Une note sur le concept d’invariance dans les plans d’échantillonnage à deux phases Section 2. Le concept d’invariance

Nous faisons la distinction entre le concept d’invariance forte, qui peut également être appelée invariance en loi, et celui d’invariance faible, qui peut également être appelée invariance en les deux premiers moments.

Définition 1. Un plan d’échantillonnage à deux phases est dit fortement invariant (ou invariant en loi) à condition que

F ( I 2 | I 1 ) = F ( I 2 ) ( 2.1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipu0de9LqFf0de9 vqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9=e0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaabm aabaWaaqGaaeaacaWHjbWaaSbaaSqaaiaaikdaaeqaaOGaaGPaVdGa ayjcSdGaaGjbVlaahMeadaWgaaWcbaGaaGymaaqabaaakiaawIcaca GLPaaacaaI9aGaamOramaabmaabaGaaCysamaaBaaaleaacaaIYaaa beaaaOGaayjkaiaawMcaaiaaywW7caaMf8UaaGzbVlaaywW7caaMf8 UaaiikaiaaikdacaGGUaGaaGymaiaacMcaaaa@4F5F@

Une implication de la définition 1 est que F ( I 1 , I 2 ) = F ( I 1 ) F ( I 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipu0de9LqFf0de9 vqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9=e0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaabm aabaGaaCysamaaBaaaleaacaaIXaaabeaakiaaiYcacaWHjbWaaSba aSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaGaaGypaiaadAeadaqada qaaiaahMeadaWgaaWcbaGaaGymaaqabaaakiaawIcacaGLPaaacaWG gbWaaeWaaeaacaWHjbWaaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaay zkaaaaaa@4437@ et donc que, sous un plan d’échantillonnage à deux phases fortement invariant, le vecteur I 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipu0de9LqFf0de9 vqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9=e0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCysamaaBa aaleaacaaIYaaabeaaaaa@366A@ peut être généré avant le vecteur I 1 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipu0de9LqFf0de9 vqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9=e0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCysamaaBa aaleaacaaIXaaabeaakiaai6caaaa@372B@ En pratique, le concept d’invariance forte n’est satisfait que pour quelques plans d’échantillonnage à deux phases seulement. Un premier exemple est l’échantillonnage de Poisson à la deuxième phase. Cela englobe le cas de la non-réponse, qui est souvent considéré comme un échantillonnage de Poisson de deuxième phase. Un autre exemple est celui de l’échantillonnage à deux degrés. Tous deux sont décrits plus en détail ci-dessous.

Exemple 1. À la première phase, un échantillon s 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipu0de9LqFf0de9 vqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9=e0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CamaaBa aaleaacaaIXaaabeaaaaa@368F@  est sélectionné conformément à un plan d’échantillonnage arbitraire, suivi à la deuxième phase d’un échantillonnage de Poisson, où les probabilités de sélection π 2 i ( I 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipu0de9LqFf0de9 vqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9=e0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWda3aaS baaSqaaiaaikdacaWGPbaabeaakmaabmaabaGaaCysamaaBaaaleaa caaIXaaabeaaaOGaayjkaiaawMcaaaaa@3B99@  des unités sont fixées avant l’échantillonnage, ce qui signifie que π 2 i ( I 1 ) = π 2 i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipu0de9LqFf0de9 vqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9=e0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWda3aaS baaSqaaiaaikdacaWGPbaabeaakmaabmaabaGaaCysamaaBaaaleaa caaIXaaabeaaaOGaayjkaiaawMcaaiaai2dacqaHapaCdaWgaaWcba GaaGOmaiaadMgaaeqaaaaa@3FF3@  pour i U . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipu0de9LqFf0de9 vqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9=e0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiabgI GiolaadwfacaGGUaaaaa@38AE@  Puisque l’échantillonnage de Poisson est entièrement caractérisé par les probabilités de sélection d’ordre un, nous avons F ( I 2 | I 1 ) = F ( I 2 ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipu0de9LqFf0de9 vqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9=e0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaabm aabaWaaqGaaeaacaWHjbWaaSbaaSqaaiaaikdaaeqaaOGaaGPaVdGa ayjcSdGaaGjbVlaahMeadaWgaaWcbaGaaGymaaqabaaakiaawIcaca GLPaaacaaI9aGaamOramaabmaabaGaaCysamaaBaaaleaacaaIYaaa beaaaOGaayjkaiaawMcaaiaac6caaaa@44CA@  Par conséquent, ce plan d’échantillonnage est fortement invariant. Il peut être mis en œuvre comme il suit : premièrement, générer le vecteur  I 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipu0de9LqFf0de9 vqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9=e0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCysamaaBa aaleaacaaIYaaabeaaaaa@366A@ conformément au plan d’échantillonnage de Poisson F ( I 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipu0de9LqFf0de9 vqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9=e0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaabm aabaGaaCysamaaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaaaa @38C8@  et, indépendamment, générer le vecteur I 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipu0de9LqFf0de9 vqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9=e0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCysamaaBa aaleaacaaIXaaabeaaaaa@3669@  conformément au plan F ( I 1 ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipu0de9LqFf0de9 vqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9=e0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaabm aabaGaaCysamaaBaaaleaacaaIXaaabeaaaOGaayjkaiaawMcaaiaa c6caaaa@3979@

Exemple 2. L’échantillonnage en grappes à deux degrés peut être décrit comme suit. Au premier degré, on tire un échantillon de grappes de la population de grappes. Puis, au deuxième degré, dans chaque grappe sélectionnée au premier degré, on tire aléatoirement un échantillon d’éléments. Notons que, même dans ce cas, le vecteur I 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipu0de9LqFf0de9 vqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9=e0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCysamaaBa aaleaacaaIXaaabeaaaaa@3669@  est encore défini au niveau de l’élément, sa taille N MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipu0de9LqFf0de9 vqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9=e0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtaaaa@3583@  correspondant au nombre d’éléments dans la population. Dans ces conditions, la variable indicatrice de sélection d’un élément  j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipu0de9LqFf0de9 vqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9=e0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOAaaaa@359F@ dans la grappe  i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipu0de9LqFf0de9 vqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9=e0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiaacY caaaa@364E@ I 1 i j , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipu0de9LqFf0de9 vqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9=e0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysamaaBa aaleaacaaIXaGaamyAaiaadQgaaeqaaOGaaGilaaaa@3902@  est égale à 1 pour tous les éléments  j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipu0de9LqFf0de9 vqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9=e0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOAaaaa@359F@ à l’intérieur d’une grappe sélectionnée  i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipu0de9LqFf0de9 vqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9=e0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiaac6 caaaa@3650@ Par conséquent, l’échantillonnage à deux degrés est un cas particulier de l’échantillonnage à deux phases décrit à la section 1. Si le tirage dans les grappes est indépendant de la sélection des grappes au premier degré, nous sommes alors en présence d’un plan d’échantillonnage en grappes à deux degrés fortement invariant. Cela est satisfait si le tirage des éléments dans une grappe est indépendant du tirage des éléments dans toute autre grappe. Un plan d’échantillonnage en grappes à deux degrés fortement invariant peut être mise en œuvre en inversant l’acte d’échantillonnage : au lieu d’échantillonner d’abord les grappes, nous commençons par tirer les éléments dans chacune des grappes de la population, puis nous échantillonnons les grappes.

Notons que notre définition d’invariance forte pour les plans à deux degrés diffère légèrement de celle donnée dans Särndal, Swensson et Wretman (1992, chapitre 4), parce que cette dernière est restreinte aux grappes sélectionnées au premier degré. Cependant, à toute fin pratique, les définitions sont essentiellement équivalentes. Nous avons utilisé la définition 1 plutôt que la définition classique de Särndal et coll.(1992) parce qu’il n’est pas facile d’étendre cette dernière au cas de l’échantillonnage à deux phases.

Définition 2. Un plan d’échantillonnage à deux phases est dit faiblement invariant (ou invariant en les deux premiers moments) si

π 2 i ( I 1 ) = π 2 i e t π 2 i j ( I 1 ) = π 2 i j i s 1 , j s 1 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipu0de9LqFf0de9 vqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9=e0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWda3aaS baaSqaaiaaikdacaWGPbaabeaakmaabmaabaGaaCysamaaBaaaleaa caaIXaaabeaaaOGaayjkaiaawMcaaiaai2dacqaHapaCdaWgaaWcba GaaGOmaiaadMgaaeqaaOGaaGzbVlaadwgacaWG0bGaaGzbVlabec8a WnaaBaaaleaacaaIYaGaamyAaiaadQgaaeqaaOWaaeWaaeaacaWHjb WaaSbaaSqaaiaaigdaaeqaaaGccaGLOaGaayzkaaGaaGypaiabec8a WnaaBaaaleaacaaIYaGaamyAaiaadQgaaeqaaOGaaGzbVlaadMgacq GHiiIZcaWGZbWaaSbaaSqaaiaaigdaaeqaaOGaaGilaiaadQgacqGH iiIZcaWGZbWaaSbaaSqaaiaaigdaaeqaaOGaaGOlaaaa@5DD9@

Clairement, un plan d’échantillonnage à deux phases fortement invariant est faiblement invariant, mais le contraire n’est pas vrai. L’exemple qui suit décrit un plan d’échantillonnage qui est faiblement invariant, mais non fortement invariant.

Exemple 3. À la première phase, nous tirons un échantillon, s 1 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipu0de9LqFf0de9 vqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9=e0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CamaaBa aaleaacaaIXaaabeaakiaaiYcaaaa@374F@  de taille n 1 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipu0de9LqFf0de9 vqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9=e0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBa aaleaacaaIXaaabeaakiaaiYcaaaa@374A@  conformément à un plan d’échantillonnage à taille fixe arbitraire. De s 1 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipu0de9LqFf0de9 vqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9=e0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CamaaBa aaleaacaaIXaaabeaakiaaiYcaaaa@374F@  nous tirons un échantillon aléatoire simple sans remise, s 2 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipu0de9LqFf0de9 vqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9=e0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CamaaBa aaleaacaaIYaaabeaakiaacYcaaaa@374A@  de taille n 2 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipu0de9LqFf0de9 vqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9=e0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBa aaleaacaaIYaaabeaakiaaiYcaaaa@374B@  où n 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipu0de9LqFf0de9 vqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9=e0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBa aaleaacaaIYaaabeaaaaa@368B@  est fixée avant l’échantillonnage. Ce plan d’échantillonnage à deux phases est faiblement invariant puisque π 2 i = n 2 / n 1 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipu0de9LqFf0de9 vqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9=e0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWda3aaS baaSqaaiaaikdacaWGPbaabeaakiaai2dadaWcgaqaaiaad6gadaWg aaWcbaGaaGOmaaqabaaakeaacaWGUbWaaSbaaSqaaiaaigdaaeqaaa aakiaaiYcaaaa@3DA9@  et π 2 i j = n 2 ( n 2 1 ) / n 1 ( n 1 1 ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipu0de9LqFf0de9 vqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9=e0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWda3aaS baaSqaaiaaikdacaWGPbGaamOAaaqabaGccaaI9aWaaSGbaeaacaWG UbWaaSbaaSqaaiaaikdaaeqaaOWaaeWaaeaacaWGUbWaaSbaaSqaai aaikdaaeqaaOGaeyOeI0IaaGymaaGaayjkaiaawMcaaaqaaiaad6ga daWgaaWcbaGaaGymaaqabaGcdaqadaqaaiaad6gadaWgaaWcbaGaaG ymaaqabaGccqGHsislcaaIXaaacaGLOaGaayzkaaaaaiaaiYcaaaa@48C3@  qui restent les mêmes d’une réalisation de I 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipu0de9LqFf0de9 vqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9=e0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCysamaaBa aaleaacaaIXaaabeaaaaa@3669@  à l’autre. Cependant, il n’est pas fortement invariant, puisqu’il est impossible de générer I 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipu0de9LqFf0de9 vqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9=e0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCysamaaBa aaleaacaaIYaaabeaaaaa@366A@  avant I 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipu0de9LqFf0de9 vqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9=e0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCysamaaBa aaleaacaaIXaaabeaaaaa@3669@  et de satisfaire la contrainte de taille d’échantillon fixe pour n 2 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipu0de9LqFf0de9 vqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9=e0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBa aaleaacaaIYaaabeaakiaac6caaaa@3747@  En fait, cela serait également vrai pour tout plan d’échantillonnage à taille fixe à la deuxième phase satisfaisant π 2 i ( I 1 ) = π 2 i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipu0de9LqFf0de9 vqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9=e0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWda3aaS baaSqaaiaaikdacaWGPbaabeaakmaabmaabaGaaCysamaaBaaaleaa caaIXaaabeaaaOGaayjkaiaawMcaaiaai2dacqaHapaCdaWgaaWcba GaaGOmaiaadMgaaeqaaaaa@3FF3@  et π 2 i j ( I 1 ) = π 2 i j . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipu0de9LqFf0de9 vqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9=e0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWda3aaS baaSqaaiaaikdacaWGPbGaamOAaaqabaGcdaqadaqaaiaahMeadaWg aaWcbaGaaGymaaqabaaakiaawIcacaGLPaaacaaI9aGaeqiWda3aaS baaSqaaiaaikdacaWGPbGaamOAaaqabaGccaaIUaaaaa@4293@

Enfin, nous décrivons un plan d’échantillonnage à deux phases non invariant.

Exemple 4. À la première phase, nous tirons un échantillon aléatoire simple sans remise, s 1 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipu0de9LqFf0de9 vqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9=e0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CamaaBa aaleaacaaIXaaabeaakiaaiYcaaaa@374F@  de taille n 1 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipu0de9LqFf0de9 vqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9=e0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBa aaleaacaaIXaaabeaakiaaiYcaaaa@374A@  conformément à un plan d’échantillonnage à taille fixe arbitraire. Pour chaque i s 1 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipu0de9LqFf0de9 vqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9=e0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiabgI GiolaadohadaWgaaWcbaGaaGymaaqabaGccaaISaaaaa@39C1@  nous enregistrons une variable auxiliaire x . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipu0de9LqFf0de9 vqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9=e0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiaac6 caaaa@365F@  De s 1 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipu0de9LqFf0de9 vqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9=e0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CamaaBa aaleaacaaIXaaabeaakiaacYcaaaa@3749@  nous tirons un échantillon de deuxième phase, s 2 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipu0de9LqFf0de9 vqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9=e0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CamaaBa aaleaacaaIYaaabeaakiaaiYcaaaa@3750@  de taille fixe n 2 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipu0de9LqFf0de9 vqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9=e0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBa aaleaacaaIYaaabeaakiaaiYcaaaa@374B@  suivant une procédure de sélection avec probabilité d’inclusion proportionnelle à la taille. Dans ce cas, nous avons

π 2 i ( I 1 ) = n 2 x i i U x i I 1 i . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipu0de9LqFf0de9 vqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9=e0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWda3aaS baaSqaaiaaikdacaWGPbaabeaakmaabmaabaGaaCysamaaBaaaleaa caaIXaaabeaaaOGaayjkaiaawMcaaiaai2dadaWcaaqaaiaad6gada WgaaWcbaGaaGOmaaqabaGccaWG4bWaaSbaaSqaaiaadMgaaeqaaaGc baWaaabuaeqaleaacaWGPbGaeyicI4Saamyvaaqab0GaeyyeIuoaki aaykW7caWG4bWaaSbaaSqaaiaadMgaaeqaaOGaamysamaaBaaaleaa caaIXaGaamyAaaqabaaaaOGaaGOlaaaa@4D00@

Clairement, la probabilité d’inclusion de l’unité i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipu0de9LqFf0de9 vqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9=e0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaaaa@359E@  dans s 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipu0de9LqFf0de9 vqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9=e0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CamaaBa aaleaacaaIYaaabeaaaaa@3690@  varie d’une réalisation de I 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipu0de9LqFf0de9 vqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9=e0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCysamaaBa aaleaacaaIXaaabeaaaaa@3669@  à l’autre. Puisque π 2 i ( I 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipu0de9LqFf0de9 vqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9=e0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWda3aaS baaSqaaiaaikdacaWGPbaabeaakmaabmaabaGaaCysamaaBaaaleaa caaIXaaabeaaaOGaayjkaiaawMcaaaaa@3B99@  est une fonction de I 1 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipu0de9LqFf0de9 vqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9=e0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCysamaaBa aaleaacaaIXaaabeaakiaaiYcaaaa@3729@  elle n’est connue qu’après que l’échantillon de première phase s 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipu0de9LqFf0de9 vqaqFeFr0xbbG8FaYPYRWFb9fi0lXxbvc9=e0dfrpm0dXdHqVu0=vr 0=vr0=fdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CamaaBa aaleaacaaIXaaabeaaaaa@368F@  soit effectivement réalisé.

Date de modification :