, s 3 ) = EV ( y ¯ 2, s 2 y ¯ 2, s 3 | s 2 ) , = EV ( n 2 n 2 y ¯ 2, s 2 n 3 n 2 y ¯ 2, s 3 y ¯ 2, s 3 | s 2 ) = ( 1 + n 3 n 2 ) 2 EV ( y ¯ 2, s 3 | s 2 ) = ( 1 + n 3 n 2 ) 2 ( 1 n 3 1 n 2 ) S y 2 , U 2 = n 2 n 3 ( n 2 n 3 ) S y 2 , U 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaafaqaaeqbcaaaaeaacaWGwbGaaGjcVl aayIW7daqadaqaaiqadMhagaqeamaaBaaaleaacaaIYaGaaGilaiaa ykW7caWGZbWaaSbaaWqaaiaaikdacqGHIaYTaeqaaaWcbeaakiabgk HiTiqadMhagaqeamaaBaaaleaacaaIYaGaaGilaiaaykW7caWGZbWa aSbaaWqaaiaaiodaaeqaaaWcbeaaaOGaayjkaiaawMcaaaqaaiaai2 dacaaMe8UaaGPaVlaabweacaqGwbGaaGjcVlaayIW7daqadaqaaiqa dMhagaqeamaaBaaaleaacaaIYaGaaGilaiaaykW7caWGZbWaaSbaaW qaaiaaikdacqGHIaYTaeqaaaWcbeaakiabgkHiTiqadMhagaqeamaa BaaaleaacaaIYaGaaGilaiaaykW7caWGZbWaaSbaaWqaaiaaiodaae qaaaWcbeaakmaaeeaabaGaaGPaVlaadohadaWgaaWcbaGaaGOmaaqa baaakiaawEa7aaGaayjkaiaawMcaaiaaiYcaaeaaaeaacaaI9aGaaG jbVlaaykW7caqGfbGaaeOvaiaayIW7caaMi8+aaeWaaeaadaWcaaqa aiaad6gadaWgaaWcbaGaaGOmaaqabaaakeaacaWGUbWaaSbaaSqaai aaikdacqGHIaYTaeqaaaaakiqadMhagaqeamaaBaaaleaacaaIYaGa aGilaiaaykW7caWGZbWaaSbaaWqaaiaaikdaaeqaaaWcbeaakiabgk HiTmaalaaabaGaamOBamaaBaaaleaacaaIZaaabeaaaOqaaiaad6ga daWgaaWcbaGaaGOmaiabgkci3cqabaaaaOGabmyEayaaraWaaSbaaS qaaiaaikdacaaISaGaaGPaVlaadohadaWgaaadbaGaaG4maaqabaaa leqaaOGaeyOeI0IabmyEayaaraWaaSbaaSqaaiaaikdacaaISaGaaG PaVlaadohadaWgaaadbaGaaG4maaqabaaaleqaaOWaaqqaaeaacaaM c8Uaam4CamaaBaaaleaacaaIYaaabeaaaOGaay5bSdaacaGLOaGaay zkaaaabaaabaGaaGypaiaaysW7caaMc8+aaeWaaeaacaaIXaGaey4k aSYaaSaaaeaacaWGUbWaaSbaaSqaaiaaiodaaeqaaaGcbaGaamOBam aaBaaaleaacaaIYaGaeyOiGClabeaaaaaakiaawIcacaGLPaaadaah aaWcbeqaaiaaikdaaaGccaqGfbGaaeOvaiaayIW7caaMi8+aaeWaae aaceWG5bGbaebadaWgaaWcbaGaaGOmaiaaiYcacaaMc8Uaam4Camaa BaaameaacaaIZaaabeaaaSqabaGcdaabbaqaaiaaykW7caWGZbWaaS baaSqaaiaaikdaaeqaaaGccaGLhWoaaiaawIcacaGLPaaaaeaaaeaa caaI9aGaaGjbVlaaykW7daqadaqaaiaaigdacqGHRaWkdaWcaaqaai aad6gadaWgaaWcbaGaaG4maaqabaaakeaacaWGUbWaaSbaaSqaaiaa ikdacqGHIaYTaeqaaaaaaOGaayjkaiaawMcaamaaCaaaleqabaGaaG OmaaaakmaabmaabaWaaSaaaeaacaaIXaaabaGaamOBamaaBaaaleaa caaIZaaabeaaaaGccqGHsisldaWcaaqaaiaaigdaaeaacaWGUbWaaS baaSqaaiaaikdaaeqaaaaaaOGaayjkaiaawMcaaiaadofadaqhaaWc baGaamyEamaaBaaameaacaaIYaaabeaaliaaygW7caaISaGaaGPaVl aadwfaaeaacaaIYaaaaaGcbaaabaGaaGypaiaaysW7caaMc8+aaSaa aeaacaWGUbWaaSbaaSqaaiaaikdaaeqaaaGcbaGaamOBamaaBaaale aacaaIZaaabeaakmaabmaabaGaamOBamaaBaaaleaacaaIYaaabeaa kiabgkHiTiaad6gadaWgaaWcbaGaaG4maaqabaaakiaawIcacaGLPa aaaaGaam4uamaaDaaaleaacaWG5bWaaSbaaWqaaiaaikdaaeqaaSGa aGzaVlaaiYcacaaMc8Uaamyvaaqaaiaaikdaaaaaaaaa@E667@

and

Cov ( y ¯ 2, s 2 y ¯ 2, s 3 , y ¯ 2, s 3 y ¯ 1, s 3 ) = ECov ( y ¯ 2, s 2 y ¯ 2, s 3 , y ¯ 2, s 3 y ¯ 1, s 3 | s 2 ) = ECov ( n 2 n 2 y ¯ 2, s 2 n 3 n 2 y ¯ 2, s 3 y ¯ 2, s 3 , y ¯ 2, s 3 y ¯ 1, s 3 | s 2 ) = ( 1 + n 3 n 2 ) ECov ( y ¯ 2, s 3 , y ¯ 2, s 3 y ¯ 1, s 3 | s 2 ) = ( 1 + n 3 n 2 ) ( 1 n 3 1 n 2 ) ( S y 2 , U 2 S y 1 y 2 , U ) = 1 n 3 ( S y 2 , U 2 S y 1 y 2 , U ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaafaqaaeqbcaaaaeaacaqGdbGaae4Bai aabAhacaaMi8UaaGjcVpaabmaabaGabmyEayaaraWaaSbaaSqaaiaa ikdacaaISaGaaGPaVlaadohadaWgaaadbaGaaGOmaiabgkci3cqaba aaleqaaOGaeyOeI0IabmyEayaaraWaaSbaaSqaaiaaikdacaaISaGa aGPaVlaadohadaWgaaadbaGaaG4maaqabaaaleqaaOGaaGzaVlaacY cacaaMc8UabmyEayaaraWaaSbaaSqaaiaaikdacaaISaGaaGPaVlaa dohadaWgaaadbaGaaG4maaqabaaaleqaaOGaeyOeI0IabmyEayaara WaaSbaaSqaaiaaigdacaaISaGaaGPaVlaadohadaWgaaadbaGaaG4m aaqabaaaleqaaaGccaGLOaGaayzkaaaabaGaaGypaiaaysW7caaMc8 UaaeyraiaaboeacaqGVbGaaeODaiaayIW7caaMi8+aaeWaaeaaceWG 5bGbaebadaWgaaWcbaGaaGOmaiaaiYcacaaMc8Uaam4CamaaBaaame aacaaIYaGaeyOiGClabeaaaSqabaGccqGHsislceWG5bGbaebadaWg aaWcbaGaaGOmaiaaiYcacaaMc8Uaam4CamaaBaaameaacaaIZaaabe aaaSqabaGccaaMb8UaaiilaiaaykW7ceWG5bGbaebadaWgaaWcbaGa aGOmaiaaiYcacaaMc8Uaam4CamaaBaaameaacaaIZaaabeaaaSqaba GccqGHsislceWG5bGbaebadaWgaaWcbaGaaGymaiaaiYcacaaMc8Ua am4CamaaBaaameaacaaIZaaabeaaaSqabaGcdaabbaqaaiaaykW7ca WGZbWaaSbaaSqaaiaaikdaaeqaaaGccaGLhWoaaiaawIcacaGLPaaa aeaaaeaacaaI9aGaaGjbVlaaykW7caqGfbGaae4qaiaab+gacaqG2b GaaGjcVlaayIW7daqadaqaamaalaaabaGaamOBamaaBaaaleaacaaI YaaabeaaaOqaaiaad6gadaWgaaWcbaGaaGOmaiabgkci3cqabaaaaO GabmyEayaaraWaaSbaaSqaaiaaikdacaaISaGaaGPaVlaadohadaWg aaadbaGaaGOmaaqabaaaleqaaOGaeyOeI0YaaSaaaeaacaWGUbWaaS baaSqaaiaaiodaaeqaaaGcbaGaamOBamaaBaaaleaacaaIYaGaeyOi GClabeaaaaGcceWG5bGbaebadaWgaaWcbaGaaGOmaiaaiYcacaaMc8 Uaam4CamaaBaaameaacaaIZaaabeaaaSqabaGccqGHsislceWG5bGb aebadaWgaaWcbaGaaGOmaiaaiYcacaaMc8Uaam4CamaaBaaameaaca aIZaaabeaaaSqabaGccaaMb8UaaiilaiaaykW7ceWG5bGbaebadaWg aaWcbaGaaGOmaiaaiYcacaaMc8Uaam4CamaaBaaameaacaaIZaaabe aaaSqabaGccqGHsislceWG5bGbaebadaWgaaWcbaGaaGymaiaaiYca caaMc8Uaam4CamaaBaaameaacaaIZaaabeaaaSqabaGcdaabbaqaai aaykW7caWGZbWaaSbaaSqaaiaaikdaaeqaaaGccaGLhWoaaiaawIca caGLPaaaaeaaaeaacaaI9aGaaGjbVlaaykW7cqGHsisldaqadaqaai aaigdacqGHRaWkdaWcaaqaaiaad6gadaWgaaWcbaGaaG4maaqabaaa keaacaWGUbWaaSbaaSqaaiaaikdacqGHIaYTaeqaaaaaaOGaayjkai aawMcaaiaabweacaqGdbGaae4BaiaabAhacaaMi8UaaGjcVpaabmaa baGabmyEayaaraWaaSbaaSqaaiaaikdacaaISaGaaGPaVlaadohada WgaaadbaGaaG4maaqabaaaleqaaOGaaGzaVlaacYcacaaMc8UabmyE ayaaraWaaSbaaSqaaiaaikdacaaISaGaaGPaVlaadohadaWgaaadba GaaG4maaqabaaaleqaaOGaeyOeI0IabmyEayaaraWaaSbaaSqaaiaa igdacaaISaGaaGPaVlaadohadaWgaaadbaGaaG4maaqabaaaleqaaO GaaGzaVpaaeeaabaGaaGPaVlaadohadaWgaaWcbaGaaGOmaaqabaaa kiaawEa7aaGaayjkaiaawMcaaaqaaaqaaiaai2dacaaMe8UaaGPaVp aabmaabaGaaGymaiabgUcaRmaalaaabaGaamOBamaaBaaaleaacaaI ZaaabeaaaOqaaiaad6gadaWgaaWcbaGaaGOmaiabgkci3cqabaaaaa GccaGLOaGaayzkaaWaaeWaaeaadaWcaaqaaiaaigdaaeaacaWGUbWa aSbaaSqaaiaaiodaaeqaaaaakiabgkHiTmaalaaabaGaaGymaaqaai aad6gadaWgaaWcbaGaaGOmaaqabaaaaaGccaGLOaGaayzkaaWaaeWa aeaacaWGtbWaa0baaSqaaiaadMhadaWgaaadbaGaaGOmaaqabaWcca aMb8UaaGilaiaaykW7caWGvbaabaGaaGOmaaaakiabgkHiTiaadofa daWgaaWcbaGaamyEamaaBaaameaacaaIXaaabeaaliaadMhadaWgaa adbaGaaGOmaaqabaWccaaMb8UaaGilaiaaykW7caWGvbaabeaaaOGa ayjkaiaawMcaaaqaaaqaaiaai2dacaaMe8UaaGPaVlabgkHiTmaala aabaGaaGymaaqaaiaad6gadaWgaaWcbaGaaG4maaqabaaaaOWaaeWa aeaacaWGtbWaa0baaSqaaiaadMhadaWgaaadbaGaaGOmaaqabaWcca aMb8UaaGilaiaaykW7caWGvbaabaGaaGOmaaaakiabgkHiTiaadofa daWgaaWcbaGaamyEamaaBaaameaacaaIXaaabeaaliaadMhadaWgaa adbaGaaGOmaaqabaWccaaMb8UaaGilaiaaykW7caWGvbaabeaaaOGa ayjkaiaawMcaaiaac6caaaaaaa@446A@

Similar arguments lead to

V( y ¯ 1, s 1 y ¯ 1, s 3 ) = n 1 n 3 ( n 1 n 3 ) S y 1 ,U 2 , Cov( y ¯ 1, s 1 y ¯ 1, s 3 , y ¯ 2, s 3 y ¯ 1, s 3 ) = 1 n 3 ( S y 1 ,U 2 S y 1 y 2 ,U ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaafaqadeWadaaabaGaaGjbVlaaysW7ca aMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8UaamOvaiaa yIW7caaMi8+aaeWaaeaaceWG5bGbaebadaWgaaWcbaGaaGymaiaacY cacaaMc8Uaam4CamaaBaaameaacaaIXaGaeyOiGClabeaaaSqabaGc cqGHsislceWG5bGbaebadaWgaaWcbaGaaGymaiaacYcacaaMc8Uaam 4CamaaBaaameaacaaIZaaabeaaaSqabaaakiaawIcacaGLPaaaaeaa cqGH9aqpaeaadaWcaaqaaiaad6gadaWgaaWcbaGaaGymaaqabaaake aacaWGUbWaaSbaaSqaaiaaiodaaeqaaOWaaeWaaeaacaWGUbWaaSba aSqaaiaaigdaaeqaaOGaeyOeI0IaamOBamaaBaaaleaacaaIZaaabe aaaOGaayjkaiaawMcaaaaacaWGtbWaa0baaSqaaiaadMhadaWgaaad baGaaGymaaqabaWccaaMb8UaaGilaiaaykW7caWGvbGaaGzaVlaayg W7aeaacaaIYaaaaOGaaiilaiaaygW7caaMb8UaaGzaVdqaaiaaboea caqGVbGaaeODaiaayIW7caaMi8+aaeWaaeaaceWG5bGbaebadaWgaa WcbaGaaGymaiaacYcacaaMc8Uaam4CamaaBaaameaacaaIXaGaeyOi GClabeaaaSqabaGccqGHsislceWG5bGbaebadaWgaaWcbaGaaGymai aacYcacaaMc8Uaam4CamaaBaaameaacaaIZaaabeaaaSqabaGccaaM b8UaaiilaiaaykW7ceWG5bGbaebadaWgaaWcbaGaaGOmaiaacYcaca aMc8Uaam4CamaaBaaameaacaaIZaaabeaaaSqabaGccqGHsislceWG 5bGbaebadaWgaaWcbaGaaGymaiaacYcacaaMc8Uaam4CamaaBaaame aacaaIZaaabeaaaSqabaaakiaawIcacaGLPaaaaeaacqGH9aqpaeaa daWcaaqaaiaaigdaaeaacaWGUbWaaSbaaSqaaiaaiodaaeqaaaaakm aabmaabaGaam4uamaaDaaaleaacaWG5bWaaSbaaWqaaiaaigdaaeqa aSGaaGzaVlaaiYcacaaMc8UaamyvaaqaaiaaikdaaaGccqGHsislca WGtbWaaSbaaSqaaiaadMhadaWgaaadbaGaaGymaaqabaWccaWG5bWa aSbaaWqaaiaaikdaaeqaaSGaaGzaVlaaiYcacaaMc8Uaamyvaaqaba aakiaawIcacaGLPaaacaGGUaaabaaabaaabaaaaaaa@B046@

Finally, we consider Cov ( y ¯ 2 , s 2 y ¯ 2 , s 3 , y ¯ 1 , s 1 y ¯ 1 , s 3 ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaqGdbGaae4BaiaabAhacaaMi8UaaG jcVpaabmaabaGabmyEayaaraWaaSbaaSqaaiaaikdacaGGSaGaaGPa VlaadohadaWgaaadbaGaaGOmaiabgkci3cqabaaaleqaaOGaeyOeI0 IabmyEayaaraWaaSbaaSqaaiaaikdacaGGSaGaaGPaVlaadohadaWg aaadbaGaaG4maaqabaaaleqaaOGaaGzaVlaacYcacaaMc8UabmyEay aaraWaaSbaaSqaaiaaigdacaGGSaGaaGPaVlaadohadaWgaaadbaGa aGymaiabgkci3cqabaaaleqaaOGaeyOeI0IabmyEayaaraWaaSbaaS qaaiaaigdacaGGSaGaaGPaVlaadohadaWgaaadbaGaaG4maaqabaaa leqaaaGccaGLOaGaayzkaaGaaiOlaaaa@5B63@ We first compute Cov ( y ¯ 2 , s 2 , y ¯ 1 , s 1 ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaqGdbGaae4BaiaabAhacaaMi8UaaG jcVpaabmaabaGabmyEayaaraWaaSbaaSqaaiaaikdacaGGSaGaaGPa VlaadohadaWgaaadbaGaaGOmaiabgkci3cqabaaaleqaaOGaaGzaVl aacYcacaaMc8UabmyEayaaraWaaSbaaSqaaiaaigdacaGGSaGaaGPa VlaadohadaWgaaadbaGaaGymaiabgkci3cqabaaaleqaaaGccaGLOa GaayzkaaGaaiilaaaa@4D28@ which may be written as

Cov ( y ¯ 2, s 2 , y ¯ 1, s 1 ) = Cov ( E ( y ¯ 2, s 2 | s 1 ) , E ( y ¯ 1, s 1 | s 1 ) ) = Cov ( y ¯ 2, U \ s 1 , y ¯ 1, s 1 ) = Cov ( N N n 1 y ¯ 2, U n 1 N n 1 y ¯ 2, s 1 , y ¯ 1, s 1 ) = n 1 N n 1 Cov ( y ¯ 2, s 1 , y ¯ 1, s 1 ) = n 1 N n 1 ( 1 n 1 1 N ) S y 1 y 2 , U = 1 N S y 1 y 2 , U . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaafaqaaeGbcaaaaeaacaqGdbGaae4Bai aabAhacaaMi8UaaGjcVpaabmaabaGabmyEayaaraWaaSbaaSqaaiaa ikdacaaISaGaaGPaVlaadohadaWgaaadbaGaaGOmaiabgkci3cqaba aaleqaaOGaaGzaVlaaiYcacaaMc8UabmyEayaaraWaaSbaaSqaaiaa igdacaaISaGaaGPaVlaadohadaWgaaadbaGaaGymaiabgkci3cqaba aaleqaaaGccaGLOaGaayzkaaaabaGaaGypaiaaysW7caaMc8Uaae4q aiaab+gacaqG2bGaaGjcVlaayIW7daqadaqaaiaadweadaqadaqaai qadMhagaqeamaaBaaaleaacaaIYaGaaGilaiaaykW7caWGZbWaaSba aWqaaiaaikdacqGHIaYTaeqaaaWcbeaakmaaeeaabaGaaGPaVlaado hadaWgaaWcbaGaaGymaiabgkci3cqabaaakiaawEa7aaGaayjkaiaa wMcaaiaayIW7caaISaGaaGjbVlaadweacaaMi8UaaGjcVpaabmaaba GabmyEayaaraWaaSbaaSqaaiaaigdacaaISaGaaGPaVlaadohadaWg aaadbaGaaGymaiabgkci3cqabaaaleqaaOWaaqqaaeaacaaMc8Uaam 4CamaaBaaaleaacaaIXaGaeyOiGClabeaaaOGaay5bSdaacaGLOaGa ayzkaaaacaGLOaGaayzkaaaabaaabaGaaGypaiaaysW7caaMc8Uaae 4qaiaab+gacaqG2bGaaGjcVlaayIW7daqadaqaaiqadMhagaqeamaa BaaaleaacaaIYaGaaGilaiaaykW7caWGvbGaaiixaiaadohadaWgaa adbaGaaGymaiabgkci3cqabaaaleqaaOGaaGzaVlaaiYcacaaMe8Ua bmyEayaaraWaaSbaaSqaaiaaigdacaaISaGaaGPaVlaadohadaWgaa adbaGaaGymaiabgkci3cqabaaaleqaaaGccaGLOaGaayzkaaaabaaa baGaaGypaiaaysW7caaMc8Uaae4qaiaab+gacaqG2bGaaGjcVlaayI W7daqadaqaamaalaaabaGaamOtaaqaaiaad6eacqGHsislcaWGUbWa aSbaaSqaaiaaigdacqGHIaYTaeqaaaaakiqadMhagaqeamaaBaaale aacaaIYaGaaGilaiaaykW7caWGvbaabeaakiabgkHiTmaalaaabaGa amOBamaaBaaaleaacaaIXaGaeyOiGClabeaaaOqaaiaad6eacqGHsi slcaWGUbWaaSbaaSqaaiaaigdacqGHIaYTaeqaaaaakiqadMhagaqe amaaBaaaleaacaaIYaGaaGilaiaaykW7caWGZbWaaSbaaWqaaiaaig dacqGHIaYTaeqaaaWcbeaakiaaygW7caaISaGaaGjbVlqadMhagaqe amaaBaaaleaacaaIXaGaaGilaiaaykW7caWGZbWaaSbaaWqaaiaaig dacqGHIaYTaeqaaaWcbeaaaOGaayjkaiaawMcaaaqaaaqaaiaai2da caaMe8UaaGPaVlabgkHiTmaalaaabaGaamOBamaaBaaaleaacaaIXa GaeyOiGClabeaaaOqaaiaad6eacqGHsislcaWGUbWaaSbaaSqaaiaa igdacqGHIaYTaeqaaaaakiaaboeacaqGVbGaaeODaiaayIW7caaMi8 +aaeWaaeaaceWG5bGbaebadaWgaaWcbaGaaGOmaiaaiYcacaaMc8Ua am4CamaaBaaameaacaaIXaGaeyOiGClabeaaaSqabaGccaaISaGabm yEayaaraWaaSbaaSqaaiaaigdacaaISaGaaGPaVlaadohadaWgaaad baGaaGymaiabgkci3cqabaaaleqaaaGccaGLOaGaayzkaaaabaaaba GaaGypaiaaysW7caaMc8UaeyOeI0YaaSaaaeaacaWGUbWaaSbaaSqa aiaaigdacqGHIaYTaeqaaaGcbaGaamOtaiabgkHiTiaad6gadaWgaa WcbaGaaGymaiabgkci3cqabaaaaOWaaeWaaeaadaWcaaqaaiaaigda aeaacaWGUbWaaSbaaSqaaiaaigdacqGHIaYTaeqaaaaakiabgkHiTm aalaaabaGaaGymaaqaaiaad6eaaaaacaGLOaGaayzkaaGaam4uamaa BaaaleaacaWG5bWaaSbaaWqaaiaaigdaaeqaaSGaamyEamaaBaaame aacaaIYaaabeaaliaaygW7caaISaGaaGPaVlaadwfaaeqaaaGcbaaa baGaaGypaiaaysW7caaMc8UaeyOeI0YaaSaaaeaacaaIXaaabaGaam OtaaaacaWGtbWaaSbaaSqaaiaadMhadaWgaaadbaGaaGymaaqabaWc caWG5bWaaSbaaWqaaiaaikdaaeqaaSGaaGzaVlaaiYcacaaMc8Uaam yvaaqabaGccaaMb8UaaGOlaaaaaaa@29F0@

Similar arguments lead to

Cov ( y ¯ 2, s 2 , y ¯ 1, s 3 ) = Cov ( y ¯ 2, s 3 , y ¯ 1, s 1 ) = 1 N S y 1 y 2 , U . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaqGdbGaae4BaiaabAhacaaMi8UaaG jcVpaabmaabaGabmyEayaaraWaaSbaaSqaaiaaikdacaaISaGaaGPa VlaadohadaWgaaadbaGaaGOmaiabgkci3cqabaaaleqaaOGaaGzaVl aaiYcacaaMe8UabmyEayaaraWaaSbaaSqaaiaaigdacaaISaGaaGPa VlaadohadaWgaaadbaGaaG4maaqabaaaleqaaaGccaGLOaGaayzkaa GaaGjbVlaaykW7caaI9aGaaGjbVlaaykW7caqGdbGaae4BaiaabAha caaMi8UaaGjcVpaabmaabaGabmyEayaaraWaaSbaaSqaaiaaikdaca aISaGaaGPaVlaadohadaWgaaadbaGaaG4maaqabaaaleqaaOGaaGza VlaaiYcacaaMe8UabmyEayaaraWaaSbaaSqaaiaaigdacaaISaGaaG PaVlaadohadaWgaaadbaGaaGymaiabgkci3cqabaaaleqaaaGccaGL OaGaayzkaaGaaGypaiabgkHiTmaalaaabaGaaGymaaqaaiaad6eaaa Gaam4uamaaBaaaleaacaWG5bWaaSbaaWqaaiaaigdaaeqaaSGaamyE amaaBaaameaacaaIYaaabeaaliaaygW7caaISaGaaGPaVlaadwfaae qaaOGaaGOlaaaa@78B6@

We obtain

Cov ( y ¯ 2, s 2 y ¯ 2, s 3 , y ¯ 1, s 1 y ¯ 1, s 3 ) = 1 N S y 1 y 2 , U + Cov ( y ¯ 2, s 3 , y ¯ 1, s 3 ) = 1 N S y 1 y 2 , U + ( 1 n 3 1 N ) S y 1 y 2 , U = 1 n 3 S y 1 y 2 , U . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaafaqaaeWacaaabaGaae4qaiaab+gaca qG2bGaaGjcVlaayIW7daqadaqaaiqadMhagaqeamaaBaaaleaacaaI YaGaaGilaiaaykW7caWGZbWaaSbaaWqaaiaaikdacqGHIaYTaeqaaa WcbeaakiabgkHiTiqadMhagaqeamaaBaaaleaacaaIYaGaaGilaiaa ykW7caWGZbWaaSbaaWqaaiaaiodaaeqaaaWcbeaakiaaygW7caaISa GabmyEayaaraWaaSbaaSqaaiaaigdacaaISaGaaGPaVlaadohadaWg aaadbaGaaGymaiabgkci3cqabaaaleqaaOGaeyOeI0IabmyEayaara WaaSbaaSqaaiaaigdacaaISaGaaGPaVlaadohadaWgaaadbaGaaG4m aaqabaaaleqaaaGccaGLOaGaayzkaaaabaGaaGypaiaaysW7caaMc8 +aaSaaaeaacaaIXaaabaGaamOtaaaacaWGtbWaaSbaaSqaaiaadMha daWgaaadbaGaaGymaaqabaWccaWG5bWaaSbaaWqaaiaaikdaaeqaaS GaaGzaVlaaiYcacaaMc8UaamyvaaqabaGccqGHRaWkcaqGdbGaae4B aiaabAhacaaMi8UaaGjcVpaabmaabaGabmyEayaaraWaaSbaaSqaai aaikdacaaISaGaaGPaVlaadohadaWgaaadbaGaaG4maaqabaaaleqa aOGaaGzaVlaaiYcaceWG5bGbaebadaWgaaWcbaGaaGymaiaaiYcaca aMc8Uaam4CamaaBaaameaacaaIZaaabeaaaSqabaaakiaawIcacaGL PaaaaeaaaeaacaaI9aGaaGjbVlaaykW7daWcaaqaaiaaigdaaeaaca WGobaaaiaadofadaWgaaWcbaGaamyEamaaBaaameaacaaIXaaabeaa liaadMhadaWgaaadbaGaaGOmaaqabaWccaaMb8UaaGilaiaaykW7ca WGvbaabeaakiabgUcaRmaabmaabaWaaSaaaeaacaaIXaaabaGaamOB amaaBaaaleaacaaIZaaabeaaaaGccqGHsisldaWcaaqaaiaaigdaae aacaWGobaaaaGaayjkaiaawMcaaiaadofadaWgaaWcbaGaamyEamaa BaaameaacaaIXaaabeaaliaadMhadaWgaaadbaGaaGOmaaqabaWcca aMb8UaaGilaiaaykW7caWGvbaabeaaaOqaaaqaaiaai2dacaaMe8Ua aGPaVpaalaaabaGaaGymaaqaaiaad6gadaWgaaWcbaGaaG4maaqaba aaaOGaam4uamaaBaaaleaacaWG5bWaaSbaaWqaaiaaigdaaeqaaSGa amyEamaaBaaameaacaaIYaaabeaaliaaygW7caaISaGaaGPaVlaadw faaeqaaOGaaGzaVlaai6caaaaaaa@B209@

In summary, we obtain

V ( X ) = ( n 2 n 3 ( n 2 n 3 ) S y 2 , U 2 1 n 3 S y 1 y 2 , U 1 n 3 ( S y 2 , U 2 S y 1 y 2 , U ) n 1 n 3 ( n 1 n 3 ) S y 1 , U 2 1 n 3 ( S y 1 , U 2 S y 1 y 2 , U ) ( 1 n 3 1 N ) ( S y 2 , U 2 + S y 1 , U 2 2 S y 1 y 2 , U ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFr0xc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peuj0lXxdrpe0db9Wqpepic9qr=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGwbWaaeWaaeaacaWGybaacaGLOa GaayzkaaGaaGjbVlaaykW7caaI9aGaaGjbVlaaykW7daqadaqaauaa beqadmaaaeaadaWcaaqaaiaad6gadaWgaaWcbaGaaGOmaaqabaaake aacaWGUbWaaSbaaSqaaiaaiodaaeqaaOWaaeWaaeaacaWGUbWaaSba aSqaaiaaikdaaeqaaOGaeyOeI0IaamOBamaaBaaaleaacaaIZaaabe aaaOGaayjkaiaawMcaaaaacaWGtbWaa0baaSqaaiaadMhadaWgaaad baGaaGOmaaqabaWccaaMb8UaaGilaiaaykW7caWGvbaabaGaaGOmaa aaaOqaamaalaaabaGaaGymaaqaaiaad6gadaWgaaWcbaGaaG4maaqa baaaaOGaam4uamaaBaaaleaacaWG5bWaaSbaaWqaaiaaigdaaeqaaS GaamyEamaaBaaameaacaaIYaaabeaaliaaygW7caaISaGaaGPaVlaa dwfaaeqaaaGcbaGaeyOeI0YaaSaaaeaacaaIXaaabaGaamOBamaaBa aaleaacaaIZaaabeaaaaGcdaqadaqaaiaadofadaqhaaWcbaGaamyE amaaBaaameaacaaIYaaabeaaliaaygW7caaISaGaaGPaVlaadwfaae aacaaIYaaaaOGaeyOeI0Iaam4uamaaBaaaleaacaWG5bWaaSbaaWqa aiaaigdaaeqaaSGaamyEamaaBaaameaacaaIYaaabeaaliaaygW7ca aISaGaaGPaVlaadwfaaeqaaaGccaGLOaGaayzkaaaabaaabaWaaSaa aeaacaWGUbWaaSbaaSqaaiaaigdaaeqaaaGcbaGaamOBamaaBaaale aacaaIZaaabeaakmaabmaabaGaamOBamaaBaaaleaacaaIXaaabeaa kiabgkHiTiaad6gadaWgaaWcbaGaaG4maaqabaaakiaawIcacaGLPa aaaaGaam4uamaaDaaaleaacaWG5bWaaSbaaWqaaiaaigdaaeqaaSGa aGzaVlaaiYcacaaMc8UaamyvaaqaaiaaikdaaaaakeaadaWcaaqaai aaigdaaeaacaWGUbWaaSbaaSqaaiaaiodaaeqaaaaakmaabmaabaGa am4uamaaDaaaleaacaWG5bWaaSbaaWqaaiaaigdaaeqaaSGaaGzaVl aaiYcacaaMc8UaamyvaaqaaiaaikdaaaGccqGHsislcaWGtbWaaSba aSqaaiaadMhadaWgaaadbaGaaGymaaqabaWccaWG5bWaaSbaaWqaai aaikdaaeqaaSGaaGzaVlaaiYcacaaMc8UaamyvaaqabaaakiaawIca caGLPaaaaeaaaeaaaeaadaqadaqaamaalaaabaGaaGymaaqaaiaad6 gadaWgaaWcbaGaaG4maaqabaaaaOGaeyOeI0YaaSaaaeaacaaIXaaa baGaamOtaaaaaiaawIcacaGLPaaadaqadaqaaiaadofadaqhaaWcba GaamyEamaaBaaameaacaaIYaaabeaaliaaygW7caaISaGaaGPaVlaa dwfaaeaacaaIYaaaaOGaey4kaSIaam4uamaaDaaaleaacaWG5bWaaS baaWqaaiaaigdaaeqaaSGaaGzaVlaaiYcacaaMc8Uaamyvaaqaaiaa ikdaaaGccqGHsislcaaIYaGaam4uamaaBaaaleaacaWG5bWaaSbaaW qaaiaaigdaaeqaaSGaamyEamaaBaaameaacaaIYaaabeaaliaaygW7 caaISaGaaGPaVlaadwfaaeqaaaGccaGLOaGaayzkaaaaaaGaayjkai aawMcaaaaa@C364@

which, along with (A.1), leads to (3.6).

References

Antal, E., and Tillé, Y. (2011). A direct bootstrap method for complex sampling designs from a finite population. Journal of the American Statistical Association, 106, 534-543.

Barrett, G.F., and Donald, S.G. (2009). Statistical inference with generalized Gini indices of inequality, poverty, and welfare. Journal of Business and Economic Statistics, 27, 1-17.

Beaumont, J.-F., and Patak, Z. (2012). On the generalized bootstrap for sample surveys with special attention to Poisson sampling. International Statistical Review, 80, 127-148.

Berger, Y.G. (2004). Variance estimation for measures of change in probability sampling. Canadian Journal of Statistics, 32, 451-467.

Berger, Y.G. (2008). A note on the asymptotic equivalence of jackknife and linearization variance estimation for the Gini coefficient. Journal of Official Statistics, 24, 541-555.

Bertail, P., and Combris, P. (1997). Bootstrap généralisé d’un sondage. Annales d’Économie et de Statistique, 46, 49-83.

Bhattacharya, D. (2007). Inference on inequality from household survey data. Journal of Econometrics, 137, 674-707.

Bickel, P.J., and Freedman, D.A. (1984). Asymptotic normality and the bootstrap in stratified sampling. The Annals of Statistics, 12, 470-482.

Booth, J.G., Butler, R.W. and Hall, P. (1994). Bootstrap methods for finite populations. Journal of the American Statistical Association, 89, 1282-1289.

Brändén, P., and Jonasson, J. (2012). Negative dependence in sampling. Scandinavian Journal of Statistics, 39, 830-838.

Campbell, C. (1980). A different view of finite population estimation. Proceedings of the Survey Research Methods Section, American Statistical Association, 319-324.

Chao, M.-T., and Lo, S.-H. (1985). A Bootstrap method for finite population. Sankhyā, Series A, 47, 3, 399-405.

Chauvet, G. (2007). Méthodes de Bootstrap en population finie. Ph.D. dissertation, Université Rennes 2.

Chauvet, G. (2015). Coupling methods for multistage sampling. The Annals of Statistics, 43(6), 2484-2506.

Chen, J., and Rao, J.N.K. (2007). Asymptotic normality under two-phase sampling designs. Statistica Sinica, 17, 1047-1064.

Davison, A.C., and Hinkley, D.V. (1997). Bootstrap Methods and their Application. Cambridge University Press.

Davison, A.C., and Sardy, S. (2007). Resampling variance estimation in surveys with missing data. Journal of Official Statistics, 23, 3, 371-386.

Demnati, A., and Rao, J.N.K. (2004). Linearization variance estimators for survey data. Survey Methodology, 30, 1, 17-26. Paper available at https://www150.statcan.gc.ca/n1/pub/12-001-x/2004001/article/6991-eng.pdf.

Deville, J.-C. (1997). Estimation de la variance du coefficient de Gini mesurée par sondage. Actes des Journées de Méthodologie Statistique, Insee Méthodes.

Deville, J.-C. (1999). Variance estimation for complex statistics and estimators: Linearization and residual techniques. Survey Methodology, 25, 2, 193-203. Paper available at https://www150.statcan.gc.ca/n1/pub/12-001-x/1999002/article/4882-eng.pdf.

Druckman, A., and Jackson, T. (2008). Measuring resource inequalities: The concepts and methodology for an area-based Gini coefficient. Ecological Economics, 65, 242-252.

Gini, C. (1914). Sulla misura della concentrazione e della variabilità dei caratteri. Atti del Reale Istituto Veneto di Scienze Lettere ed Arti.

Glasser, G.J. (1962). Variance formulas for the mean difference and coefficient of concentration. Journal of the American Statistical Association, 57, 648-654.

Goga, C. (2003). Estimation de la variance dans les sondages à plusieurs échantillons et prise en compte de l’information auxiliaire par des modèles nonparamétriques. Ph.D. dissertation, Université Rennes 2.

Goga, C., and Ruiz-Gazen, A. (2014). Efficient estimation of nonlinear finite population parameters using nonparametrics. Journal of the Royal Statistical Society B, 76, 113-140.

Goga, C., Deville, J.-C. and Ruiz-Gazen, A. (2009). Composite estimation and linearization method for two-sample survey data. Biometrika, 96, 691-709.

Gordon, L. (1983). Successive sampling in large finite populations. Annals of Statistics, 11, 702-706.

Graczyk, P.P. (2007). Gini coefficient: A new way to express selectivity of kinase inhibitors against a family of Kinases. Journal of Medicinal Chemistry, 50, 5773-5779.

Gross, S.T. (1980). Median estimation in sample surveys. ASA Proceedings of Survey Research, 181-184.

Groves-Kirkby, C.J., Denman, A.R. and Phillips, P.S. (2009). Lorenz Curve and Gini coefficient: Novel tools for analysing seasonal variation of environmental radon gas. Journal of Environmental Management, 90, 2480-2487.

Hájek, J. (1960). Limiting distributions in simple random sampling from a finite population. Tud. Akad. Mat. Kutatò Int. Közl., 5, 361-374.

Hájek, J. (1961). Some extensions of the Wald-Wolfowitz-Noether theorem. Annals of Mathematical Statistics, 32, 506-523.

Hájek, J. (1964). Asymptotic theory of rejective sampling with varying probabilities from a finite population. Annals of Mathematical Statistics, 35, 1491-1523.

Isaki, C.T., and Fuller, W.A. (1982). Survey design under the regression superpopulation model. Journal of the American Statistical Association, 77, 89-96.

Karagiannis, E., and Kovačević, M.S. (2000). A method to calculate the jackknife variance estimator for the Gini coefficient. Oxford Bulletin of Economics and Statistics, 62, 119-122.

Kovačević, M.S., and Binder, D.A. (1997). Variance estimation for measures of income inequality and polarization - The estimating equation approach. Journal of Official Statistics, 13, 41-58.

Krewski, D., and Rao, J.N.K. (1981). Inference from stratified samples: Properties of the linearization, jackknife and balanced repeated replication methods. Annals of Statistics, 9, 1010-1019.

Lai, D., Huang, J., Risser, J.M. and Kapadia, A.S. (2008). Statistical properties of generalized Gini coefficient with application to health inequality measurement. Social Indicator Research, 87, 249-258.

Langel, M., and Tillé, Y. (2013). Variance estimation of the Gini index: Revisiting a result several times published. Journal of the Royal Statistical Society, Series A, 176, 521-540.

Lisker, T. (2008). Is the Gini coefficient a stable measure on galaxy structure? The Astrophysical Journal Supplement Series, 179, 319-325.

Navarro, V., Muntaner, C., Borrell, C., Benach, J., Quiroga, A., Rodríguez-Sanz, M., Vergès, N. and Pasarín, M.I. (2006). Politics and health outcomes. The Lancet, 18, 1033-1037.

Nygård, F., and Sandström, A. (1985). The estimation of the Gini and the entropy inequality parameters in finite populations. Journal of Official Statistics, 1, 4, 399-412.

Ohlsson, E. (1986). Asymptotic normality of the Rao-Hartley-Cochran estimator: An application of the martingale CLT. Scandinavian Journal of Statistics, 13, 17-28.

Ohlsson, E. (1989). Asymptotic normality for two-stage sampling from a finite population. Probability Theory and Related Fields, 81, 341-352.

Pires, A.M., and Branco, J.A. (2002). Partial influence functions. Journal of Multivariate Analysis, 83, 451-468.

Presnell, B., and Booth, J.G. (1994). Resampling Methods for Sample Surveys. Technical report.

Qin, Y., Rao, J.N.K. and Wu, C. (2010). Empirical likelihood confidence intervals for the Gini measure of income inequality. Economic Modelling, 27, 1429-1435.

Qualité, L., and Tillé, Y. (2008). Variance estimation of changes in repeated surveys and its application to the Swiss survey of value added. Survey Methodology, 34, 2, 173-181. Paper available at https://www150.statcan.gc.ca/n1/pub/12-001-x/2008002/article/10758-eng.pdf.

Rao, J.N.K., and Wu, C.F.J. (1988). Resampling inference with complex survey data. Journal of the American Statistical Association, 83, 231-241.

Reid, N. (1981). Influence functions for censored data. The Annals of Statistics, 9, 78-92.

Rosén, B. (1972). Asymptotic theory for successive sampling with varying probabilities without replacement. I, II. Annals of Mathematical Statistics, 43, 373-397, 748-776.

Saegusa, T., and Wellner, J.A. (2013). Weighted likelihood estimation under two-phase sampling. The Annals of Statistics, 41, 269-295.

Sandström, A., Wretman, J.H. and Waldèn, B. (1985). Variance estimators of the Gini coefficient - Simple random sampling. Metron, 43, 41-70.

Sandström, A., Wretman, J.H. and Waldèn, B. (1988). Variance estimators of the Gini coefficient - Probability sampling. Journal of Business and Economic Statistics, 6, 113-119.

Särndal, C.-E., Swensson, B. and Wretman, J.H. (1992). Model Assisted Survey Sampling. Springer-Verlag.

Sen, P.K. (1980). Limit theorems for an extended coupon collector’s problem and for successive subsampling with varying probabilities. Calcutta Statistical Association Bulletin, 29, 113-132.

Shao, J., and Tu, D. (1995). The Jackknife and the Bootstrap. Springer.

Sitter, R.R. (1992a). A resampling procedure for complex survey data. Journal of the American Statistical Association, 87, 755-765.

Sitter, R.R. (1992b). Comparing three bootstrap methods for survey data. Canadian Journal of Statistics, 20, 135-154.

Tam, S.M. (1984). On covariances from overlapping samples. The American Statistician, 38, 288-289.

Yitzhaki, S. (1991). Calculating jackknife variance estimators for parameters of the Gini method. Journal of Business and Economic Statistics, 9, 235-239.


Date modified: