Note brève sur l’estimation fondée sur les quantiles et les expectiles dans les échantillons à probabilités inégales 4. Des expectiles à la fonction de répartition

La fonction quantile Q ( α ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGrbWaae WaaeaacqaHXoqyaiaawIcacaGLPaaaaaa@3C5E@  et la fonction expectile M ( α ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGnbWaae WaaeaacqaHXoqyaiaawIcacaGLPaaaaaa@3C5A@  définissent toutes deux de façon unique une fonction de répartition F ( . ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGgbWaae WaaeaacaaIUaaacaGLOaGaayzkaaGaaiOlaaaa@3C1E@  Tandis que Q ( α ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGrbWaae WaaeaacqaHXoqyaiaawIcacaGLPaaaaaa@3C5E@  est une simple inversion de F ( . ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGgbWaae WaaeaacaaIUaaacaGLOaGaayzkaaGaaiilaaaa@3C1C@  la relation entre M ( α ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGnbWaae WaaeaacqaHXoqyaiaawIcacaGLPaaaaaa@3C5A@  et F ( . ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGgbWaae WaaeaacaaIUaaacaGLOaGaayzkaaaaaa@3B6C@  est plus complexe. Selon Schnabel et Eilers (2009) et Yao et Tong (1996), on peut établir la relation

M ( α ) = ( 1 α ) G ( M ( α ) ) + α { M ( 0,5 ) G ( M ( α ) ) } ( 1 α ) F ( M ( α ) ) + α { 1 F ( M ( α ) ) } , ( 4.1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGnbWaae WaaeaacqaHXoqyaiaawIcacaGLPaaacaaI9aWaaSaaaeaadaqadaqa aiaaigdacqGHsislcqaHXoqyaiaawIcacaGLPaaacaWGhbWaaeWaae aacaWGnbWaaeWaaeaacqaHXoqyaiaawIcacaGLPaaaaiaawIcacaGL PaaacqGHRaWkcqaHXoqydaGadaqaaiaad2eadaqadaqaaiaabcdaca qGSaGaaeynaaGaayjkaiaawMcaaiabgkHiTiaadEeadaqadaqaaiaa d2eadaqadaqaaiabeg7aHbGaayjkaiaawMcaaaGaayjkaiaawMcaaa Gaay5Eaiaaw2haaaqaamaabmaabaGaaGymaiabgkHiTiabeg7aHbGa ayjkaiaawMcaaiaadAeadaqadaqaaiaad2eadaqadaqaaiabeg7aHb GaayjkaiaawMcaaaGaayjkaiaawMcaaiabgUcaRiabeg7aHnaacmaa baGaaGymaiabgkHiTiaadAeadaqadaqaaiaad2eadaqadaqaaiabeg 7aHbGaayjkaiaawMcaaaGaayjkaiaawMcaaaGaay5Eaiaaw2haaaaa caaISaGaaGzbVlaaywW7caaMf8UaaGzbVlaaywW7caGGOaGaaGinai aac6cacaaIXaGaaiykaaaa@7C78@

G ( m ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGhbWaae WaaeaacaWGTbaacaGLOaGaayzkaaaaaa@3BA7@ est la fonction génératrice des moments définie par G ( m ) = i = 1 N Y i 1 { Y i m } / N . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGhbWaae WaaeaacaWGTbaacaGLOaGaayzkaaGaaGypamaaqadabeWcbaGaamyA aiaai2dacaaIXaaabaGaamOtaaqdcqGHris5aOGaaGPaVlaadMfada WgaaWcbaGaamyAaaqabaGcdaWcgaqaaiaaigdadaGadaqaaiaadMfa daWgaaWcbaGaamyAaaqabaGccqGHKjYOcaWGTbaacaGL7bGaayzFaa aabaGaamOtaaaacaGGUaaaaa@4E7B@ L’expression (4.1) donne la relation unique de la fonction M ( α ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGnbWaae WaaeaacqaHXoqyaiaawIcacaGLPaaaaaa@3C5A@ à la fonction de répartition F ( . ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGgbWaae WaaeaacaaIUaaacaGLOaGaayzkaaGaaiOlaaaa@3C1E@ Il faut maintenant résoudre (4.1) pour F ( . ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGgbWaae WaaeaacaaIUaaacaGLOaGaayzkaaGaaiilaaaa@3C1C@ c’est-à-dire exprimer la répartition F ( . ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGgbWaae WaaeaacaaIUaaacaGLOaGaayzkaaaaaa@3B6C@ en termes de la fonction expectile M ( . ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGnbWaae WaaeaacaaIUaaacaGLOaGaayzkaaGaaiOlaaaa@3C25@ Cela n’est apparemment pas possible sous une forme analytique, mais on peut effectuer le calcul numériquement. Pour ce faire, on évalue la fonction ajustée M ^ ( α ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWGnbGbaK aadaqadaqaaiabeg7aHbGaayjkaiaawMcaaaaa@3C6A@ selon un ensemble dense de valeurs 0 < α 1 < α 2 < α L < 1 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaaIWaGaaG ipaiabeg7aHnaaBaaaleaacaaIXaaabeaakiaaiYdacqaHXoqydaWg aaWcbaGaaGOmaaqabaGccqWIMaYscaaI8aGaeqySde2aaSbaaSqaai aadYeaaeqaaOGaaGipaiaaigdacaGGSaaaaa@4686@ en désignant les valeurs ajustées par m ^ l = M ^ ( α l ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWGTbGbaK aadaWgaaWcbaGaamiBaaqabaGccaaI9aGabmytayaajaWaaeWaaeaa cqaHXoqydaWgaaWcbaGaamiBaaqabaaakiaawIcacaGLPaaacaGGUa aaaa@4133@ On définit aussi des bornes à gauche et à droite par m ^ o = m ^ 1 c 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWGTbGbaK aadaWgaaWcbaGaam4BaaqabaGccaaI9aGabmyBayaajaWaaSbaaSqa aiaaigdaaeqaaOGaeyOeI0Iaam4yamaaBaaaleaacaaIWaaabeaaaa a@4001@ et m ^ L + 1 = m ^ L + c L + 1 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWGTbGbaK aadaWgaaWcbaGaamitaiabgUcaRiaaigdaaeqaaOGaaGypaiqad2ga gaqcamaaBaaaleaacaWGmbaabeaakiabgUcaRiaadogadaWgaaWcba GaamitaiabgUcaRiaaigdaaeqaaOGaaiilaaaa@43F4@ c 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGJbWaaS baaSqaaiaaicdaaeqaaaaa@3A2E@ et c L MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGJbWaaS baaSqaaiaadYeaaeqaaaaa@3A45@ sont des constantes définies par l’utilisateur. Par exemple, on peut définir c 0 = m ^ 2 m ^ 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGJbWaaS baaSqaaiaaicdaaeqaaOGaaGypaiqad2gagaqcamaaBaaaleaacaaI YaaabeaakiabgkHiTiqad2gagaqcamaaBaaaleaacaaIXaaabeaaaa a@3FC9@ et c L + 1 = m ^ L m ^ L 1 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGJbWaaS baaSqaaiaadYeacqGHRaWkcaaIXaaabeaakiaai2daceWGTbGbaKaa daWgaaWcbaGaamitaaqabaGccqGHsislceWGTbGbaKaadaWgaaWcba GaamitaiabgkHiTiaaigdaaeqaaOGaaiOlaaaa@440C@ Ce faisant, on dérive les valeurs ajustées pour la fonction de répartition cumulative F ( . ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGgbWaae WaaeaacaaIUaaacaGLOaGaayzkaaaaaa@3B6C@ à m ^ l , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWGTbGbaK aadaWgaaWcbaGaamiBaaqabaGccaGGSaaaaa@3B39@ que l’on écrit F ^ l := F ^ ( m ^ l ) = j = 1 l δ ^ j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWGgbGbaK aadaWgaaWcbaGaamiBaaqabaGccaaI6aGaaGypaiqadAeagaqcamaa bmaabaGabmyBayaajaWaaSbaaSqaaiaadYgaaeqaaaGccaGLOaGaay zkaaGaaGypamaaqadabeWcbaGaamOAaiaai2dacaaIXaaabaGaamiB aaqdcqGHris5aOGaaGPaVlqbes7aKzaajaWaaSbaaSqaaiaadQgaae qaaaaa@4B0B@ pour les échelons non négatifs δ ^ j 0, j = 1, , L MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacuaH0oazga qcamaaBaaaleaacaWGQbaabeaakiabgwMiZkaaicdacaaISaGaamOA aiaai2dacaaIXaGaaGilaiablAciljaaiYcacaWGmbaaaa@4440@ avec j = 1 L δ ^ j 1. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaaeWaqabS qaaiaadQgacaaI9aGaaGymaaqaaiaadYeaa0GaeyyeIuoakiaaykW7 cuaH0oazgaqcamaaBaaaleaacaWGQbaabeaakiabgsMiJkaaigdaca GGUaaaaa@4536@ On définit δ ^ L + 1 = 1 l = 1 L δ ^ l MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacuaH0oazga qcamaaBaaaleaacaWGmbGaey4kaSIaaGymaaqabaGccaaI9aGaaGym aiabgkHiTmaaqadabeWcbaGaamiBaiaai2dacaaIXaaabaGaamitaa qdcqGHris5aOGaaGPaVlqbes7aKzaajaWaaSbaaSqaaiaadYgaaeqa aaaa@48D6@ pour faire de F ^ ( . ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWGgbGbaK aadaqadaqaaiaai6caaiaawIcacaGLPaaaaaa@3B7C@ une fonction de répartition. En supposant une répartition uniforme entre les points de support m ^ l MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWGTbGbaK aadaWgaaWcbaGaamiBaaqabaaaaa@3A7F@ de l’ensemble dense, on peut exprimer la fonction de génération des moments G ( . ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGhbWaae WaaeaacaaIUaaacaGLOaGaayzkaaaaaa@3B6D@ par simple intégration séquentielle comme

G ^ l := G ^ ( m ^ l ) = m l x d F ^ ( x ) = j = 1 l d ^ j δ ^ l , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWGhbGbaK aadaWgaaWcbaGaamiBaaqabaGccaaI6aGaaGypaiqadEeagaqcamaa bmaabaGabmyBayaajaWaaSbaaSqaaiaadYgaaeqaaaGccaGLOaGaay zkaaGaaGypamaapedabeWcbaGaeyOeI0IaeyOhIukabaGaamyBamaa BaaameaacaWGSbaabeaaa0Gaey4kIipakiaadIhacaaIGaGaamizai qadAeagaqcamaabmaabaGaamiEaaGaayjkaiaawMcaaiaai2dadaae WbqabSqaaiaadQgacaaI9aGaaGymaaqaaiaadYgaa0GaeyyeIuoaki aaykW7ceWGKbGbaKaadaWgaaWcbaGaamOAaaqabaGccuaH0oazgaqc amaaBaaaleaacaWGSbaabeaakiaaiYcaaaa@5B86@

d ^ j = ( m ^ j m ^ j 1 ) / 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWGKbGbaK aadaWgaaWcbaGaamOAaaqabaGccaaI9aWaaSGbaeaadaqadaqaaiqa d2gagaqcamaaBaaaleaacaWGQbaabeaakiabgkHiTiqad2gagaqcam aaBaaaleaacaWGQbGaeyOeI0IaaGymaaqabaaakiaawIcacaGLPaaa aeaacaaIYaaaaaaa@4483@ sous la contrainte que G ^ L + 1 = M ^ ( 0,5 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWGhbGbaK aadaWgaaWcbaGaamitaiabgUcaRiaaigdaaeqaaOGaaGypaiqad2ea gaqcamaabmaabaGaaeimaiaabYcacaqG1aaacaGLOaGaayzkaaaaaa@412C@ et M ^ ( 0,5 ) = j = 1 n ( y j / π j ) / j = 1 n ( 1 / π j ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWGnbGbaK aadaqadaqaaiaabcdacaqGSaGaaeynaaGaayjkaiaawMcaaiaai2da daWcgaqaamaaqadabeWcbaGaamOAaiaai2dacaaIXaaabaGaamOBaa qdcqGHris5aOWaaeWaaeaadaWcgaqaaiaadMhadaWgaaWcbaGaamOA aaqabaaakeaacqaHapaCdaWgaaWcbaGaamOAaaqabaaaaaGccaGLOa GaayzkaaaabaWaaabmaeqaleaacaWGQbGaaGypaiaaigdaaeaacaWG UbaaniabggHiLdGcdaqadaqaamaalyaabaGaaGymaaqaaiabec8aWn aaBaaaleaacaWGQbaabeaaaaaakiaawIcacaGLPaaaaaGaaiOlaaaa @5536@ Avec les échelons δ ^ l , l = 1, , L , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacuaH0oazga qcamaaBaaaleaacaWGSbaabeaakiaaiYcacaWGSbGaaGypaiaaigda caaISaGaeSOjGSKaaGilaiaadYeacaGGSaaaaa@4274@ on peut maintenant réécrire l’expression (4.1) comme

m ^ l  =  ( 1 α ) j = 1 l d ^ j δ ^ j + α ( M ^ ( 0,5 ) j = 1 l d ^ j δ ^ j ) ( 1 α ) j = 1 l δ ^ j + α ( 1 j = 1 l δ ^ j ) l = 1, , L , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWGTbGbaK aadaWgaaWcbaGaamiBaaqabaGccaaI9aWaaSaaaeaadaqadaqaaiaa igdacqGHsislcqaHXoqyaiaawIcacaGLPaaadaaeWbqabSqaaiaadQ gacaaI9aGaaGymaaqaaiaadYgaa0GaeyyeIuoakiaaykW7ceWGKbGb aKaadaWgaaWcbaGaamOAaaqabaGccuaH0oazgaqcamaaBaaaleaaca WGQbaabeaakiabgUcaRiabeg7aHnaabmaabaGabmytayaajaWaaeWa aeaacaqGWaGaaeilaiaabwdaaiaawIcacaGLPaaacqGHsisldaaeWb qabSqaaiaadQgacaaI9aGaaGymaaqaaiaadYgaa0GaeyyeIuoakiaa ykW7ceWGKbGbaKaadaWgaaWcbaGaamOAaaqabaGccuaH0oazgaqcam aaBaaaleaacaWGQbaabeaaaOGaayjkaiaawMcaaaqaamaabmaabaGa aGymaiabgkHiTiabeg7aHbGaayjkaiaawMcaamaaqahabeWcbaGaam OAaiaai2dacaaIXaaabaGaamiBaaqdcqGHris5aOGaaGPaVlqbes7a KzaajaWaaSbaaSqaaiaadQgaaeqaaOGaey4kaSIaeqySde2aaeWaae aacaaIXaGaeyOeI0YaaabCaeqaleaacaWGQbGaaGypaiaaigdaaeaa caWGSbaaniabggHiLdGccaaMc8UafqiTdqMbaKaadaWgaaWcbaGaam OAaaqabaaakiaawIcacaGLPaaaaaGaaGilaiaaiccacaaIGaGaaGii aiaaiccacaWGSbGaaGypaiaaigdacaaISaGaeSOjGSKaaGilaiaadY eacaaISaaaaa@8A9F@

que l’on résout ensuite pour δ ^ 1 , , δ ^ L . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacuaH0oazga qcamaaBaaaleaacaaIXaaabeaakiaaiYcacqWIMaYscaaISaGafqiT dqMbaKaadaWgaaWcbaGaamitaaqabaGccaGGUaaaaa@4102@ Il s’agit d’un exercice numérique relativement direct sur le plan conceptuel. On peut consulter Schulze Waltrup et coll.(2014) pour les détails. Une fois qu’on a calculé δ ^ 1 , , δ ^ L , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacuaH0oazga qcamaaBaaaleaacaaIXaaabeaakiaaiYcacqWIMaYscaaISaGafqiT dqMbaKaadaWgaaWcbaGaamitaaqabaGccaGGSaaaaa@4100@ on obtient une estimation pour la fonction de répartition cumulative, qu’on écrit F ^ N M ( y ) = l : m ^ l < y δ ^ l . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWGgbGbaK aadaqhaaWcbaGaamOtaaqaaiaad2eaaaGcdaqadaqaaiaadMhaaiaa wIcacaGLPaaacaaI9aWaaabeaeqaleaacaWGSbGaaGOoaiqad2gaga qcamaaBaaameaacaWGSbaabeaaliaaiYdacaWG5baabeqdcqGHris5 aOGaaGPaVlqbes7aKzaajaWaaSbaaSqaaiaadYgaaeqaaOGaaiOlaa aa@4B10@ On peut aussi inverser F ^ N M ( . ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWGgbGbaK aadaqhaaWcbaGaamOtaaqaaiaad2eaaaGcdaqadaqaaiaai6caaiaa wIcacaGLPaaacaGGSaaaaa@3E08@ ce qui donne une fonction quantile ajustée que l’on désigne Q ^ N M ( α ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWGrbGbaK aadaqhaaWcbaGaamOtaaqaaiaad2eaaaGcdaqadaqaaiabeg7aHbGa ayjkaiaawMcaaiaac6caaaa@3EFC@

Comme le montre Kuk (1988), à la fois théoriquement et empiriquement, F ^ R ( . ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWGgbGbaK aadaWgaaWcbaGaamOuaaqabaGcdaqadaqaaiaai6caaiaawIcacaGL Paaaaaa@3C89@ est plus efficiente que F ^ N ( . ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWGgbGbaK aadaWgaaWcbaGaamOtaaqabaGcdaqadaqaaiaac6caaiaawIcacaGL PaaacaGGUaaaaa@3D31@ On exploite cette relation en l’appliquant à F ^ N M ( . ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWGgbGbaK aadaqhaaWcbaGaamOtaaqaaiaad2eaaaGcdaqadaqaaiaac6caaiaa wIcacaGLPaaaaaa@3D52@ pour obtenir l’estimateur

F ^ R M := 1 1 N j = 1 n 1 / π j + j = 1 n 1 / π j N F ^ N M . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWGgbGbaK aadaqhaaWcbaGaamOuaaqaaiaad2eaaaGccaaI6aGaaGypaiaaigda cqGHsisldaWcaaqaaiaaigdaaeaacaWGobaaamaaqahabeWcbaGaam OAaiaai2dacaaIXaaabaGaamOBaaqdcqGHris5aOWaaSGbaeaacaaI XaaabaGaeqiWda3aaSbaaSqaaiaadQgaaeqaaaaakiabgUcaRmaala aabaWaaabCaeqaleaacaWGQbGaaGypaiaaigdaaeaacaWGUbaaniab ggHiLdGcdaWcgaqaaiaaigdaaeaacqaHapaCdaWgaaWcbaGaamOAaa qabaaaaaGcbaGaamOtaaaaceWGgbGbaKaadaqhaaWcbaGaamOtaaqa aiaad2eaaaGccaaIUaaaaa@57E7@

Dans la section qui suit, on compare les quantiles calculés à partir de l’estimateur fondé sur les expectiles F ^ R M MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWGgbGbaK aadaqhaaWcbaGaamOuaaqaaiaad2eaaaaaaa@3B11@ avec les quantiles calculés à partir de F ^ R . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWGgbGbaK aadaWgaaWcbaGaamOuaaqabaGccaGGUaaaaa@3AFA@ Soulignons que F ^ R M MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWGgbGbaK aadaqhaaWcbaGaamOuaaqaaiaad2eaaaaaaa@3B11@ et F ^ R MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9Lqpe0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWGgbGbaK aadaWgaaWcbaGaamOuaaqabaaaaa@3A3E@ ne sont pas des fonctions de répartition appropriées puisqu’elles ne sont pas normalisées pour prendre des valeurs situées entre 0 et 1.

Date de modification :