4. Composite estimation for matrix sampling design (d)

Takis Merkouris

Previous | Next

4.1 Core set of variables with known totals

We discuss first a special case of the matrix sampling design (d) in which the variables that are common to the three samples have known totals. In this very realistic sampling setting, all samples collect also information on the same vector of auxiliary variables z MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWH6baaaa@3951@ for which the vector of population totals t z MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWH0bWaaS baaSqaaiaahQhaaeqaaaaa@3A7A@ is known. For illustration we consider again three samples, as in Figure 2.1 (but with z MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWH6baaaa@3951@ added in all subsamples). Then, the CGR estimator X ^ CGR MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWHybGbaK aadaahaaWcbeqaaiaaboeacaqGhbGaaeOuaaaaaaa@3BD1@ in (3.1) may be augmented with the ordinary regression terms B ^ 3 x ( t z Z ^ 1 ) + B ^ 4 x ( t z Z ^ 2 ) + B ^ 5 x ( t z Z ^ 3 ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWHcbGbaK aadaWgaaWcbaGaaG4maiaahIhaaeqaaOWaaeWabeaacaWH0bWaaSba aSqaaiaahQhaaeqaaOGaeyOeI0IabCOwayaajaWaaSbaaSqaaiaaig daaeqaaaGccaGLOaGaayzkaaGaey4kaSIabCOqayaajaWaaSbaaSqa aiaaisdacaWH4baabeaakmaabmqabaGaaCiDamaaBaaaleaacaWH6b aabeaakiabgkHiTiqahQfagaqcamaaBaaaleaacaaIYaaabeaaaOGa ayjkaiaawMcaaiabgUcaRiqahkeagaqcamaaBaaaleaacaaI1aGaaC iEaaqabaGcdaqadeqaaiaahshadaWgaaWcbaGaaCOEaaqabaGccqGH sislceWHAbGbaKaadaWgaaWcbaGaaG4maaqabaaakiaawIcacaGLPa aacaGGSaaaaa@56E8@ where Z ^ i ,i=1,2,3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWHAbGbaK aadaWgaaWcbaGaamyAaaqabaGccaaISaGaamyAaiabg2da9iaaigda caaISaGaaGOmaiaaiYcacaaIZaaaaa@40AF@ is the HT estimator of t z MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWH0bWaaS baaSqaaiaahQhaaeqaaaaa@3A7A@ based on sample S i ; MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGtbWaaS baaSqaaiaadMgaaeqaaOGaai4oaaaa@3B09@ similarly for Y ^ CGR . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWHzbGbaK aadaahaaWcbeqaaiaaboeacaqGhbGaaeOuaaaakiaac6caaaa@3C8E@ This estimator has improved efficiency, as it incorporates additional information, and is generated by a calibration procedure that includes the additional three constraints Z ^ i CGR = t z , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWHAbGbaK aadaqhaaWcbaGaamyAaaqaaiaaboeacaqGhbGaaeOuaaaakiabg2da 9iaahshadaWgaaWcbaGaaCOEaaqabaGccaGGSaaaaa@40B7@ and has the design matrix X MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1 uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaiab=Dr8ybaa@43BD@ in (2.7) augmented with the block-diagonal matrix Z=diag{ Z 1 , Z 2 , Z 3 }. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWHAbGaey ypa0JaaeizaiaabMgacaqGHbGaae4zamaacmqabaGaaCOwamaaBaaa leaacaaIXaaabeaakiaaiYcacaWHAbWaaSbaaSqaaiaaikdaaeqaaO GaaGilaiaahQfadaWgaaWcbaGaaG4maaqabaaakiaawUhacaGL9baa caGGUaaaaa@47A7@ In the simplest case when the sample matrices Z i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWHAbWaaS baaSqaaiaadMgaaeqaaaaa@3A4B@ reduce to the unit columns 1 i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWHXaWaaS baaSqaaiaadMgaaeqaaaaa@3A22@ (with corresponding total the size of the population), the calibration scheme is the one specified in Corollary 1 above. As shown in the proof of the next theorem, an application of Lemma 1 to the present calibration procedure, with partitioned design matrix ( X,Z ),R=Λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaqadeqaam rr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae83fXJLa aGilaiaahQfaaiaawIcacaGLPaaacaGGSaGaaCOuaiabg2da9iaahU 5aaaa@4A98@ and calibration totals ( 0 , 0 , t z , t z , t z ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaqadeqaai qahcdagaqbaiaaiYcaceWHWaGbauaacaaISaGabCiDayaafaWaaSba aSqaaiaahQhaaeqaaOGaaGilaiqahshagaqbamaaBaaaleaacaWH6b aabeaakiaaiYcaceWH0bGbauaadaWgaaWcbaGaaCOEaaqabaaakiaa wIcacaGLPaaadaahaaWcbeqaaOGamai4gkdiIcaacaGGSaaaaa@48CF@ gives a modified CGR form of (3.1) with GR estimators incorporating information on z MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWH6baaaa@3951@ in place of HT estimators. This is compactly written as X ^ 3 GR ^ X ^ GR , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1 uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaiqb=Dr8yzaajaWaa0ba aSqaaiaaiodaaeaacaqGhbGaaeOuaaaakiabgkHiTiqb=Xsiczaaja Gaf83fXJLbaKaadaahaaWcbeqaaiaabEeacaqGsbaaaOGaaiilaaaa @4CEC@ where X ^ 3 GR = X ^ 3 + X 3 ΛZ ( Z ΛZ ) 1 ( t (z) Z ^ ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1 uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaiqb=Dr8yzaajaWaa0ba aSqaaiaaiodaaeaacaqGhbGaaeOuaaaakiabg2da9iqb=Dr8yzaaja WaaSbaaSqaaiaaiodaaeqaaOGaey4kaSIaf83fXJLbauaadaWgaaWc baGaaG4maaqabaGccaWHBoGaaCOwamaabmqabaGabCOwayaafaGaaC 4MdiaahQfaaiaawIcacaGLPaaadaahaaWcbeqaaiabgkHiTiaaigda aaGcdaqadeqaaiaahshadaWgaaWcbaGaaiikaiaahQhacaGGPaaabe aakiabgkHiTiqahQfagaqcaaGaayjkaiaawMcaaiaacYcaaaa@5E28@ with t (z) = ( t z , t z , t z ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWH0bWaaS baaSqaaiaacIcacaWH6bGaaiykaaqabaGccqGH9aqpdaqadeqaaiqa hshagaqbamaaBaaaleaacaWH6baabeaakiaaiYcaceWH0bGbauaada WgaaWcbaGaaCOEaaqabaGccaaISaGabCiDayaafaWaaSbaaSqaaiaa hQhaaeqaaaGccaGLOaGaayzkaaWaaWbaaSqabeaakiadacUHYaIOaa Gaaiilaaaa@4A6E@ and X ^ GR MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1 uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaiqb=Dr8yzaajaWaaWba aSqabeaacaqGhbGaaeOuaaaaaaa@4599@ expressed similarly, and where ^ =[ X 3 Λ( I P Z )X ] [ X Λ( I P Z )X ] 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1 uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaiqb=XsiczaajaGaeyyp a0ZaamWabeaacuWFxepwgaqbamaaBaaaleaacaaIZaaabeaakiaahU 5adaqadeqaaiaahMeacqGHsislcaWHqbWaaSbaaSqaaiaahQfaaeqa aaGccaGLOaGaayzkaaGae83fXJfacaGLBbGaayzxaaWaamWabeaacu WFxepwgaqbaiaahU5adaqadeqaaiaahMeacqGHsislcaWHqbWaaSba aSqaaiaahQfaaeqaaaGccaGLOaGaayzkaaGae83fXJfacaGLBbGaay zxaaWaaWbaaSqabeaacqGHsislcaaIXaaaaaaa@5F20@ with P Z =Z ( Z ΛZ ) 1 Z Λ. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWHqbWaaS baaSqaaiaahQfaaeqaaOGaeyypa0JaaCOwamaabmqabaGabCOwayaa faGaaC4MdiaahQfaaiaawIcacaGLPaaadaahaaWcbeqaaiabgkHiTi aaigdaaaGcceWHAbGbauaacaWHBoGaaiOlaaaa@4553@

Replacing Λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWHBoaaaa@3975@ by Λ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWHBoWaaW baaSqabeaacaaIWaaaaaaa@3A5C@ in the calibration procedure gives the optimal composite regression estimator, compactly written as X ^ 3 OR ^ o X ^ OR , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1 uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaiqb=Dr8yzaajaWaa0ba aSqaaiaaiodaaeaacaqGpbGaaeOuaaaakiabgkHiTiqb=Xsiczaaja WaaWbaaSqabeaacaWGVbaaaOGaf83fXJLbaKaadaahaaWcbeqaaiaa b+eacaqGsbaaaOGaaiilaaaa@4E27@ with optimal regression estimators incorporating information on z MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWH6baaaa@3951@ in place of GR estimators, and with ^ o =[ X 3 Λ 0 ( I P Z 0 )X ] [ X Λ 0 ( I P Z 0 )X ] 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1 uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaiqb=XsiczaajaWaaWba aSqabeaacaWGVbaaaOGaeyypa0ZaamWabeaacuWFxepwgaqbamaaBa aaleaacaaIZaaabeaakiaahU5adaahaaWcbeqaaiaaicdaaaGcdaqa deqaaiaahMeacqGHsislcaWHqbWaa0baaSqaaiaahQfaaeaacaaIWa aaaaGccaGLOaGaayzkaaGae83fXJfacaGLBbGaayzxaaWaamWabeaa cuWFxepwgaqbaiaahU5adaahaaWcbeqaaiaaicdaaaGcdaqadeqaai aahMeacqGHsislcaWHqbWaa0baaSqaaiaahQfaaeaacaaIWaaaaaGc caGLOaGaayzkaaGae83fXJfacaGLBbGaayzxaaWaaWbaaSqabeaacq GHsislcaaIXaaaaaaa@63A2@ where P Z 0 =Z ( Z Λ 0 Z ) 1 Z Λ 0 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWHqbWaa0 baaSqaaiaahQfaaeaacaaIWaaaaOGaeyypa0JaaCOwamaabmqabaGa bCOwayaafaGaaC4MdmaaCaaaleqabaGaaGimaaaakiaahQfaaiaawI cacaGLPaaadaahaaWcbeqaaiabgkHiTiaaigdaaaGcceWHAbGbauaa caWHBoWaaWbaaSqabeaacaaIWaaaaOGaaiOlaaaa@47F0@ Noticing that ( I P Z 0 ) X 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaqadeqaai aahMeacqGHsislcaWHqbWaa0baaSqaaiaahQfaaeaacaaIWaaaaaGc caGLOaGaayzkaaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUv gaiuaacqWFxepwdaWgaaWcbaGaaG4maaqabaaaaa@4A9C@ is the matrix of residuals corresponding to X ^ 3 OR MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1 uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaiqb=Dr8yzaajaWaa0ba aSqaaiaaiodaaeaacaqGpbGaaeOuaaaaaaa@465E@ and that X 3 Λ 0 ( I P Z 0 )X= X 3 ( I P Z 0 ) Λ 0 ( I P Z 0 )X= AC ^ ( X ^ 3 OR , X ^ OR ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1 uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaiqb=Dr8yzaafaWaaSba aSqaaiaaiodaaeqaaOGaaC4MdmaaCaaaleqabaGaaGimaaaakmaabm qabaGaaCysaiabgkHiTiaahcfadaqhaaWcbaGaaCOwaaqaaiaaicda aaaakiaawIcacaGLPaaacqWFxepwcqGH9aqpcuWFxepwgaqbamaaBa aaleaacaaIZaaabeaakmaabmqabaGaaCysaiabgkHiTiaahcfadaqh aaWcbaGaaCOwaaqaaiaaicdaaaaakiaawIcacaGLPaaadaahaaWcbe qaaOGamai4gkdiIcaacaWHBoWaaWbaaSqabeaacaaIWaaaaOWaaeWa beaacaWHjbGaeyOeI0IaaCiuamaaDaaaleaacaWHAbaabaGaaGimaa aaaOGaayjkaiaawMcaaiab=Dr8yjabg2da9maaHaaabaGaaeyqaiaa boeaaiaawkWaamaabmqabaGaf83fXJLbaKaadaqhaaWcbaGaaG4maa qaaiaab+eacaqGsbaaaOGaaGilaiqb=Dr8yzaajaWaaWbaaSqabeaa caqGpbGaaeOuaaaaaOGaayjkaiaawMcaaiaacYcaaaa@7446@ and similarly for AV ^ ( X ^ OR ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaqiaaqaai aabgeacaqGwbaacaGLcmaadaqadeqaamrr1ngBPrwtHrhAXaqeguuD JXwAKbstHrhAG8KBLbacfaGaf83fXJLbaKaadaahaaWcbeqaaiaab+ eacaqGsbaaaaGccaGLOaGaayzkaaGaaiilaaaa@4A44@ it follows that

^ o = AC ^ [ ( X ^ 3 OR Y ^ 3 OR ),( X ^ 1 OR X ^ 3 OR Y ^ 2 OR Y ^ 3 OR ) ] [ AV ^ ( X ^ 1 OR X ^ 3 OR Y ^ 2 OR Y ^ 3 OR ) ] 1 ,(4.1) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1 uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaiqb=XsiczaajaWaaWba aSqabeaacaWGVbaaaOGaeyypa0JaeyOeI0YaaecaaeaacaqGbbGaae 4qaaGaayPadaWaamWaaeaafaqabeqabaaabaWaaeWaaeaafaqabeGa baaabaGabCiwayaajaWaa0baaSqaaiaaiodaaeaacaqGpbGaaeOuaa aaaOqaaiqahMfagaqcamaaDaaaleaacaaIZaaabaGaae4taiaabkfa aaaaaaGccaGLOaGaayzkaaGaaGilamaabmaabaqbaeqabiqaaaqaai qahIfagaqcamaaDaaaleaacaaIXaaabaGaae4taiaabkfaaaGccqGH sislceWHybGbaKaadaqhaaWcbaGaaG4maaqaaiaab+eacaqGsbaaaa GcbaGabCywayaajaWaa0baaSqaaiaaikdaaeaacaqGpbGaaeOuaaaa kiabgkHiTiqahMfagaqcamaaDaaaleaacaaIZaaabaGaae4taiaabk faaaaaaaGccaGLOaGaayzkaaaaaaGaay5waiaaw2faamaadmaabaWa aecaaeaacaqGbbGaaeOvaaGaayPadaWaaeWaaeaafaqaaeGabaaaba GabCiwayaajaWaa0baaSqaaiaaigdaaeaacaqGpbGaaeOuaaaakiab gkHiTiqahIfagaqcamaaDaaaleaacaaIZaaabaGaae4taiaabkfaaa aakeaaceWHzbGbaKaadaqhaaWcbaGaaGOmaaqaaiaab+eacaqGsbaa aOGaeyOeI0IabCywayaajaWaa0baaSqaaiaaiodaaeaacaqGpbGaae OuaaaaaaaakiaawIcacaGLPaaaaiaawUfacaGLDbaadaahaaWcbeqa aiabgkHiTiaaigdaaaGccaaISaGaaGzbVlaaywW7caaMf8UaaGzbVl aaywW7caGGOaGaaGinaiaac6cacaaIXaGaaiykaaaa@8934@

in analogy with (2.4), or with (2.5) in non-nested sampling. Thus, ^ o MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1 uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaiqb=XsiczaajaWaaWba aSqabeaacaWGVbaaaaaa@441D@ is optimal in the sense of minimizing the approximate variance of the estimator X ^ 3 OR ^ o X ^ OR , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1 uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaiqb=Dr8yzaajaWaa0ba aSqaaiaaiodaaeaacaqGpbGaaeOuaaaakiabgkHiTiqb=Xsiczaaja WaaWbaaSqabeaacaWGVbaaaOGaf83fXJLbaKaadaahaaWcbeqaaiaa b+eacaqGsbaaaOGaaiilaaaa@4E27@ which is then asymptotically BLUE. An alternative estimator, of weaker optimality, has the form X ^ 3 GR ^ wo X ^ GR , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1 uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaiqb=Dr8yzaajaWaa0ba aSqaaiaaiodaaeaacaqGhbGaaeOuaaaakiabgkHiTiqb=Xsiczaaja WaaWbaaSqabeaacaWG3bGaam4Baaaakiqb=Dr8yzaajaWaaWbaaSqa beaacaqGhbGaaeOuaaaakiaacYcaaaa@4F13@ where the coefficient ^ wo =[ X 3 ( I P Z ) Λ 0 ( I P Z )X ] [ X ( I P Z ) Λ 0 ( I P Z )X ] 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1 uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaiqb=XsiczaajaWaaWba aSqabeaacaWG3bGaam4Baaaakiabg2da9maadmqabaGaf83fXJLbau aadaWgaaWcbaGaaG4maaqabaGcdaqadeqaaiaahMeacqGHsislcaWH qbWaaSbaaSqaaiaahQfaaeqaaaGccaGLOaGaayzkaaWaaWbaaSqabe aakiadacUHYaIOaaGaaC4MdmaaCaaaleqabaGaaGimaaaakmaabmqa baGaaCysaiabgkHiTiaahcfadaWgaaWcbaGaaCOwaaqabaaakiaawI cacaGLPaaacqWFxepwaiaawUfacaGLDbaadaWadeqaaiqb=Dr8yzaa faWaaeWabeaacaWHjbGaeyOeI0IaaCiuamaaBaaaleaacaWHAbaabe aaaOGaayjkaiaawMcaamaaCaaaleqabaGccWaGGBOmGikaaiaahU5a daahaaWcbeqaaiaaicdaaaGcdaqadeqaaiaahMeacqGHsislcaWHqb WaaSbaaSqaaiaahQfaaeqaaaGccaGLOaGaayzkaaGae83fXJfacaGL BbGaayzxaaWaaWbaaSqabeaacqGHsislcaaIXaaaaaaa@73DD@ has the form (4.1) but with GR estimators in place of OR estimators. This estimator, differing from the CGR only in the regression coefficient, is optimal in the restricted sense of being the composite of GR estimators incorporating information on z MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWH6baaaa@3951@ that has minimum approximate variance. In general, this later composite estimator cannot be obtained as a calibration estimator. The following theorem gives conditions under which the CGR estimator is optimal in one of the two senses in non-nested matrix sampling; the proof is given in the Appendix. The nested sampling version of the theorem, with subsampling schemes and proof as in Theorem 1, is omitted for brevity.

Theorem 2 Consider the following sampling strategies.

  • ( a ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaqadeqaai aadggaaiaawIcacaGLPaaaaaa@3AD5@ For all three samples S 1 , S 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGtbWaaS baaSqaaiaaigdaaeqaaOGaaiilaiaadofadaWgaaWcbaGaaGOmaaqa baaaaa@3C87@  and S 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGtbWaaS baaSqaaiaaiodaaeqaaaaa@3A0F@  assume SRS with sampling fractions f i = n i /N , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGMbWaaS baaSqaaiaadMgaaeqaaOGaeyypa0ZaaSGbaeaacaWGUbWaaSbaaSqa aiaadMgaaeqaaaGcbaGaamOtaaaacaGGSaaaaa@3F13@  and specify all constants q i k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGXbWaaS baaSqaaiaadMgacaWGRbaabeaaaaa@3B4E@  in Λ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWHBoWaaS baaSqaaiaadMgaaeqaaaaa@3A8F@  as q ik = ( n i 1 )/ N( 1 f i ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGXbWaaS baaSqaaiaadMgacaWGRbaabeaakiabg2da9maalyaabaWaaeWabeaa caWGUbWaaSbaaSqaaiaadMgaaeqaaOGaeyOeI0IaaGymaaGaayjkai aawMcaaaqaaiaad6eadaqadeqaaiaaigdacqGHsislcaWGMbWaaSba aSqaaiaadMgaaeqaaaGccaGLOaGaayzkaaaaaiaac6caaaa@4883@  Consider the augmented design matrix Z=( X,Z ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1 uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaiab=Lr8Ajabg2da9maa bmqabaGae83fXJLaaGilaiaahQfaaiaawIcacaGLPaaaaaa@49CF@  in (2.7), where Z=diag{ Z 1 , Z 2 , Z 3 }, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWHAbGaey ypa0JaaeizaiaabMgacaqGHbGaae4zamaacmqabaGaaCOwamaaBaaa leaacaaIXaaabeaakiaaiYcacaWHAbWaaSbaaSqaaiaaikdaaeqaaO GaaGilaiaahQfadaWgaaWcbaGaaG4maaqabaaakiaawUhacaGL9baa caGGSaaaaa@47A5@  and with the corresponding augmented vector of calibration totals t Z = ( 0 , 0 , t z , t z , t z ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWH0bWaaS baaSqaamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGa e8xgXRfabeaakiabg2da9maabmqabaGabCimayaafaGaaGilaiqahc dagaqbaiaaiYcaceWH0bGbauaadaWgaaWcbaGaaCOEaaqabaGccaaI SaGabCiDayaafaWaaSbaaSqaaiaahQhaaeqaaOGaaGilaiqahshaga qbamaaBaaaleaacaWH6baabeaaaOGaayjkaiaawMcaamaaCaaaleqa baGccWaGGBOmGikaaiaac6caaaa@567D@  Further, suppose that Z i h i =1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWHAbWaaS baaSqaaiaadMgaaeqaaOGaaCiAamaaBaaaleaacaWGPbaabeaakiab g2da9iaahgdaaaa@3E2A@  for constant vectors  h i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWHObWaaS baaSqaaiaadMgaaeqaaOGaaiOlaaaa@3B15@
  • Then, the calibration procedure gives the CGR as X ^ 3 GR ^ X ^ GR = X ^ 3 GR ^ wo X ^ GR , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1 uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaiqb=Dr8yzaajaWaa0ba aSqaaiaaiodaaeaacaqGhbGaaeOuaaaakiabgkHiTiqb=Xsiczaaja Gaf83fXJLbaKaadaahaaWcbeqaaiaabEeacaqGsbaaaOGaeyypa0Ja f83fXJLbaKaadaqhaaWcbaGaaG4maaqaaiaabEeacaqGsbaaaOGaey OeI0Iaf8hlHiKbaKaadaahaaWcbeqaaiaadEhacaWGVbaaaOGaf83f XJLbaKaadaahaaWcbeqaaiaabEeacaqGsbaaaOGaaiilaaaa@5A7C@  i.e., the CGR estimator is the optimal composite of GR estimators incorporating information on z . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWH6bGaai Olaaaa@3A03@
  • ( b ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaqadeqaai aadkgaaiaawIcacaGLPaaaaaa@3AD6@    For all three samples S 1 , S 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGtbWaaS baaSqaaiaaigdaaeqaaOGaaiilaiaadofadaWgaaWcbaGaaGOmaaqa baaaaa@3C87@  and S 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGtbWaaS baaSqaaiaaiodaaeqaaaaa@3A0F@  assume STRSRS with sampling fraction f ih = n ih / N ih MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGMbWaaS baaSqaaiaadMgacaWGObaabeaakiabg2da9maalyaabaGaamOBamaa BaaaleaacaWGPbGaamiAaaqabaaakeaacaWGobWaaSbaaSqaaiaadM gacaWGObaabeaaaaaaaa@4244@  in stratum h MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGObaaaa@393B@  of sample i,h=1,, H i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGPbGaai ilaiaadIgacqGH9aqpcaaIXaGaaiilaiablAciljaaiYcacaWGibWa aSbaaSqaaiaadMgaaeqaaaaa@4109@  and N i h MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGobWaaS baaSqaaiaadMgacaWGObaabeaaaaa@3B28@  denoting stratum size, and specify the constants in Λ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWHBoWaaS baaSqaaiaadMgaaeqaaaaa@3A8F@  as q ik = ( n ih 1 )/ N h ( 1 f ih ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGXbWaaS baaSqaaiaadMgacaWGRbaabeaakiabg2da9maalyaabaWaaeWabeaa caWGUbWaaSbaaSqaaiaadMgacaWGObaabeaakiabgkHiTiaaigdaai aawIcacaGLPaaaaeaacaWGobWaaSbaaSqaaiaadIgaaeqaaOWaaeWa beaacaaIXaGaeyOeI0IaamOzamaaBaaaleaacaWGPbGaamiAaaqaba aakiaawIcacaGLPaaaaaaaaa@4ACE@  for all units of stratum h . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGObGaai Olaaaa@39ED@  Further, assume that within each sample the units are sorted by stratum, and consider the augmented design matrix Z=( X,Z,D ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1 uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaiab=Lr8Ajabg2da9maa bmqabaGae83fXJLaaGilaiaahQfacaaISaGaaCiraaGaayjkaiaawM caaaaa@4B52@  in (2.7), with corresponding augmented vector of calibration totals t Z = ( 0 , 0 , t z , t z , t z , N 1 , N 2 , N 3 ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWH0bWaaS baaSqaamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGa e8xgXRfabeaakiabg2da9iaacIcaceWHWaGbauaacaaISaGabCimay aafaGaaGilaiqahshagaqbamaaBaaaleaacaWH6baabeaakiaaiYca ceWH0bGbauaadaWgaaWcbaGaaCOEaaqabaGccaGGSaGabCiDayaafa WaaSbaaSqaaiaahQhaaeqaaOGaaGilaiqah6eagaqbamaaBaaaleaa caaIXaaabeaakiaaiYcaceWHobGbauaadaWgaaWcbaGaaGOmaaqaba GccaaISaGabCOtayaafaWaaSbaaSqaaiaaiodaaeqaaOGaaiykamaa CaaaleqabaGccWaGGBOmGikaaiaac6caaaa@5DE7@  The definition of D MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWHebaaaa@391B@  and N i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWHobWaaS baaSqaaiaadMgaaeqaaaaa@3A3F@  is as before.
  • Then, the calibration procedure gives the CGR as X ^ 3 OR ^ o X ^ OR , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1 uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaiqb=Dr8yzaajaWaa0ba aSqaaiaaiodaaeaacaqGpbGaaeOuaaaakiabgkHiTiqb=Xsiczaaja WaaWbaaSqabeaacaWGVbaaaOGaf83fXJLbaKaadaahaaWcbeqaaiaa b+eacaqGsbaaaOGaaiilaaaa@4E27@  i.e., the CGR estimator is the optimal composite of optimal regression estimators incorporating information on z . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWH6bGaai Olaaaa@3A03@
  • ( c ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaqadeqaai aadogaaiaawIcacaGLPaaaaaa@3AD7@    For all three samples S 1 , S 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGtbWaaS baaSqaaiaaigdaaeqaaOGaaiilaiaadofadaWgaaWcbaGaaGOmaaqa baaaaa@3C87@  and S 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGtbWaaS baaSqaaiaaiodaaeqaaaaa@3A0F@  assume stratified Poisson sampling and specify the constants q i k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGXbWaaS baaSqaaiaadMgacaWGRbaabeaaaaa@3B4E@  in the entries of Λ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWHBoWaaS baaSqaaiaadMgaaeqaaaaa@3A8F@  as q ik = π ihk / ( 1 π ihk ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGXbWaaS baaSqaaiaadMgacaWGRbaabeaakiabg2da9maalyaabaGaeqiWda3a aSbaaSqaaiaadMgacaWGObGaam4Aaaqabaaakeaadaqadeqaaiaaig dacqGHsislcqaHapaCdaWgaaWcbaGaamyAaiaadIgacaWGRbaabeaa aOGaayjkaiaawMcaaaaaaaa@4922@  for the units of stratum h . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGObGaai Olaaaa@39ED@
  • Then, the calibration procedure, with Z MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1 uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaiab=Lr8Abaa@43C1@  and t Z MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWH0bWaaS baaSqaamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGa e8xgXRfabeaaaaa@44EA@  as in ( a ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaqadeqaai aadggaaiaawIcacaGLPaaacaGGSaaaaa@3B85@  gives the CGR as X ^ 3 GR ^ X ^ GR = X ^ 3 OR ^ o X ^ OR , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1 uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaiqb=Dr8yzaajaWaa0ba aSqaaiaaiodaaeaacaqGhbGaaeOuaaaakiabgkHiTiqb=Xsiczaaja Gaf83fXJLbaKaadaahaaWcbeqaaiaabEeacaqGsbaaaOGaeyypa0Ja f83fXJLbaKaadaqhaaWcbaGaaG4maaqaaiaab+eacaqGsbaaaOGaey OeI0Iaf8hlHiKbaKaadaahaaWcbeqaaiaad+gaaaGccuWFxepwgaqc amaaCaaaleqabaGaae4taiaabkfaaaGccaGGSaaaaa@5991@  i.e., GR and OR estimators are identical, and the CGR estimator is the optimal composite of optimal regression estimators incorporating information on  z . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWH6bGaai Olaaaa@3A03@

The condition Z i h i =1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWHAbWaaS baaSqaaiaadMgaaeqaaOGaaCiAamaaBaaaleaacaWGPbaabeaakiab g2da9iaahgdaaaa@3E2A@ in ( a ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaqadeqaai aadggaaiaawIcacaGLPaaaaaa@3AD5@ of Theorem 2 is customarily satisfied when the vector z MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWH6baaaa@3951@ contains categorical variables. Results analogous to Corollaries 1 and 2 of the previous section hold also for parts ( b ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaqadeqaai aadkgaaiaawIcacaGLPaaaaaa@3AD6@ and ( c ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpipeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXddrpe0=1qpeea0=yrVue9 Fve9Fve8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaqadeqaai aadogaaiaawIcacaGLPaaaaaa@3AD7@ of Theorem 2. Here too, for sampling designs other than those assumed in Theorem 2, the value q ik = n ˜ i / ( n ˜ 1 + n ˜ 2 + n ˜ 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGXbWaaS baaSqaaiaadMgacaWGRbaabeaakiabg2da9maalyaabaGabmOBayaa iaWaaSbaaSqaaiaadMgaaeqaaaGcbaWaaeWabeaaceWGUbGbaGaada WgaaWcbaGaaGymaaqabaGccqGHRaWkceWGUbGbaGaadaWgaaWcbaGa aGOmaaqabaGccqGHRaWkceWGUbGbaGaadaWgaaWcbaGaaG4maaqaba aakiaawIcacaGLPaaaaaaaaa@47C4@ in the entries of Λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWHBoaaaa@3975@ should be used.

Finally, by analogy to (3.2), and with the appropriate decomposition of the vector of calibrated weights c , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWHJbGaai ilaaaa@39EA@ the composite estimator X ^ CGR MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWHybGbaK aadaahaaWcbeqaaiaaboeacaqGhbGaaeOuaaaaaaa@3BD1@ takes now the form

X ^ CGR = B ^ 1x X ^ 1 GR +( I B ^ 1x ) X ^ 3 GR , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWHybGbaK aadaahaaWcbeqaaiaaboeacaqGhbGaaeOuaaaakiabg2da9iqahkea gaqcamaaBaaaleaacaaIXaGaaCiEaaqabaGcceWHybGbaKaadaqhaa WcbaGaaGymaaqaaiaabEeacaqGsbaaaOGaey4kaSYaaeWabeaacaWH jbGaeyOeI0IabCOqayaajaWaaSbaaSqaaiaaigdacaWH4baabeaaaO GaayjkaiaawMcaaiqahIfagaqcamaaDaaaleaacaaIZaaabaGaae4r aiaabkfaaaGccaaISaaaaa@4E61@

where X ^ 1 GR MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWHybGbaK aadaqhaaWcbaGaaGymaaqaaiaabEeacaqGsbaaaaaa@3BC6@ and X ^ 3 GR MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWHybGbaK aadaqhaaWcbaGaaG4maaqaaiaabEeacaqGsbaaaaaa@3BC8@ are GR estimators using information on z MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWH6baaaa@3951@ from S 1 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGtbWaaS baaSqaaiaaigdaaeqaaOGaaiilaaaa@3AC7@ and on y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWH5baaaa@3950@ and z MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWH6baaaa@3951@ from S 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGtbWaaS baaSqaaiaaikdaaeqaaaaa@3A0E@ and S 3 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGtbWaaS baaSqaaiaaiodaaeqaaOGaaiilaaaa@3AC9@ respectively, and B ^ 1 x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWHcbGbaK aadaWgaaWcbaGaaGymaiaahIhaaeqaaaaa@3B11@ is the corresponding matrix regression coefficient. Similar is the expression for Y ^ CGR . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWHzbGbaK aadaahaaWcbeqaaiaaboeacaqGhbGaaeOuaaaakiaac6caaaa@3C8E@ Of course, X ^ CGR MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWHybGbaK aadaahaaWcbeqaaiaaboeacaqGhbGaaeOuaaaaaaa@3BD1@ and Y ^ CGR MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWHzbGbaK aadaahaaWcbeqaaiaaboeacaqGhbGaaeOuaaaaaaa@3BD2@ can be obtained directly through this modified c MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWHJbaaaa@393A@ in the simple linear forms X ^ CGR = X 3 c 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWHybGbaK aadaahaaWcbeqaaiaaboeacaqGhbGaaeOuaaaakiabg2da9iqahIfa gaqbamaaBaaaleaacaaIZaaabeaakiaahogadaWgaaWcbaGaaG4maa qabaaaaa@4096@ and Y ^ CGR = Y 3 c 3 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWHzbGbaK aadaahaaWcbeqaaiaaboeacaqGhbGaaeOuaaaakiabg2da9iqahMfa gaqbamaaBaaaleaacaaIZaaabeaakiaahogadaWgaaWcbaGaaG4maa qabaGccaGGUaaaaa@4154@

4.2 Core set of variables with unknown totals

We turn now to the case of matrix sampling design (d) in which the variables z MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWH6baaaa@3951@ that are common to the three samples have unknown totals. Estimation in this setting includes the construction of a composite estimator of the vector of totals t z . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWH0bWaaS baaSqaaiaahQhaaeqaaOGaaiOlaaaa@3B36@ In line with the formulation of Section 2, composite estimators of t x , t y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWH0bWaaS baaSqaaiaahIhaaeqaaOGaaiilaiaahshadaWgaaWcbaGaaCyEaaqa baaaaa@3D5D@ and t z MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWH0bWaaS baaSqaaiaahQhaaeqaaaaa@3A7A@ that are best linear unbiased combinations of the HT estimators X ^ 1 , Z ^ 1 , Y ^ 2 , Z ^ 2 , X ^ 3 , Y ^ 3 , Z ^ 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWHybGbaK aadaWgaaWcbaGaaGymaaqabaGccaGGSaGabCOwayaajaWaaSbaaSqa aiaaigdaaeqaaOGaaiilaiqahMfagaqcamaaBaaaleaacaaIYaaabe aakiaacYcaceWHAbGbaKaadaWgaaWcbaGaaGOmaaqabaGccaGGSaGa bCiwayaajaWaaSbaaSqaaiaaiodaaeqaaOGaaiilaiqahMfagaqcam aaBaaaleaacaaIZaaabeaakiaacYcaceWHAbGbaKaadaWgaaWcbaGa aG4maaqabaaaaa@49A2@ are given by

         X ^ B = B 1 x X ^ 1 + ( I B 1 x ) X ^ 3 + B 3 x ( Y ^ 2 Y ^ 3 ) + B 2 x ( Z ^ 1 Z ^ 3 ) + B 4 x ( Z ^ 2 Z ^ 3 ) Y ^ B = B 3 y Y ^ 2 + ( I B 3 y ) Y ^ 3 + B 1 y ( X ^ 1 X ^ 3 ) + B 2 y ( Z ^ 1 Z ^ 3 ) + B 4 y ( Z ^ 2 Z ^ 3 ) Z ^ B = B 2 z Z ^ 1 + B 4 z Z ^ 2 + ( I B 2 z B 4 z ) Z ^ 3 + B 1 z ( X ^ 1 X ^ 3 ) + B 3 z ( Y ^ 2 Y ^ 3 ) . ( 4.2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaafaqaaeWada aabaGabCiwayaajaWaaWbaaSqabeaacaWGcbaaaaGcbaGaeyypa0da baGaaCOqamaaBaaaleaacaaIXaGaaCiEaaqabaGcceWHybGbaKaada WgaaWcbaGaaGymaaqabaGccqGHRaWkdaqadeqaaiaahMeacqGHsisl caWHcbWaaSbaaSqaaiaaigdacaWH4baabeaaaOGaayjkaiaawMcaai qahIfagaqcamaaBaaaleaacaaIZaaabeaakiabgUcaRiaahkeadaWg aaWcbaGaaG4maiaahIhaaeqaaOWaaeWabeaaceWHzbGbaKaadaWgaa WcbaGaaGOmaaqabaGccqGHsislceWHzbGbaKaadaWgaaWcbaGaaG4m aaqabaaakiaawIcacaGLPaaacqGHRaWkcaWHcbWaaSbaaSqaaiaaik dacaWH4baabeaakmaabmqabaGabCOwayaajaWaaSbaaSqaaiaaigda aeqaaOGaeyOeI0IabCOwayaajaWaaSbaaSqaaiaaiodaaeqaaaGcca GLOaGaayzkaaGaey4kaSIaaCOqamaaBaaaleaacaaI0aGaaCiEaaqa baGcdaqadeqaaiqahQfagaqcamaaBaaaleaacaaIYaaabeaakiabgk HiTiqahQfagaqcamaaBaaaleaacaaIZaaabeaaaOGaayjkaiaawMca aaqaaiqahMfagaqcamaaCaaaleqabaGaamOqaaaaaOqaaiabg2da9a qaaiaahkeadaWgaaWcbaGaaG4maiaahMhaaeqaaOGabCywayaajaWa aSbaaSqaaiaaikdaaeqaaOGaey4kaSYaaeWabeaacaWHjbGaeyOeI0 IaaCOqamaaBaaaleaacaaIZaGaaCyEaaqabaaakiaawIcacaGLPaaa ceWHzbGbaKaadaWgaaWcbaGaaG4maaqabaGccqGHRaWkcaWHcbWaaS baaSqaaiaaigdacaWH5baabeaakmaabmqabaGabCiwayaajaWaaSba aSqaaiaaigdaaeqaaOGaeyOeI0IabCiwayaajaWaaSbaaSqaaiaaio daaeqaaaGccaGLOaGaayzkaaGaey4kaSIaaCOqamaaBaaaleaacaaI YaGaaCyEaaqabaGcdaqadeqaaiqahQfagaqcamaaBaaaleaacaaIXa aabeaakiabgkHiTiqahQfagaqcamaaBaaaleaacaaIZaaabeaaaOGa ayjkaiaawMcaaiabgUcaRiaahkeadaWgaaWcbaGaaGinaiaahMhaae qaaOWaaeWabeaaceWHAbGbaKaadaWgaaWcbaGaaGOmaaqabaGccqGH sislceWHAbGbaKaadaWgaaWcbaGaaG4maaqabaaakiaawIcacaGLPa aaaeaaceWHAbGbaKaadaahaaWcbeqaaiaadkeaaaaakeaacqGH9aqp aeaacaWHcbWaaSbaaSqaaiaaikdacaWH6baabeaakiqahQfagaqcam aaBaaaleaacaaIXaaabeaakiabgUcaRiaahkeadaWgaaWcbaGaaGin aiaahQhaaeqaaOGabCOwayaajaWaaSbaaSqaaiaaikdaaeqaaOGaey 4kaSYaaeWabeaacaWHjbGaeyOeI0IaaCOqamaaBaaaleaacaaIYaGa aCOEaaqabaGccqGHsislcaWHcbWaaSbaaSqaaiaaisdacaWH6baabe aaaOGaayjkaiaawMcaaiqahQfagaqcamaaBaaaleaacaaIZaaabeaa kiabgUcaRiaahkeadaWgaaWcbaGaaGymaiaahQhaaeqaaOWaaeWabe aaceWHybGbaKaadaWgaaWcbaGaaGymaaqabaGccqGHsislceWHybGb aKaadaWgaaWcbaGaaG4maaqabaaakiaawIcacaGLPaaacqGHRaWkca WHcbWaaSbaaSqaaiaaiodacaWH6baabeaakmaabmqabaGabCywayaa jaWaaSbaaSqaaiaaikdaaeqaaOGaeyOeI0IabCywayaajaWaaSbaaS qaaiaaiodaaeqaaaGccaGLOaGaayzkaaGaaiOlaaaacaaMf8UaaGzb VlaaywW7caGGOaGaaGinaiaac6cacaaIYaGaaiykaaaa@CAC0@

The estimators in (4.2) can be written in the matrix regression form

( X ^ B Y ^ B Z ^ B )=( X ^ 3 Y ^ 3 Z ^ 3 )+( X ^ 1 X ^ 3 Z ^ 1 Z ^ 3 Y ^ 2 Y ^ 3 Z ^ 2 Z ^ 3 ),(4.3) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaqadaqaau aabeqadeaaaeaaceWHybGbaKaadaahaaWcbeqaaiaadkeaaaaakeaa ceWHzbGbaKaadaahaaWcbeqaaiaadkeaaaaakeaaceWHAbGbaKaada ahaaWcbeqaaiaadkeaaaaaaaGccaGLOaGaayzkaaGaeyypa0ZaaeWa aeaafaqabeWabaaabaGabCiwayaajaWaaSbaaSqaaiaaiodaaeqaaa GcbaGabCywayaajaWaaSbaaSqaaiaaiodaaeqaaaGcbaGabCOwayaa jaWaaSbaaSqaaiaaiodaaeqaaaaaaOGaayjkaiaawMcaaiabgUcaRm rr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae8hlHi0a aeWaaeaafaqabeabbaaaaeaaceWHybGbaKaadaWgaaWcbaGaaGymaa qabaGccqGHsislceWHybGbaKaadaWgaaWcbaGaaG4maaqabaaakeaa ceWHAbGbaKaadaWgaaWcbaGaaGymaaqabaGccqGHsislceWHAbGbaK aadaWgaaWcbaGaaG4maaqabaaakeaaceWHzbGbaKaadaWgaaWcbaGa aGOmaaqabaGccqGHsislceWHzbGbaKaadaWgaaWcbaGaaG4maaqaba aakeaaceWHAbGbaKaadaWgaaWcbaGaaGOmaaqabaGccqGHsislceWH AbGbaKaadaWgaaWcbaGaaG4maaqabaaaaaGccaGLOaGaayzkaaGaaG ilaiaaywW7caaMf8UaaGzbVlaaywW7caaMf8UaaiikaiaaisdacaGG UaGaaG4maiaacMcaaaa@73F6@

with the variance-minimizing matrix of coefficients given by =Cov( u 3 , u 12 u 3 ) [ V( u 12 u 3 ) ] 1 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1 uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaiab=Xsicjabg2da9iab gkHiTiaaboeacaqGVbGaaeODamaabmqabaGaaCyDamaaBaaaleaaca aIZaaabeaakiaaiYcacaWH1bWaaSbaaSqaaiaaigdacaaIYaaabeaa kiabgkHiTiaahwhadaqhaaWcbaGaaG4maaqaaiab=zSiLdaaaOGaay jkaiaawMcaamaadmqabaGaamOvamaabmqabaGaaCyDamaaBaaaleaa caaIXaGaaGOmaaqabaGccqGHsislcaWH1bWaa0baaSqaaiaaiodaae aacqWFgls5aaaakiaawIcacaGLPaaaaiaawUfacaGLDbaadaahaaWc beqaaiabgkHiTiaaigdaaaGccaGGSaaaaa@6260@ where u 3 = ( X ^ 3 , Y ^ 3 , Z ^ 3 ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWH1bWaaS baaSqaaiaaiodaaeqaaOGaeyypa0ZaaeWabeaaceWHybGbaKGbauaa daWgaaWcbaGaaG4maaqabaGccaaISaGabCywayaajyaafaWaaSbaaS qaaiaaiodaaeqaaOGaaGilaiqahQfagaqcgaqbamaaBaaaleaacaaI ZaaabeaaaOGaayjkaiaawMcaamaaCaaaleqabaGccWaGGBOmGikaai aacYcaaaa@47DA@ u 3 = ( X ^ 3 , Z ^ 3 , Y ^ 3 , Z ^ 3 ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWH1bWaa0 baaSqaaiaaiodaaeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgi p5wzaGqbaiab=zSiLdaakiabg2da9iaacIcaceWHybGbaKGbauaada WgaaWcbaGaaG4maaqabaGccaaISaGabCOwayaajyaafaWaaSbaaSqa aiaaiodaaeqaaOGaaGilaiqahMfagaqcgaqbamaaBaaaleaacaaIZa aabeaakiaaiYcaceWHAbGbaKGbauaadaWgaaWcbaGaaG4maaqabaGc caGGPaWaaWbaaSqabeaakiadacUHYaIOaaGaaiilaaaa@562D@ u 12 = ( X ^ 1 , Z ^ 1 , Y ^ 2 , Z ^ 2 ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWH1bWaaS baaSqaaiaaigdacaaIYaaabeaakiabg2da9maabmqabaGabCiwayaa jyaafaWaaSbaaSqaaiaaigdaaeqaaOGaaGilaiqahQfagaqcgaqbam aaBaaaleaacaaIXaaabeaakiaaiYcaceWHzbGbaKGbauaadaWgaaWc baGaaGOmaaqabaGccaaISaGabCOwayaajyaafaWaaSbaaSqaaiaaik daaeqaaaGccaGLOaGaayzkaaWaaWbaaSqabeaakiadacUHYaIOaaGa aiOlaaaa@4B37@ With estimated covariance and variance matrices we obtain the estimated optimal matrix ^ o , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1 uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaiqb=XsiczaajaWaaWba aSqabeaacaWGVbaaaOGaaiilaaaa@44D7@ and (4.3) becomes then an optimal multivariate regression estimator. Then, proceeding as in Section 2, it can be shown that

^ o =( X 3 Λ 0 X) ( X Λ 0 X) 1 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1 uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaiqb=XsiczaajaWaaWba aSqabeaacaWGVbaaaOGaeyypa0Jaaiikaiqb=Dr8yzaafaWaaSbaaS qaaiaaiodacqGHsislaeqaaOGaaC4MdmaaCaaaleqabaGaaGimaaaa kiab=Dr8yjaacMcacaaMc8Uaaiikaiqb=Dr8yzaafaGaaC4MdmaaCa aaleqabaGaaGimaaaakiab=Dr8yjaacMcadaahaaWcbeqaaiabgkHi TiaaigdaaaGccaaISaaaaa@59BA@

where

X=( X 1 Z 1 0 0 0 0 Y 2 Z 2 X 3 Z 3 Y 3 Z 3 )(4.4) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1 uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaiab=Dr8yjabg2da9maa bmaabaqbaeqabmabaaaabaGaeyOeI0IaaCiwamaaBaaaleaacaaIXa aabeaaaOqaaiabgkHiTiaahQfadaWgaaWcbaGaaGymaaqabaaakeaa caWHWaaabaGaaCimaaqaaiaahcdaaeaacaWHWaaabaGaeyOeI0IaaC ywamaaBaaaleaacaaIYaaabeaaaOqaaiabgkHiTiaahQfadaWgaaWc baGaaGOmaaqabaaakeaacaWHybWaaSbaaSqaaiaaiodaaeqaaaGcba GaaCOwamaaBaaaleaacaaIZaaabeaaaOqaaiaahMfadaWgaaWcbaGa aG4maaqabaaakeaacaWHAbWaaSbaaSqaaiaaiodaaeqaaaaaaOGaay jkaiaawMcaaiaaywW7caaMf8UaaGzbVlaaywW7caaMf8Uaaiikaiaa isdacaGGUaGaaGinaiaacMcaaaa@66EF@

is the design matrix corresponding to the regression estimator (4.3), X 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1 uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaiab=Dr8ynaaBaaaleaa caaIZaGaeyOeI0cabeaaaaa@4593@ is the matrix X MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1 uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaiab=Dr8ybaa@43BD@ with the second column eliminated and the first two rows set equal to zero, and Λ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWHBoWaaW baaSqabeaacaaIWaaaaaaa@3A5C@ is as in Section 2.

Replacing the matrix Λ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWHBoWaaW baaSqabeaacaaIWaaaaaaa@3A5C@ with the weighting matrix Λ , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWHBoGaai ilaaaa@3A25@ gives the generalized regression coefficient ^ =( X 3 ΛX) ( X ΛX) 1 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1 uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaiqb=XsiczaajaGaeyyp a0Jaaiikaiqb=Dr8yzaafaWaaSbaaSqaaiaaiodacqGHsislaeqaaO GaaC4Mdiab=Dr8yjaacMcacaGGOaGaf83fXJLbauaacaWHBoGae83f XJLaaiykamaaCaaaleqabaGaeyOeI0IaaGymaaaakiaacYcaaaa@551D@ and (4.3) becomes the CGR estimator of ( t x , t y , t z ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaqadeqaai qahshagaqbamaaBaaaleaacaWH4baabeaakiaaiYcaceWH0bGbauaa daWgaaWcbaGaaCyEaaqabaGccaaISaGabCiDayaafaWaaSbaaSqaai aahQhaaeqaaaGccaGLOaGaayzkaaWaaWbaaSqabeaakiadacUHYaIO aaaaaa@4526@

( X ^ CGR Y ^ CGR Z ^ CGR )=( X ^ 3 Y ^ 3 Z ^ 3 )+ ^ ( X ^ 1 X ^ 3 Z ^ 1 Z ^ 3 Y ^ 2 Y ^ 3 Z ^ 2 Z ^ 3 ).(4.5) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaqadaqaau aabeqadeaaaeaaceWHybGbaKaadaahaaWcbeqaaiaaboeacaqGhbGa aeOuaaaaaOqaaiqahMfagaqcamaaCaaaleqabaGaae4qaiaabEeaca qGsbaaaaGcbaGabCOwayaajaWaaWbaaSqabeaacaqGdbGaae4raiaa bkfaaaaaaaGccaGLOaGaayzkaaGaeyypa0ZaaeWaaeaafaqabeWaba aabaGabCiwayaajaWaaSbaaSqaaiaaiodaaeqaaaGcbaGabCywayaa jaWaaSbaaSqaaiaaiodaaeqaaaGcbaGabCOwayaajaWaaSbaaSqaai aaiodaaeqaaaaaaOGaayjkaiaawMcaaiabgUcaRmrr1ngBPrwtHrhA XaqeguuDJXwAKbstHrhAG8KBLbacfaGaf8hlHiKbaKaadaqadaqaau aabeqaeeaaaaqaaiqahIfagaqcamaaBaaaleaacaaIXaaabeaakiab gkHiTiqahIfagaqcamaaBaaaleaacaaIZaaabeaaaOqaaiqahQfaga qcamaaBaaaleaacaaIXaaabeaakiabgkHiTiqahQfagaqcamaaBaaa leaacaaIZaaabeaaaOqaaiqahMfagaqcamaaBaaaleaacaaIYaaabe aakiabgkHiTiqahMfagaqcamaaBaaaleaacaaIZaaabeaaaOqaaiqa hQfagaqcamaaBaaaleaacaaIYaaabeaakiabgkHiTiqahQfagaqcam aaBaaaleaacaaIZaaabeaaaaaakiaawIcacaGLPaaacaaIUaGaaGzb VlaaywW7caaMf8UaaGzbVlaaywW7caGGOaGaaGinaiaac6cacaaI1a Gaaiykaaaa@78E4@

The estimator (4.5) can be conveniently obtained through a calibration procedure that gives a vector of calibrated weights for the combined sample S MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGtbaaaa@3926@ having the form c=w+ΛX ( X ΛX ) 1 ( 0 X w ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWHJbGaey ypa0JaaC4DaiabgUcaRiaahU5atuuDJXwAK1uy0HwmaeHbfv3ySLgz G0uy0Hgip5wzaGqbaiab=Dr8ynaabmqabaGaf83fXJLbauaacaWHBo Gae83fXJfacaGLOaGaayzkaaWaaWbaaSqabeaacqGHsislcaaIXaaa aOWaaeWabeaacaWHWaGaeyOeI0Iaf83fXJLbauaacaWH3baacaGLOa GaayzkaaGaaiilaaaa@57EF@ as before, but now satisfying the additional constraint Z ^ 1 CGR = Z ^ 2 CGR = Z ^ 3 CGR . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWHAbGbaK aadaqhaaWcbaGaaGymaaqaaiaaboeacaqGhbGaaeOuaaaakiabg2da 9iqahQfagaqcamaaDaaaleaacaaIYaaabaGaae4qaiaabEeacaqGsb aaaOGaeyypa0JabCOwayaajaWaa0baaSqaaiaaiodaaeaacaqGdbGa ae4raiaabkfaaaGccaGGUaaaaa@47ED@ Expression (4.5) is then obtained simply as X 3 c, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1 uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaiqb=Dr8yzaafaWaaSba aSqaaiaaiodacqGHsislaeqaaOGaaC4yaiaacYcaaaa@4745@ based on sample S 3 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGtbWaaS baaSqaaiaaiodaaeqaaOGaaiOlaaaa@3ACB@

The explicit expression (4.2), different for the optimal regression and the generalized regression variants only in the form of the linear coefficients, shows that the composite estimators of t x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWH0bWaaS baaSqaaiaahIhaaeqaaaaa@3A78@ and t y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWH0bWaaS baaSqaaiaahMhaaeqaaaaa@3A79@ are more efficient than their counterparts in matrix sampling design (c), equation (2.2), because they incorporate information on the common variables z , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWH6bGaai ilaaaa@3A01@ assuming non-zero correlation with x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWH4baaaa@394F@ and y . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWH5bGaai Olaaaa@3A02@ Particularly remarkable is the expression for the composite estimator of t z : MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWH0bWaaS baaSqaaiaahQhaaeqaaOGaaiOoaaaa@3B42@ it involves a linear combination of the three HT estimators of t z MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWH0bWaaS baaSqaaiaahQhaaeqaaaaa@3A7A@ derived from the three samples, plus the two regression terms implying additional efficiency through the correlation of z MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWH6baaaa@3951@ with x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWH4baaaa@394F@ and y . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWH5bGaai Olaaaa@3A02@ One would expect the additional terms to be zero because an optimal combination of the three estimators should incorporate all information on z MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWH6baaaa@3951@ available in the three samples. In general, however, the associated coefficients are not zero. In non-nested sampling, conditions under which these coefficients are zero are given by the following proposition, the proof of which is given in the Appendix. The result should also hold in nested sampling.

Proposition 1 The coefficients B 1 z MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWHcbWaaS baaSqaaiaaigdacaWH6baabeaaaaa@3B03@  and B 3 z MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWHcbWaaS baaSqaaiaaiodacaWH6baabeaaaaa@3B05@  in the estimator Z ^ B MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWHAbGbaK aadaahaaWcbeqaaiaadkeaaaaaaa@3A35@  in (4.2) are zero only if

[ V ( Z ^ 1 ) ] 1 Cov ( X ^ 1 , Z ^ 1 ) = [ V ( Z ^ 3 ) ] 1 Cov ( X ^ 3 , Z ^ 3 ) [ V ( Z ^ 2 ) ] 1 Cov ( Y ^ 2 , Z ^ 2 ) = [ V ( Z ^ 3 ) ] 1 Cov ( Y ^ 3 , Z ^ 3 ) . ( 4.6 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaafaqaaeGada aabaWaamWabeaacaWGwbWaaeWabeaaceWHAbGbaKaadaWgaaWcbaGa aGymaaqabaaakiaawIcacaGLPaaaaiaawUfacaGLDbaadaahaaWcbe qaaiabgkHiTiaaigdaaaGccaqGdbGaae4BaiaabAhadaqadeqaaiqa hIfagaqcamaaBaaaleaacaaIXaaabeaakiaaiYcaceWHAbGbaKaada WgaaWcbaGaaGymaaqabaaakiaawIcacaGLPaaaaeaacqGH9aqpaeaa daWadeqaaiaadAfadaqadeqaaiqahQfagaqcamaaBaaaleaacaaIZa aabeaaaOGaayjkaiaawMcaaaGaay5waiaaw2faamaaCaaaleqabaGa eyOeI0IaaGymaaaakiaaboeacaqGVbGaaeODamaabmqabaGabCiway aajaWaaSbaaSqaaiaaiodaaeqaaOGaaGilaiqahQfagaqcamaaBaaa leaacaaIZaaabeaaaOGaayjkaiaawMcaaaqaamaadmqabaGaamOvam aabmqabaGabCOwayaajaWaaSbaaSqaaiaaikdaaeqaaaGccaGLOaGa ayzkaaaacaGLBbGaayzxaaWaaWbaaSqabeaacqGHsislcaaIXaaaaO Gaae4qaiaab+gacaqG2bWaaeWabeaaceWHzbGbaKaadaWgaaWcbaGa aGOmaaqabaGccaaISaGabCOwayaajaWaaSbaaSqaaiaaikdaaeqaaa GccaGLOaGaayzkaaaabaGaeyypa0dabaWaamWabeaacaWGwbWaaeWa beaaceWHAbGbaKaadaWgaaWcbaGaaG4maaqabaaakiaawIcacaGLPa aaaiaawUfacaGLDbaadaahaaWcbeqaaiabgkHiTiaaigdaaaGccaqG dbGaae4BaiaabAhadaqadeqaaiqahMfagaqcamaaBaaaleaacaaIZa aabeaakiaaiYcaceWHAbGbaKaadaWgaaWcbaGaaG4maaqabaaakiaa wIcacaGLPaaacaaIUaaaaiaaywW7caaMf8UaaGzbVlaaywW7caaMf8 UaaiikaiaaisdacaGGUaGaaGOnaiaacMcaaaa@89CE@

This can happen only if the sampling designs for the three samples are identical, including equal sample sizes, or only if the sampling design across samples is the same design with equal inclusion probability for all units, but not necessarily with the same sample size.

Noticing that the quantities on each side of the equations (4.6) are regression coefficients, according to Proposition 1 the terms of the estimator Z ^ B MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWHAbGbaK aadaahaaWcbeqaaiaadkeaaaaaaa@3A35@ incorporating the correlation of z MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWH6baaaa@3951@ with x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWH4baaaa@394F@ and y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWH5baaaa@3950@ are zero only if the effect of the regression of x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWH4baaaa@394F@ and y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWH5baaaa@3950@ on z MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWH6baaaa@3951@ is identical in samples S 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGtbWaaS baaSqaaiaaigdaaeqaaaaa@3A0D@ and S 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGtbWaaS baaSqaaiaaiodaaeqaaaaa@3A0F@ and in samples S 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGtbWaaS baaSqaaiaaikdaaeqaaaaa@3A0E@ and S 3 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGtbWaaS baaSqaaiaaiodaaeqaaOGaaiilaaaa@3AC9@ respectively. The essence of this finding is that estimation of t z MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWH0bWaaS baaSqaaiaahQhaaeqaaaaa@3A7A@ using only information on z MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWH6baaaa@3951@ from the three samples, but ignoring information on x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWH4baaaa@394F@ and y , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWH5bGaai ilaaaa@3A00@ will be suboptimal when there is differential regression effect of x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWH4baaaa@394F@ and y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWH5baaaa@3950@ on z MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWH6baaaa@3951@ in the various samples. The efficiency of Z ^ B MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWHAbGbaK aadaahaaWcbeqaaiaadkeaaaaaaa@3A35@ relative to the composite estimator Z ˜ B MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWHAbGbaG aadaahaaWcbeqaaiaadkeaaaaaaa@3A34@ that uses only information on z MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWH6baaaa@3951@ was possible to gauge in the simple setting involving scalar x , y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG4bGaai ilaiaadMhaaaa@3AF9@ and z , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG6bGaai ilaaaa@39FD@ simple random sampling for S 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGtbWaaS baaSqaaiaaigdaaeqaaaaa@3A0D@ and S 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGtbWaaS baaSqaaiaaiodaaeqaaaaa@3A0F@ and Bernoulli sampling for S 2 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGtbWaaS baaSqaaiaaikdaaeqaaOGaaiilaaaa@3AC8@ and equal sampling rates for all three samples. Then only the first equation of (4.6) holds. After much tedious algebra the efficiency of Z ^ B MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWHAbGbaK aadaahaaWcbeqaaiaadkeaaaaaaa@3A35@ relative to Z ˜ B MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWHAbGbaG aadaahaaWcbeqaaiaadkeaaaaaaa@3A34@ was derived to be [ V( Z ˜ B )V( Z ^ B )/ V( Z ˜ B ) ]=G/H , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaWadeqaam aalyaabaGaamOvamaabmqabaGabCOwayaaiaWaaWbaaSqabeaacaWG cbaaaaGccaGLOaGaayzkaaGaeyOeI0IaamOvamaabmqabaGabCOway aajaWaaWbaaSqabeaacaWGcbaaaaGccaGLOaGaayzkaaaabaGaamOv amaabmqabaGabCOwayaaiaWaaWbaaSqabeaacaWGcbaaaaGccaGLOa GaayzkaaaaaaGaay5waiaaw2faaiabg2da9maalyaabaGaam4raaqa aiaadIeaaaGaaiilaaaa@4BA9@ with

G = 2 ( r x z 2 1 ) ( r y z c v y c v z ) 2 H = ( c v z 2 + 1 ) ( ( 12 9 r y z 2 ) r x z 2 3 r x y ( 2 r y z r x z 1 ) + 12 ( r y z 2 1 ) ) c v z 2 c v y 2 + 2 ( r x y 2 + r y z 2 ) c v y 2 + 8 ( r x z 2 1 ) c v y 2 4 r y z r x y r x z c v y 2 + 6 ( r x z 2 1 ) c v z ( c v z 2 r y z c v y ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaafaqaaeabda aaaeaacaWGhbaabaGaeyypa0dabaGaaGOmamaabmqabaGaamOCamaa DaaaleaacaWG4bGaamOEaaqaaiaaikdaaaGccqGHsislcaaIXaaaca GLOaGaayzkaaWaaeWabeaacaWGYbWaaSbaaSqaaiaadMhacaWG6baa beaakiaadogacaWG2bWaaSbaaSqaaiaadMhaaeqaaOGaeyOeI0Iaam 4yaiaadAhadaWgaaWcbaGaamOEaaqabaaakiaawIcacaGLPaaadaah aaWcbeqaaiaaikdaaaaakeaacaWGibaabaGaeyypa0dabaWaaeWaae aacaWGJbGaamODamaaDaaaleaacaWG6baabaGaaGOmaaaakiabgUca RiaaigdaaiaawIcacaGLPaaadaqadaqaamaabmaabaGaaGymaiaaik dacqGHsislcaaI5aGaamOCamaaDaaaleaacaWG5bGaamOEaaqaaiaa ikdaaaaakiaawIcacaGLPaaacaWGYbWaa0baaSqaaiaadIhacaWG6b aabaGaaGOmaaaakiabgkHiTiaaiodacaWGYbWaaSbaaSqaaiaadIha caWG5baabeaakmaabmqabaGaaGOmaiaadkhadaWgaaWcbaGaamyEai aadQhaaeqaaOGaamOCamaaBaaaleaacaWG4bGaamOEaaqabaGccqGH sislcaaIXaaacaGLOaGaayzkaaGaey4kaSIaaGymaiaaikdadaqade qaaiaadkhadaqhaaWcbaGaamyEaiaadQhaaeaacaaIYaaaaOGaeyOe I0IaaGymaaGaayjkaiaawMcaaaGaayjkaiaawMcaaiaadogacaWG2b Waa0baaSqaaiaadQhaaeaacaaIYaaaaOGaam4yaiaadAhadaqhaaWc baGaamyEaaqaaiaaikdaaaaakeaaaeaacqGHRaWkaeaacaaIYaWaae WabeaacaWGYbWaa0baaSqaaiaadIhacaWG5baabaGaaGOmaaaakiab gUcaRiaadkhadaqhaaWcbaGaamyEaiaadQhaaeaacaaIYaaaaaGcca GLOaGaayzkaaGaam4yaiaadAhadaqhaaWcbaGaamyEaaqaaiaaikda aaGccqGHRaWkcaaI4aWaaeWabeaacaWGYbWaa0baaSqaaiaadIhaca WG6baabaGaaGOmaaaakiabgkHiTiaaigdaaiaawIcacaGLPaaacaWG JbGaamODamaaDaaaleaacaWG5baabaGaaGOmaaaakiabgkHiTiaais dacaWGYbWaaSbaaSqaaiaadMhacaWG6baabeaakiaadkhadaWgaaWc baGaamiEaiaadMhaaeqaaOGaamOCamaaBaaaleaacaWG4bGaamOEaa qabaGccaWGJbGaamODamaaDaaaleaacaWG5baabaGaaGOmaaaaaOqa aaqaaiabgUcaRaqaaiaaiAdadaqadaqaaiaadkhadaqhaaWcbaGaam iEaiaadQhaaeaacaaIYaaaaOGaeyOeI0IaaGymaaGaayjkaiaawMca aiaadogacaWG2bWaaSbaaSqaaiaadQhaaeqaaOWaaeWaaeaacaWGJb GaamODamaaBaaaleaacaWG6baabeaakiabgkHiTiaaikdacaWGYbWa aSbaaSqaaiaadMhacaWG6baabeaakiaadogacaWG2bWaaSbaaSqaai aadMhaaeqaaaGccaGLOaGaayzkaaaaaaaa@C965@

where r x y , r x z MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGYbWaaS baaSqaaiaadIhacaWG5baabeaakiaacYcacaWGYbWaaSbaaSqaaiaa dIhacaWG6baabeaaaaa@3F45@ and r y z MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGYbWaaS baaSqaaiaadMhacaWG6baabeaaaaa@3B6E@ denote population correlation coefficients, and c v y , c v z MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGJbGaam ODamaaBaaaleaacaWG5baabeaakiaacYcacaWGJbGaamODamaaBaaa leaacaWG6baabeaaaaa@3F23@ denote coefficients of variation. Although in this setting the departure from the conditions of Proposition 1 is minimal, different configurations of admissible values for r x y , r x z , r y z , c v y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGYbWaaS baaSqaaiaadIhacaWG5baabeaakiaacYcacaWGYbWaaSbaaSqaaiaa dIhacaWG6baabeaakiaacYcacaWGYbWaaSbaaSqaaiaadMhacaWG6b aabeaakiaacYcacaWGJbGaamODamaaBaaaleaacaWG5baabeaaaaa@46E6@ and c v z MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGJbGaam ODamaaBaaaleaacaWG6baabeaaaaa@3B5C@ show that the efficiency gain may be substantial, making up for the inefficiency of the HT estimator of t z MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWH0bWaaS baaSqaaiaahQhaaeqaaaaa@3A7A@ based on the Bernoulli sample S 2 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGtbWaaS baaSqaaiaaikdaaeqaaOGaaiOlaaaa@3ACA@ For example, when r xy =0.3, r xz =0.3, r yz =0.3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGYbWaaS baaSqaaiaadIhacaWG5baabeaakiabg2da9iaaicdacaGGUaGaaG4m aiaacYcacaWGYbWaaSbaaSqaaiaadIhacaWG6baabeaakiabg2da9i aaicdacaGGUaGaaG4maiaacYcacaWGYbWaaSbaaSqaaiaadMhacaWG 6baabeaakiabg2da9iaaicdacaGGUaGaaG4maaaa@4CB6@ and c v y =0.1,c v z =0.6, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGJbGaam ODamaaBaaaleaacaWG5baabeaakiabg2da9iaaicdacaGGUaGaaGym aiaacYcacaWGJbGaamODamaaBaaaleaacaWG6baabeaakiabg2da9i aaicdacaGGUaGaaGOnaiaacYcaaaa@463C@ the efficiency gain is 23%. In the case of the composite optimal regression estimator Z ^ COR , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWHAbGbaK aadaahaaWcbeqaaiaaboeacaqGpbGaaeOuaaaakiaacYcaaaa@3C95@ with estimated coefficients B ^ 1 z o MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWHcbGbaK aadaqhaaWcbaGaaGymaiaahQhaaeaacaWGVbaaaaaa@3C08@ and B ^ 3 z o , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWHcbGbaK aadaqhaaWcbaGaaG4maiaahQhaaeaacaWGVbaaaOGaaiilaaaa@3CC4@ the regression coefficients in (4.6) are estimated, and thus the equalities in (4.6) would never hold exactly because of the sample differences. Likewise in the case of the CGR estimator Z ^ CGR , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0db9peuj0lXxcrpe0=1qpeea0=yrVue9 Fve9Fje8meaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWHAbGbaK aadaahaaWcbeqaaiaaboeacaqGhbGaaeOuaaaakiaacYcaaaa@3C8D@ for which equations formally identical to (4.6) are given in terms of sample generalized regression coefficients.

Regarding the efficiency of the CGR estimator (4.5), an exact analogue of Theorem 1 holds in the present setting, with the same sampling strategies for which the CGR estimator is optimal regression estimator and asymptotically BLUE.

Composite estimation for a matrix sampling scheme involving a core set of variables with both known and unknown totals can be carried out using the obvious extended calibration scheme.

Previous | Next

Date modified: