8. Conclusions

Andrés Gutiérrez, Leonardo Trujillo et Pedro Luis do Nascimento Silva

Précédent

Cet article a examiné un problème fréquent d’applications de l’échantillonnage. Au moyen des modèles en chaîne de superpopulation de Markov, une nouvelle méthodologie a été proposée, entraînant des estimateurs à peu près sans biais des flux bruts à différents moments pour le cas particulier des données provenant d’enquêtes complexes avec des poids d’échantillonnage inégaux. Les applications possibles de la méthodologie dans le présent article sont larges, notamment dans le cas des bureaux de statistique nationaux envisageant des enquêtes complexes. Les enquêtes sur la qualité de vie ou sur la population active s’intéressent habituellement à l’estimation des flux bruts. Toutefois, les extensions possibles de cette méthodologie pourraient être appliquées au secteur de la politique publique pour les évaluations d’impacts ayant une classification des répondants avant et après une intervention.

De plus, nous présentons une solution à un problème général, comme la non-réponse non ignorable. Des modèles où la non-réponse n’est pas différenciée pendant différentes périodes ou selon l’état de classification ont été envisagés. Cependant, dans certaines applications pratiques, il est possible que ce ne soit pas le cas.

L’approche de cet article considère que les poids déterminés par le plan d’échantillonnage pour les unités entre les deux périodes sont les mêmes. Dans le cadre de travaux plus poussés, on s’efforcera de considérer différents poids entre les vagues en envisageant une classification d’échantillonnage à deux phases ou une approche de calage sur marges à deux degrés. En effet, il serait intéressant de comparer le rendement de la méthodologie donné dans cet article à la méthode du calage sur marges. On pourrait considérer l’approche d’Ash (2005) et de Sikkel, Hox et de Leeuw (2008) pour calibrer en deux périodes, ainsi que l’approche de Särndal et Lundström (2005) pour traiter la non-réponse.

Des travaux plus poussés chercheront à élargir cette méthodologie pour des modèles en chaîne de Markov plus complexes afin de considérer différents poids d’échantillonnage. Une nouvelle définition des paramètres du modèle sera nécessaire. De plus, cette méthodologie pourrait être appliquée au cas des flux bruts dans plus de deux périodes lorsque les erreurs de classification sont prises en compte.

Remerciements

Les auteurs souhaitent remercier deux réviseurs anonymes de leurs commentaires constructifs au sujet d’une version précédente de l’article, qui ont donné lieu à la présente version améliorée. De plus, le premier auteur tient à remercier l’Universidad Santo Tomas de son soutien financier pendant ses études doctorales. Cet article est le fruit de la thèse de doctorat d’Andrés Gutiérrez de l’Universidad Nacional de Colombia, sous la supervision des deux autres auteurs.

Annexe

A.1 Preuves mathématiques des résultats de l’article

Dans cette section, les preuves mathématiques de certains des résultats les plus importants de l’article sont incluses.

Preuve du résultat 4.1

Preuve. En prenant le logarithme de la fonction de vraisemblance, et en le définissant comme l MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiBaaaa@36D8@ , il s’ensuit que

l U = ln ( L U ) = i j N i j ln ( ψ ρ R R η i p i j ) + i R i ln ( j ψ ( 1 ρ R R ) η i p i j )         + j C j ln ( i ( 1 ψ ) ( 1 ρ M M ) η i p i j ) + M ln ( i j ( 1 ψ ) ρ M M η i p i j ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWGSb WaaSbaaSqaaiaadwfaaeqaaOGaeyypa0JaciiBaiaac6gadaqadaqa aiaadYeadaWgaaWcbaGaamyvaaqabaaakiaawIcacaGLPaaaaeaaca qGGaGaaeiiaiaabccacqGH9aqpdaaeqbqabSqaaiaadMgaaeqaniab ggHiLdGcdaaeqbqabSqaaiaadQgaaeqaniabggHiLdGccaWGobWaaS baaSqaaiaadMgacaWGQbaabeaakiGacYgacaGGUbWaaeWaaeaacqaH ipqEcqaHbpGCdaWgaaWcbaGaamOuaiaadkfaaeqaaOGaeq4TdG2aaS baaSqaaiaadMgaaeqaaOGaamiCamaaBaaaleaacaWGPbGaamOAaaqa baaakiaawIcacaGLPaaacqGHRaWkdaaeqbqabSqaaiaadMgaaeqani abggHiLdGccaWGsbWaaSbaaSqaaiaadMgaaeqaaOGaciiBaiaac6ga daqadaqaamaaqafabeWcbaGaamOAaaqab0GaeyyeIuoakiabeI8a5n aabmaabaGaaGymaiabgkHiTiabeg8aYnaaBaaaleaacaWGsbGaamOu aaqabaaakiaawIcacaGLPaaacqaH3oaAdaWgaaWcbaGaamyAaaqaba GccaWGWbWaaSbaaSqaaiaadMgacaWGQbaabeaaaOGaayjkaiaawMca aaqaaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacq GHRaWkdaaeqbqabSqaaiaadQgaaeqaniabggHiLdGccaWGdbWaaSba aSqaaiaadQgaaeqaaOGaciiBaiaac6gadaqadaqaamaaqafabeWcba GaamyAaaqab0GaeyyeIuoakmaabmaabaGaaGymaiabgkHiTiabeI8a 5bGaayjkaiaawMcaamaabmaabaGaaGymaiabgkHiTiabeg8aYnaaBa aaleaacaWGnbGaamytaaqabaaakiaawIcacaGLPaaacqaH3oaAdaWg aaWcbaGaamyAaaqabaGccaWGWbWaaSbaaSqaaiaadMgacaWGQbaabe aaaOGaayjkaiaawMcaaiabgUcaRiaad2eaciGGSbGaaiOBamaabmaa baWaaabuaeqaleaacaWGPbaabeqdcqGHris5aOWaaabuaeqaleaaca WGQbaabeqdcqGHris5aOWaaeWaaeaacaaIXaGaeyOeI0IaeqiYdKha caGLOaGaayzkaaGaeqyWdi3aaSbaaSqaaiaad2eacaWGnbaabeaaki abeE7aOnaaBaaaleaacaWGPbaabeaakiaadchadaWgaaWcbaGaamyA aiaadQgaaeqaaaGccaGLOaGaayzkaaGaaiOlaaaaaa@B10F@

Notons que N i j = k U y 1 i k y 2 j k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtamaaBa aaleaacaWGPbGaamOAaaqabaGccqGH9aqpdaaeqaqabSqaaiaadUga cqGHiiIZcaWGvbaabeqdcqGHris5aOGaamyEamaaBaaaleaacaaIXa GaamyAaiaadUgaaeqaaOGaamyEamaaBaaaleaacaaIYaGaamOAaiaa dUgaaeqaaaaa@46A1@ , R i = k U y 1 i k ( 1 z 2 k ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaBa aaleaacaWGPbaabeaakiabg2da9maaqababeWcbaGaam4AaiabgIGi olaadwfaaeqaniabggHiLdGccaWG5bWaaSbaaSqaaiaaigdacaWGPb Gaam4AaaqabaGcdaqadaqaaiaaigdacqGHsislcaWG6bWaaSbaaSqa aiaaikdacaWGRbaabeaaaOGaayjkaiaawMcaaaaa@4803@ , C j = k U y 2 j k ( 1 z 1 k ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaBa aaleaacaWGQbaabeaakiabg2da9maaqababeWcbaGaam4AaiabgIGi olaadwfaaeqaniabggHiLdGccaWG5bWaaSbaaSqaaiaaikdacaWGQb Gaam4AaaqabaGcdaqadaqaaiaaigdacqGHsislcaWG6bWaaSbaaSqa aiaaigdacaWGRbaabeaaaOGaayjkaiaawMcaaaaa@47F6@  et M = k U ( 1 z 1 k ) ( 1 z 2 k ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiabg2 da9maaqababeWcbaGaam4AaiabgIGiolaadwfaaeqaniabggHiLdGc daqadaqaaiaaigdacqGHsislcaWG6bWaaSbaaSqaaiaaigdacaWGRb aabeaaaOGaayjkaiaawMcaamaabmaabaGaaGymaiabgkHiTiaadQha daWgaaWcbaGaaGOmaiaadUgaaeqaaaGccaGLOaGaayzkaaGaaiOlaa aa@49D0@  Après avoir pris en compte la somme de la population totale, le résultat est finalement obtenu.

Preuve du résultat 4.2

Preuve. En commençant par la définition de la pseudo-vraisemblance et en tenant compte des hypothèses du modèle, il s’ensuit que

l U = k U [ i j y 1 i k y 2 j k [ ln ( ψ ) + ln ( ρ R R ) + ln ( η i ) + ln ( p i j ) ]            + i y 1 i k ( 1 z 2 k ) [ ln ( ψ ) + ln ( 1 ρ R R ) + ln ( η i ) + ln ( j p i j ) ]            + j y 2 j k ( 1 z 1 k ) [ ln ( 1 ρ M M ) + ln ( 1 ψ ) + ln ( i η i p i j ) ]            + ( 1 z 1 k ) ( 1 z 2 k ) [ ln ( 1 ψ ) + ln ( ρ M M ) + ln ( i j η i p i j ) ] ]     = k U f k ( ψ , ρ R R , ρ M M , η , p , y 1 , y 2 , z 1 , z 2 ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWGSb WaaSbaaSqaaiaadwfaaeqaaOGaeyypa0ZaaabuaeqaleaacaWGRbGa eyicI4Saamyvaaqab0GaeyyeIuoakmaadeaabaWaaabuaeqaleaaca WGPbaabeqdcqGHris5aOWaaabuaeqaleaacaWGQbaabeqdcqGHris5 aOGaamyEamaaBaaaleaacaaIXaGaamyAaiaadUgaaeqaaOGaamyEam aaBaaaleaacaaIYaGaamOAaiaadUgaaeqaaOWaamWaaeaaciGGSbGa aiOBamaabmaabaGaeqiYdKhacaGLOaGaayzkaaGaey4kaSIaciiBai aac6gadaqadaqaaiabeg8aYnaaBaaaleaacaWGsbGaamOuaaqabaaa kiaawIcacaGLPaaacqGHRaWkciGGSbGaaiOBamaabmaabaGaeq4TdG 2aaSbaaSqaaiaadMgaaeqaaaGccaGLOaGaayzkaaGaey4kaSIaciiB aiaac6gadaqadaqaaiaadchadaWgaaWcbaGaamyAaiaadQgaaeqaaa GccaGLOaGaayzkaaaacaGLBbGaayzxaaaacaGLBbaaaeaacaqGGaGa aeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccaca qGGaGaey4kaSYaaabuaeqaleaacaWGPbaabeqdcqGHris5aOGaamyE amaaBaaaleaacaaIXaGaamyAaiaadUgaaeqaaOWaaeWaaeaacaaIXa GaeyOeI0IaamOEamaaBaaaleaacaaIYaGaam4AaaqabaaakiaawIca caGLPaaadaWadaqaaiGacYgacaGGUbWaaeWaaeaacqaHipqEaiaawI cacaGLPaaacqGHRaWkciGGSbGaaiOBamaabmaabaGaaGymaiabgkHi Tiabeg8aYnaaBaaaleaacaWGsbGaamOuaaqabaaakiaawIcacaGLPa aacqGHRaWkciGGSbGaaiOBamaabmaabaGaeq4TdG2aaSbaaSqaaiaa dMgaaeqaaaGccaGLOaGaayzkaaGaey4kaSIaciiBaiaac6gadaqada qaamaaqafabeWcbaGaamOAaaqab0GaeyyeIuoakiaadchadaWgaaWc baGaamyAaiaadQgaaeqaaaGccaGLOaGaayzkaaaacaGLBbGaayzxaa aabaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaa bccacaqGGaGaaeiiaiabgUcaRmaaqafabeWcbaGaamOAaaqab0Gaey yeIuoakiaadMhadaWgaaWcbaGaaGOmaiaadQgacaWGRbaabeaakmaa bmaabaGaaGymaiabgkHiTiaadQhadaWgaaWcbaGaaGymaiaadUgaae qaaaGccaGLOaGaayzkaaWaamWaaeaaciGGSbGaaiOBaiaacIcacaaI XaGaeyOeI0IaeqyWdi3aaSbaaSqaaiaad2eacaWGnbaabeaakiaacM cacqGHRaWkciGGSbGaaiOBaiaacIcacaaIXaGaeyOeI0IaeqiYdKNa aiykaiabgUcaRiGacYgacaGGUbWaaeWaaeaadaaeqbqabSqaaiaadM gaaeqaniabggHiLdGccqaH3oaAdaWgaaWcbaGaamyAaaqabaGccaWG WbWaaSbaaSqaaiaadMgacaWGQbaabeaaaOGaayjkaiaawMcaaaGaay 5waiaaw2faaaqaaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeii aiaabccacaqGGaGaaeiiaiaabccacqGHRaWkdaWacaqaamaabmaaba GaaGymaiabgkHiTiaadQhadaWgaaWcbaGaaGymaiaadUgaaeqaaaGc caGLOaGaayzkaaWaaeWaaeaacaaIXaGaeyOeI0IaamOEamaaBaaale aacaaIYaGaam4AaaqabaaakiaawIcacaGLPaaadaWadaqaaiGacYga caGGUbWaaeWaaeaacaaIXaGaeyOeI0IaeqiYdKhacaGLOaGaayzkaa Gaey4kaSIaciiBaiaac6gadaqadaqaaiabeg8aYnaaBaaaleaacaWG nbGaamytaaqabaaakiaawIcacaGLPaaacqGHRaWkciGGSbGaaiOBam aabmaabaWaaabuaeqaleaacaWGPbaabeqdcqGHris5aOWaaabuaeqa leaacaWGQbaabeqdcqGHris5aOGaeq4TdG2aaSbaaSqaaiaadMgaae qaaOGaamiCamaaBaaaleaacaWGPbGaamOAaaqabaaakiaawIcacaGL PaaaaiaawUfacaGLDbaaaiaaw2faaaqaaiaabccacaqGGaGaaeiiai abg2da9maaqafabeWcbaGaam4AaiabgIGiolaadwfaaeqaniabggHi LdGccaWGMbWaaSbaaSqaaiaadUgaaeqaaOWaaeWaaeaacqaHipqEca aISaGaeqyWdi3aaSbaaSqaaiaadkfacaWGsbaabeaakiaaiYcacqaH bpGCdaWgaaWcbaGaamytaiaad2eaaeqaaOGaaGilaiaahE7acaaISa GaaCiCaiaaiYcacaWH5bWaaSbaaSqaaiaaigdaaeqaaOGaaGilaiaa hMhadaWgaaWcbaGaaGOmaaqabaGccaaISaGaaCOEamaaBaaaleaaca aIXaaabeaakiaaiYcacaWH6bWaaSbaaSqaaiaaikdaaeqaaaGccaGL OaGaayzkaaGaaiOlaaaaaa@2FF3@

Le score pour ψ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiYdKhaaa@37B5@  peut être défini comme suit :

u k ( ψ ) = f k ( ψ , ρ R R , ρ M M , η , p , y 1 , y 2 , z 1 , z 2 ) ψ = ( 1 ψ ) ( i j y 1 i k y 2 j k + i y 1 i k ( 1 z 2 k ) ) ψ ( j y 2 j k ( 1 z 1 k ) + ( 1 z 1 k ) ( 1 z 2 k ) ) ψ ( 1 ψ ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWG1b WaaSbaaSqaaiaadUgaaeqaaOWaaeWaaeaacqaHipqEaiaawIcacaGL PaaacqGH9aqpdaWcaaqaaiabgkGi2kaadAgadaWgaaWcbaGaam4Aaa qabaGcdaqadaqaaiabeI8a5jaaiYcacqaHbpGCdaWgaaWcbaGaamOu aiaadkfaaeqaaOGaaGilaiabeg8aYnaaBaaaleaacaWGnbGaamytaa qabaGccaaISaGaaC4TdiaaiYcacaWHWbGaaGilaiaahMhadaWgaaWc baGaaGymaaqabaGccaaISaGaaCyEamaaBaaaleaacaaIYaaabeaaki aaiYcacaWH6bWaaSbaaSqaaiaaigdaaeqaaOGaaGilaiaahQhadaWg aaWcbaGaaGOmaaqabaaakiaawIcacaGLPaaaaeaacqGHciITcqaHip qEaaaabaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeii aiaabccacaqGGaGaaeiiaiabg2da9maalaaabaWaaeWaaeaacaaIXa GaeyOeI0IaeqiYdKhacaGLOaGaayzkaaWaaeWaaeaadaaeqaqaamaa qababaGaamyEamaaBaaaleaacaaIXaGaamyAaiaadUgaaeqaaOGaam yEamaaBaaaleaacaaIYaGaamOAaiaadUgaaeqaaaqaaiaadQgaaeqa niabggHiLdaaleaacaWGPbaabeqdcqGHris5aOGaey4kaSYaaabeae aacaWG5bWaaSbaaSqaaiaaigdacaWGPbGaam4AaaqabaGcdaqadaqa aiaaigdacqGHsislcaWG6bWaaSbaaSqaaiaaikdacaWGRbaabeaaaO GaayjkaiaawMcaaaWcbaGaamyAaaqab0GaeyyeIuoaaOGaayjkaiaa wMcaaiabgkHiTiabeI8a5naabmaabaWaaabeaeaacaWG5bWaaSbaaS qaaiaaikdacaWGQbGaam4AaaqabaGcdaqadaqaaiaaigdacqGHsisl caWG6bWaaSbaaSqaaiaaigdacaWGRbaabeaaaOGaayjkaiaawMcaaa WcbaGaamOAaaqab0GaeyyeIuoakiabgUcaRmaabmaabaGaaGymaiab gkHiTiaadQhadaWgaaWcbaGaaGymaiaadUgaaeqaaaGccaGLOaGaay zkaaWaaeWaaeaacaaIXaGaeyOeI0IaamOEamaaBaaaleaacaaIYaGa am4AaaqabaaakiaawIcacaGLPaaaaiaawIcacaGLPaaaaeaacqaHip qEdaqadaqaaiaaigdacqGHsislcqaHipqEaiaawIcacaGLPaaaaaGa aiOlaaaaaa@ABC6@

Alors, pour ce paramètre, les équations de pseudo-vraisemblance sont données par

k S w k u k ( ψ ) = 0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabuaeqale aacaWGRbGaeyicI4Saam4uaaqab0GaeyyeIuoakiaadEhadaWgaaWc baGaam4AaaqabaGccaWG1bWaaSbaaSqaaiaadUgaaeqaaOWaaeWaae aacqaHipqEaiaawIcacaGLPaaacqGH9aqpcaaIWaGaaiOlaaaa@456B@

Pour la solution de ψ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiYdKhaaa@37B5@ , on constate que

ψ ^ m p v = i j N ^ i j + i R ^ i i j N ^ i j + i R ^ i i + j C ^ j + M ^ . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiYdKNbaK aadaWgaaWcbaGaamyBaiaadchacaWG2baabeaakiabg2da9maalaaa baWaaabeaeaadaaeqaqaaiqad6eagaqcamaaBaaaleaacaWGPbGaam OAaaqabaaabaGaamOAaaqab0GaeyyeIuoaaSqaaiaadMgaaeqaniab ggHiLdGccqGHRaWkdaaeqaqaaiqadkfagaqcamaaBaaaleaacaWGPb aabeaaaeaacaWGPbaabeqdcqGHris5aaGcbaWaaabeaeaadaaeqaqa aiqad6eagaqcamaaBaaaleaacaWGPbGaamOAaaqabaaabaGaamOAaa qab0GaeyyeIuoaaSqaaiaadMgaaeqaniabggHiLdGccqGHRaWkdaae qaqaaiqadkfagaqcamaaBaaaleaacaWGPbaabeaaaeaacaWGPbaabe qdcqGHris5aOWaaSbaaSqaaiaadMgaaeqaaOGaey4kaSYaaabeaeaa ceWGdbGbaKaadaWgaaWcbaGaamOAaaqabaaabaGaamOAaaqab0Gaey yeIuoakiabgUcaRiqad2eagaqcaaaacaGGUaaaaa@61B4@

Au moyen d’un processus analogue pour les paramètres restants, le résultat est obtenu.

Preuve du résultat 4.3

Preuve. D’abord, il faut savoir que l’estimation pour ces paramètres est assujettie aux restrictions i η i = 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabeaeqale aacaWGPbaabeqdcqGHris5aOGaeq4TdG2aaSbaaSqaaiaadMgaaeqa aOGaeyypa0JaaGymaaaa@3D54@  et j p i j = 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabeaeqale aacaWGQbaabeqdcqGHris5aOGaamiCamaaBaaaleaacaWGPbGaamOA aaqabaGccqGH9aqpcaaIXaaaaa@3D8D@ . Alors, le processus doit tenir compte de l’utilisation des multiplicateurs de Lagrange. La fonction à maximiser, y compris ces restrictions, peut être exprimée comme suit :

l U + λ 1 ( i η i 1 ) + λ 2 ( j p i j 1 ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiBamaaBa aaleaacaWGvbaabeaakiabgUcaRiabeU7aSnaaBaaaleaacaaIXaaa beaakmaabmaabaWaaabuaeqaleaacaWGPbaabeqdcqGHris5aOGaeq 4TdG2aaSbaaSqaaiaadMgaaeqaaOGaeyOeI0IaaGymaaGaayjkaiaa wMcaaiabgUcaRiabeU7aSnaaBaaaleaacaaIYaaabeaakmaabmaaba WaaabuaeqaleaacaWGQbaabeqdcqGHris5aOGaamiCamaaBaaaleaa caWGPbGaamOAaaqabaGccqGHsislcaaIXaaacaGLOaGaayzkaaGaai Olaaaa@521B@

Alors, le score correspondant pour η i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4TdG2aaS baaSqaaiaadMgaaeqaaaaa@38AD@  est défini par

u k ( η i ) = f k ( ψ , ρ R R , ρ M M , η , p , y 1 , y 2 , z 1 , z 2 ) η i + λ 1 ( i η i 1 ) η i = j y 1 i k y 2 j k + y 1 i k ( 1 z 2 k ) η i + j y 2 j k ( 1 z 1 k ) p i j i η i p i j + ( 1 z 1 k ) ( 1 z 2 k ) + λ 1 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWG1b WaaSbaaSqaaiaadUgaaeqaaOWaaeWaaeaacqaH3oaAdaWgaaWcbaGa amyAaaqabaaakiaawIcacaGLPaaacqGH9aqpdaWcaaqaaiabgkGi2k aadAgadaWgaaWcbaGaam4AaaqabaGcdaqadaqaaiabeI8a5jaaiYca cqaHbpGCdaWgaaWcbaGaamOuaiaadkfaaeqaaOGaaGilaiabeg8aYn aaBaaaleaacaWGnbGaamytaaqabaGccaaISaGaaC4TdiaaiYcacaWH WbGaaGilaiaahMhadaWgaaWcbaGaaGymaaqabaGccaaISaGaaCyEam aaBaaaleaacaaIYaaabeaakiaaiYcacaWH6bWaaSbaaSqaaiaaigda aeqaaOGaaGilaiaahQhadaWgaaWcbaGaaGOmaaqabaaakiaawIcaca GLPaaaaeaacqGHciITcqaH3oaAdaWgaaWcbaGaamyAaaqabaaaaOGa ey4kaSYaaSaaaeaacqGHciITcqaH7oaBdaWgaaWcbaGaaGymaaqaba GcdaqadaqaamaaqababaGaeq4TdG2aaSbaaSqaaiaadMgaaeqaaaqa aiaadMgaaeqaniabggHiLdGccqGHsislcaaIXaaacaGLOaGaayzkaa aabaGaeyOaIyRaeq4TdG2aaSbaaSqaaiaadMgaaeqaaaaaaOqaaiaa bccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaae iiaiaabccacqGH9aqpdaWcaaqaamaaqababaGaamyEamaaBaaaleaa caaIXaGaamyAaiaadUgaaeqaaOGaamyEamaaBaaaleaacaaIYaGaam OAaiaadUgaaeqaaaqaaiaadQgaaeqaniabggHiLdGccqGHRaWkcaWG 5bWaaSbaaSqaaiaaigdacaWGPbGaam4AaaqabaGcdaqadaqaaiaaig dacqGHsislcaWG6bWaaSbaaSqaaiaaikdacaWGRbaabeaaaOGaayjk aiaawMcaaaqaaiabeE7aOnaaBaaaleaacaWGPbaabeaaaaGccqGHRa WkdaaeqbqabSqaaiaadQgaaeqaniabggHiLdGccaWG5bWaaSbaaSqa aiaaikdacaWGQbGaam4AaaqabaGcdaqadaqaaiaaigdacqGHsislca WG6bWaaSbaaSqaaiaaigdacaWGRbaabeaaaOGaayjkaiaawMcaamaa laaabaGaamiCamaaBaaaleaacaWGPbGaamOAaaqabaaakeaadaaeqa qaaiabeE7aOnaaBaaaleaacaWGPbaabeaakiaadchadaWgaaWcbaGa amyAaiaadQgaaeqaaaqaaiaadMgaaeqaniabggHiLdaaaOGaey4kaS YaaeWaaeaacaaIXaGaeyOeI0IaamOEamaaBaaaleaacaaIXaGaam4A aaqabaaakiaawIcacaGLPaaadaqadaqaaiaaigdacqGHsislcaWG6b WaaSbaaSqaaiaaikdacaWGRbaabeaaaOGaayjkaiaawMcaaiabgUca RiabeU7aSnaaBaaaleaacaaIXaaabeaakiaac6caaaaa@BBAF@

La dernière étape tient compte des restrictions, puisque i j η i p i j = i η i j p i j = i η i = 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabeaeqale aacaWGPbaabeqdcqGHris5aOWaaabeaeqaleaacaWGQbaabeqdcqGH ris5aOGaeq4TdG2aaSbaaSqaaiaadMgaaeqaaOGaamiCamaaBaaale aacaWGPbGaamOAaaqabaGccqGH9aqpdaaeqaqabSqaaiaadMgaaeqa niabggHiLdGccqaH3oaAdaWgaaWcbaGaamyAaaqabaGcdaaeqaqabS qaaiaadQgaaeqaniabggHiLdGccaWGWbWaaSbaaSqaaiaadMgacaWG Qbaabeaakiabg2da9maaqababeWcbaGaamyAaaqab0GaeyyeIuoaki abeE7aOnaaBaaaleaacaWGPbaabeaakiabg2da9iaaigdaaaa@5682@ . Alors, pour ce paramètre, les équations de pseudo-vraisemblance sont données par

k S w k u k ( η i ) = 0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabuaeqale aacaWGRbGaeyicI4Saam4uaaqab0GaeyyeIuoakiaadEhadaWgaaWc baGaam4AaaqabaGccaWG1bWaaSbaaSqaaiaadUgaaeqaaOWaaeWaae aacqaH3oaAdaWgaaWcbaGaamyAaaqabaaakiaawIcacaGLPaaacqGH 9aqpcaaIWaGaaiOlaaaa@466D@

Alors, après un peu d’algèbre, il s’ensuit que

η i = j s w k y 1 i k y 2 j k + s w k y 1 i k ( 1 z 2 k ) + j s w k y 2 j k ( 1 z 1 k ) ( η i p i j / i η i p i j ) s w k ( 1 z 1 k ) ( 1 z 2 k ) λ 1 s w k . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4TdG2aaS baaSqaaiaadMgaaeqaaOGaeyypa0ZaaSaaaeaadaaeqaqaamaaqaba baGaam4DamaaBaaaleaacaWGRbaabeaakiaadMhadaWgaaWcbaGaaG ymaiaadMgacaWGRbaabeaakiaadMhadaWgaaWcbaGaaGOmaiaadQga caWGRbaabeaaaeaacaWGZbaabeqdcqGHris5aaWcbaGaamOAaaqab0 GaeyyeIuoakiabgUcaRmaaqababaGaam4DamaaBaaaleaacaWGRbaa beaakiaadMhadaWgaaWcbaGaaGymaiaadMgacaWGRbaabeaakmaabm aabaGaaGymaiabgkHiTiaadQhadaWgaaWcbaGaaGOmaiaadUgaaeqa aaGccaGLOaGaayzkaaaaleaacaWGZbaabeqdcqGHris5aOGaey4kaS YaaabeaeaadaaeqaqaaiaadEhadaWgaaWcbaGaam4AaaqabaGccaWG 5bWaaSbaaSqaaiaaikdacaWGQbGaam4AaaqabaGcdaqadaqaaiaaig dacqGHsislcaWG6bWaaSbaaSqaaiaaigdacaWGRbaabeaaaOGaayjk aiaawMcaamaabmaabaWaaSGbaeaacqaH3oaAdaWgaaWcbaGaamyAaa qabaGccaWGWbWaaSbaaSqaaiaadMgacaWGQbaabeaaaOqaamaaqaba baGaeq4TdG2aaSbaaSqaaiaadMgaaeqaaOGaamiCamaaBaaaleaaca WGPbGaamOAaaqabaaabaGaamyAaaqab0GaeyyeIuoaaaaakiaawIca caGLPaaaaSqaaiaadohaaeqaniabggHiLdaaleaacaWGQbaabeqdcq GHris5aaGcbaGaeyOeI0YaaabeaeaacaWG3bWaaSbaaSqaaiaadUga aeqaaOWaaeWaaeaacaaIXaGaeyOeI0IaamOEamaaBaaaleaacaaIXa Gaam4AaaqabaaakiaawIcacaGLPaaadaqadaqaaiaaigdacqGHsisl caWG6bWaaSbaaSqaaiaaikdacaWGRbaabeaaaOGaayjkaiaawMcaaa WcbaGaam4Caaqab0GaeyyeIuoakiabgkHiTiabeU7aSnaaBaaaleaa caaIXaaabeaakmaaqababaGaam4DamaaBaaaleaacaWGRbaabeaaae aacaWGZbaabeqdcqGHris5aaaakiaac6caaaa@96F1@

Par ailleurs, en utilisant la restriction i η i = 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabeaeqale aacaWGPbaabeqdcqGHris5aOGaeq4TdG2aaSbaaSqaaiaadMgaaeqa aOGaeyypa0JaaGymaaaa@3D54@  et en faisant la somme par rapport à i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaaaa@36D5@ , il s’ensuit que

i j N ^ i j + i R ^ i + j C ^ j = ( s w k ( 1 z 1 k ) ( 1 z 2 k ) λ 1 s w k ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabuaeqale aacaWGPbaabeqdcqGHris5aOWaaabuaeqaleaacaWGQbaabeqdcqGH ris5aOGabmOtayaajaWaaSbaaSqaaiaadMgacaWGQbaabeaakiabgU caRmaaqafabeWcbaGaamyAaaqab0GaeyyeIuoakiqadkfagaqcamaa BaaaleaacaWGPbaabeaakiabgUcaRmaaqafabeWcbaGaamOAaaqab0 GaeyyeIuoakiqadoeagaqcamaaBaaaleaacaWGQbaabeaakiabg2da 9maabmaabaGaeyOeI0YaaabuaeqaleaacaWGZbaabeqdcqGHris5aO Gaam4DamaaBaaaleaacaWGRbaabeaakmaabmaabaGaaGymaiabgkHi TiaadQhadaWgaaWcbaGaaGymaiaadUgaaeqaaaGccaGLOaGaayzkaa WaaeWaaeaacaaIXaGaeyOeI0IaamOEamaaBaaaleaacaaIYaGaam4A aaqabaaakiaawIcacaGLPaaacqGHsislcqaH7oaBdaWgaaWcbaGaaG ymaaqabaGcdaaeqbqabSqaaiaadohaaeqaniabggHiLdGccaWG3bWa aSbaaSqaaiaadUgaaeqaaaGccaGLOaGaayzkaaGaaiOlaaaa@698D@

Alors, nous obtenons enfin que

η i = j N ^ i j + R ^ i + j ( C ^ j η i p i j / i η i p i j ) i j N ^ i j + i R ^ i + j C ^ j . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4TdG2aaS baaSqaaiaadMgaaeqaaOGaeyypa0ZaaSaaaeaadaaeqaqaaiqad6ea gaqcamaaBaaaleaacaWGPbGaamOAaaqabaaabaGaamOAaaqab0Gaey yeIuoakiabgUcaRiqadkfagaqcamaaBaaaleaacaWGPbaabeaakiab gUcaRmaaqafabeWcbaGaamOAaaqab0GaeyyeIuoakmaabmaabaWaaS GbaeaaceWGdbGbaKaadaWgaaWcbaGaamOAaaqabaGccqaH3oaAdaWg aaWcbaGaamyAaaqabaGccaWGWbWaaSbaaSqaaiaadMgacaWGQbaabe aaaOqaamaaqababaGaeq4TdG2aaSbaaSqaaiaadMgaaeqaaOGaamiC amaaBaaaleaacaWGPbGaamOAaaqabaaabaGaamyAaaqab0GaeyyeIu oaaaaakiaawIcacaGLPaaaaeaadaaeqaqaamaaqababaGabmOtayaa jaWaaSbaaSqaaiaadMgacaWGQbaabeaaaeaacaWGQbaabeqdcqGHri s5aaWcbaGaamyAaaqab0GaeyyeIuoakiabgUcaRmaaqababaGabmOu ayaajaWaaSbaaSqaaiaadMgaaeqaaaqaaiaadMgaaeqaniabggHiLd GccqGHRaWkdaaeqaqaaiqadoeagaqcamaaBaaaleaacaWGQbaabeaa aeaacaWGQbaabeqdcqGHris5aaaakiaac6caaaa@6D20@

Par ailleurs, afin de trouver l’estimateur du maximum de pseudo-vraisemblance de { p i j } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiWaaeaaca WGWbWaaSbaaSqaaiaadMgacaWGQbaabeaaaOGaay5Eaiaaw2haaaaa @3B20@ , le score pour p i j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaBa aaleaacaWGPbGaamOAaaqabaaaaa@38E5@  est défini comme suit :

u k ( p i j ) = f k ( ψ , ρ R R , ρ M M , η , p , y 1 , y 2 , z 1 , z 2 ) p i j + λ 2 ( i p i j 1 ) p i j = y 1 i k y 2 j k p i j + y 1 i k ( 1 z 2 k ) + y 2 j k ( 1 z 1 k ) η i i η i p i j + ( 1 z 1 k ) ( 1 z 2 k ) η i + λ 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWG1b WaaSbaaSqaaiaadUgaaeqaaOWaaeWaaeaacaWGWbWaaSbaaSqaaiaa dMgacaWGQbaabeaaaOGaayjkaiaawMcaaiabg2da9maalaaabaGaey OaIyRaamOzamaaBaaaleaacaWGRbaabeaakmaabmaabaGaeqiYdKNa aGilaiabeg8aYnaaBaaaleaacaWGsbGaamOuaaqabaGccaaISaGaeq yWdi3aaSbaaSqaaiaad2eacaWGnbaabeaakiaaiYcacaWH3oGaaGil aiaahchacaaISaGaaCyEamaaBaaaleaacaaIXaaabeaakiaaiYcaca WH5bWaaSbaaSqaaiaaikdaaeqaaOGaaGilaiaahQhadaWgaaWcbaGa aGymaaqabaGccaaISaGaaCOEamaaBaaaleaacaaIYaaabeaaaOGaay jkaiaawMcaaaqaaiabgkGi2kaadchadaWgaaWcbaGaamyAaiaadQga aeqaaaaakiabgUcaRmaalaaabaGaeyOaIyRaeq4UdW2aaSbaaSqaai aaikdaaeqaaOWaaeWaaeaadaaeqaqaaiaadchadaWgaaWcbaGaamyA aiaadQgaaeqaaaqaaiaadMgaaeqaniabggHiLdGccqGHsislcaaIXa aacaGLOaGaayzkaaaabaGaeyOaIyRaamiCamaaBaaaleaacaWGPbGa amOAaaqabaaaaaGcbaGaaeiiaiaabccacaqGGaGaaeiiaiaabccaca qGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacqGH9aqpdaWcaaqa aiaadMhadaWgaaWcbaGaaGymaiaadMgacaWGRbaabeaakiaadMhada WgaaWcbaGaaGOmaiaadQgacaWGRbaabeaaaOqaaiaadchadaWgaaWc baGaamyAaiaadQgaaeqaaaaakiabgUcaRiaadMhadaWgaaWcbaGaaG ymaiaadMgacaWGRbaabeaakmaabmaabaGaaGymaiabgkHiTiaadQha daWgaaWcbaGaaGOmaiaadUgaaeqaaaGccaGLOaGaayzkaaGaey4kaS IaamyEamaaBaaaleaacaaIYaGaamOAaiaadUgaaeqaaOWaaeWaaeaa caaIXaGaeyOeI0IaamOEamaaBaaaleaacaaIXaGaam4Aaaqabaaaki aawIcacaGLPaaadaWcaaqaaiabeE7aOnaaBaaaleaacaWGPbaabeaa aOqaamaaqababaGaeq4TdG2aaSbaaSqaaiaadMgaaeqaaOGaamiCam aaBaaaleaacaWGPbGaamOAaaqabaaabaGaamyAaaqab0GaeyyeIuoa aaGccqGHRaWkdaqadaqaaiaaigdacqGHsislcaWG6bWaaSbaaSqaai aaigdacaWGRbaabeaaaOGaayjkaiaawMcaamaabmaabaGaaGymaiab gkHiTiaadQhadaWgaaWcbaGaaGOmaiaadUgaaeqaaaGccaGLOaGaay zkaaGaeq4TdG2aaSbaaSqaaiaadMgaaeqaaOGaey4kaSIaeq4UdW2a aSbaaSqaaiaaikdaaeqaaOGaaiOlaaaaaa@BA20@

Par conséquent,

p i j = s w k y 1 i k y 2 j k + s w k y 2 j k ( 1 z 1 k ) p i j η i / i η i p i j s w k y 1 i k ( 1 z 2 k ) s w k ( 1 z 1 k ) ( 1 z 2 k ) η i s w k λ 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaBa aaleaacaWGPbGaamOAaaqabaGccqGH9aqpdaWcaaqaamaaqababaGa am4DamaaBaaaleaacaWGRbaabeaakiaadMhadaWgaaWcbaGaaGymai aadMgacaWGRbaabeaakiaadMhadaWgaaWcbaGaaGOmaiaadQgacaWG RbaabeaaaeaacaWGZbaabeqdcqGHris5aOGaey4kaSYaaabeaeaaca WG3bWaaSbaaSqaaiaadUgaaeqaaOGaamyEamaaBaaaleaacaaIYaGa amOAaiaadUgaaeqaaOWaaeWaaeaacaaIXaGaeyOeI0IaamOEamaaBa aaleaacaaIXaGaam4AaaqabaaakiaawIcacaGLPaaadaWcgaqaaiaa dchadaWgaaWcbaGaamyAaiaadQgaaeqaaOGaeq4TdG2aaSbaaSqaai aadMgaaeqaaaGcbaWaaabeaeaacqaH3oaAdaWgaaWcbaGaamyAaaqa baGccaWGWbWaaSbaaSqaaiaadMgacaWGQbaabeaaaeaacaWGPbaabe qdcqGHris5aaaaaSqaaiaadohaaeqaniabggHiLdaakeaacqGHsisl daaeqaqaaiaadEhadaWgaaWcbaGaam4AaaqabaGccaWG5bWaaSbaaS qaaiaaigdacaWGPbGaam4AaaqabaGcdaqadaqaaiaaigdacqGHsisl caWG6bWaaSbaaSqaaiaaikdacaWGRbaabeaaaOGaayjkaiaawMcaaa WcbaGaam4Caaqab0GaeyyeIuoakiabgkHiTmaaqababaGaam4Damaa BaaaleaacaWGRbaabeaakmaabmaabaGaaGymaiabgkHiTiaadQhada WgaaWcbaGaaGymaiaadUgaaeqaaaGccaGLOaGaayzkaaWaaeWaaeaa caaIXaGaeyOeI0IaamOEamaaBaaaleaacaaIYaGaam4Aaaqabaaaki aawIcacaGLPaaacqaH3oaAdaWgaaWcbaGaamyAaaqabaaabaGaam4C aaqab0GaeyyeIuoakiabgkHiTmaaqababaGaam4DamaaBaaaleaaca WGRbaabeaakiabeU7aSnaaBaaaleaacaaIYaaabeaaaeaacaWGZbaa beqdcqGHris5aaaakiaac6caaaa@92B9@

En utilisant la restriction j p i j = 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabeaeqale aacaWGQbaabeqdcqGHris5aOGaamiCamaaBaaaleaacaWGPbGaamOA aaqabaGccqGH9aqpcaaIXaaaaa@3D8D@  et en faisant la somme par rapport à j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOAaaaa@36D6@  des deux côtés, il s’ensuit que

j N ^ i j + j C ^ j p i j η i i η i p i j   = ( s w k y 1 i k ( 1 z 2 k ) s w k ( 1 z 1 k ) ( 1 z 2 k ) η i s w k λ 2 ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaadaaeqb qabSqaaiaadQgaaeqaniabggHiLdGcceWGobGbaKaadaWgaaWcbaGa amyAaiaadQgaaeqaaOGaey4kaSYaaabuaeqaleaacaWGQbaabeqdcq GHris5aOGabm4qayaajaWaaSbaaSqaaiaadQgaaeqaaOWaaSaaaeaa caWGWbWaaSbaaSqaaiaadMgacaWGQbaabeaakiabeE7aOnaaBaaale aacaWGPbaabeaaaOqaamaaqafabeWcbaGaamyAaaqab0GaeyyeIuoa kiabeE7aOnaaBaaaleaacaWGPbaabeaakiaadchadaWgaaWcbaGaam yAaiaadQgaaeqaaaaaaOqaaiaabccacqGH9aqpdaqadaqaaiabgkHi TmaaqafabeWcbaGaam4Caaqab0GaeyyeIuoakiaadEhadaWgaaWcba Gaam4AaaqabaGccaWG5bWaaSbaaSqaaiaaigdacaWGPbGaam4Aaaqa baGcdaqadaqaaiaaigdacqGHsislcaWG6bWaaSbaaSqaaiaaikdaca WGRbaabeaaaOGaayjkaiaawMcaaiabgkHiTmaaqafabeWcbaGaam4C aaqab0GaeyyeIuoakiaadEhadaWgaaWcbaGaam4AaaqabaGcdaqada qaaiaaigdacqGHsislcaWG6bWaaSbaaSqaaiaaigdacaWGRbaabeaa aOGaayjkaiaawMcaamaabmaabaGaaGymaiabgkHiTiaadQhadaWgaa WcbaGaaGOmaiaadUgaaeqaaaGccaGLOaGaayzkaaGaeq4TdG2aaSba aSqaaiaadMgaaeqaaOGaeyOeI0YaaabuaeqaleaacaWGZbaabeqdcq GHris5aOGaam4DamaaBaaaleaacaWGRbaabeaakiabeU7aSnaaBaaa leaacaaIYaaabeaaaOGaayjkaiaawMcaaiaac6caaaaa@82D3@

Alors, il s’ensuit que

p i j = N ^ i j + ( C ^ j η i p i j / i η i p i j ) j N ^ i j + j ( C ^ j η i p i j / i η i p i j ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaBa aaleaacaWGPbGaamOAaaqabaGccqGH9aqpdaWcaaqaaiqad6eagaqc amaaBaaaleaacaWGPbGaamOAaaqabaGccqGHRaWkdaqadaqaamaaly aabaGabm4qayaajaWaaSbaaSqaaiaadQgaaeqaaOGaeq4TdG2aaSba aSqaaiaadMgaaeqaaOGaamiCamaaBaaaleaacaWGPbGaamOAaaqaba aakeaadaaeqaqaaiabeE7aOnaaBaaaleaacaWGPbaabeaakiaadcha daWgaaWcbaGaamyAaiaadQgaaeqaaaqaaiaadMgaaeqaniabggHiLd aaaaGccaGLOaGaayzkaaaabaWaaabeaeaaceWGobGbaKaadaWgaaWc baGaamyAaiaadQgaaeqaaaqaaiaadQgaaeqaniabggHiLdGccqGHRa WkdaaeqaqaamaabmaabaWaaSGbaeaaceWGdbGbaKaadaWgaaWcbaGa amOAaaqabaGccqaH3oaAdaWgaaWcbaGaamyAaaqabaGccaWGWbWaaS baaSqaaiaadMgacaWGQbaabeaaaOqaamaaqababaGaeq4TdG2aaSba aSqaaiaadMgaaeqaaOGaamiCamaaBaaaleaacaWGPbGaamOAaaqaba aabaGaamyAaaqab0GaeyyeIuoaaaaakiaawIcacaGLPaaaaSqaaiaa dQgaaeqaniabggHiLdaaaOGaaiOlaaaa@6C2D@

Maintenant, soulignons qu’il est impossible de résoudre la dernière expression pour { p i j } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiWaaeaaca WGWbWaaSbaaSqaaiaadMgacaWGQbaabeaaaOGaay5Eaiaaw2haaaaa @3B20@  de façon à ce que la solution soit une expression fermée. Il en va de même en ce qui concerne l’expression pour { η i } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiWaaeaacq aH3oaAdaWgaaWcbaGaamyAaaqabaaakiaawUhacaGL9baaaaa@3AE8@ . Cependant, il est possible d’utiliser une approche itérative, qui s’est avérée avoir une convergence rapide des problèmes d’estimation du maximum de vraisemblance pour les tableaux de contingence. Cette approche présume que l’estimateur du maximum de pseudo-vraisemblance peut se trouver après une itération conjointe des expressions suivantes à l’étape ( v + 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WG2bGaey4kaSIaaGymaaGaayjkaiaawMcaaaaa@3A08@ , pour v 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODaiabgw MiZkaaigdaaaa@3963@ ,

η ^ i , m p v ( v + 1 ) = j N ^ i j + R ^ i + j ( C ^ j η ^ i ( v ) p ^ i j ( v ) / i η ^ i ( v ) p ^ i j ( v ) ) i j N ^ i j + i R ^ i + j C ^ j p ^ i j , m p v ( v + 1 ) = N ^ i j + ( C ^ j η ^ i ( v ) p ^ i j ( v ) / i η ^ i ( v ) p ^ i j ( v ) ) j N ^ i j + j ( C ^ j η ^ i ( v ) p ^ i j ( v ) / i η ^ i ( v ) p ^ i j ( v ) ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiWaaa qaaiqbeE7aOzaajaWaa0baaSqaaiaadMgacaaISaGaamyBaiaadcha caWG2baabaGaaiikaiaadAhacqGHRaWkcaaIXaGaaiykaaaaaOqaai abg2da9aabaeqabaWaaSaaaeaadaaeqaqaaiqad6eagaqcamaaBaaa leaacaWGPbGaamOAaaqabaaabaGaamOAaaqab0GaeyyeIuoakiabgU caRiqadkfagaqcamaaBaaaleaacaWGPbaabeaakiabgUcaRmaaqaba baWaaeWaaeaadaWcgaqaaiqadoeagaqcamaaBaaaleaacaWGQbaabe aakiqbeE7aOzaajaWaa0baaSqaaiaadMgaaeaacaGGOaGaamODaiaa cMcaaaGcceWGWbGbaKaadaqhaaWcbaGaamyAaiaadQgaaeaacaGGOa GaamODaiaacMcaaaaakeaadaaeqaqaaiqbeE7aOzaajaWaa0baaSqa aiaadMgaaeaacaGGOaGaamODaiaacMcaaaGcceWGWbGbaKaadaqhaa WcbaGaamyAaiaadQgaaeaacaGGOaGaamODaiaacMcaaaaabaGaamyA aaqab0GaeyyeIuoaaaaakiaawIcacaGLPaaaaSqaaiaadQgaaeqani abggHiLdaakeaadaaeqaqaamaaqababaGabmOtayaajaWaaSbaaSqa aiaadMgacaWGQbaabeaaaeaacaWGQbaabeqdcqGHris5aaWcbaGaam yAaaqab0GaeyyeIuoakiabgUcaRmaaqababaGabmOuayaajaWaaSba aSqaaiaadMgaaeqaaaqaaiaadMgaaeqaniabggHiLdGccqGHRaWkda aeqaqaaiqadoeagaqcamaaBaaaleaacaWGQbaabeaaaeaacaWGQbaa beqdcqGHris5aaaaaOqaaaaabaGabmiCayaajaWaa0baaSqaaiaadM gacaWGQbGaaGilaiaad2gacaWGWbGaamODaaqaaiaacIcacaWG2bGa ey4kaSIaaGymaiaacMcaaaaakeaacqGH9aqpaeaadaWcaaqaaiqad6 eagaqcamaaBaaaleaacaWGPbGaamOAaaqabaGccqGHRaWkdaqadaqa amaalyaabaGabm4qayaajaWaaSbaaSqaaiaadQgaaeqaaOGafq4TdG MbaKaadaqhaaWcbaGaamyAaaqaaiaacIcacaWG2bGaaiykaaaakiqa dchagaqcamaaDaaaleaacaWGPbGaamOAaaqaaiaacIcacaWG2bGaai ykaaaaaOqaamaaqababaGafq4TdGMbaKaadaqhaaWcbaGaamyAaaqa aiaacIcacaWG2bGaaiykaaaakiqadchagaqcamaaDaaaleaacaWGPb GaamOAaaqaaiaacIcacaWG2bGaaiykaaaaaeaacaWGPbaabeqdcqGH ris5aaaaaOGaayjkaiaawMcaaaqaamaaqababaGabmOtayaajaWaaS baaSqaaiaadMgacaWGQbaabeaaaeaacaWGQbaabeqdcqGHris5aOGa ey4kaSYaaabeaeaadaqadaqaamaalyaabaGabm4qayaajaWaaSbaaS qaaiaadQgaaeqaaOGafq4TdGMbaKaadaqhaaWcbaGaamyAaaqaaiaa cIcacaWG2bGaaiykaaaakiqadchagaqcamaaDaaaleaacaWGPbGaam OAaaqaaiaacIcacaWG2bGaaiykaaaaaOqaamaaqababaGafq4TdGMb aKaadaqhaaWcbaGaamyAaaqaaiaacIcacaWG2bGaaiykaaaakiqadc hagaqcamaaDaaaleaacaWGPbGaamOAaaqaaiaacIcacaWG2bGaaiyk aaaaaeaacaWGPbaabeqdcqGHris5aaaaaOGaayjkaiaawMcaaaWcba GaamOAaaqab0GaeyyeIuoaaaGccaGGUaaaaaaa@CE7D@

Cette procédure itérative particulière a été utilisée au départ pour la formulation de modèles de vraisemblance imbriqués de Hocking et Oxspring (1971). Toutefois, elle semble également avoir été mise en œuvre par Blumenthal (1968), Reinfurt (1970), Chen et Fienberg (1974), Fienberg et Stasny (1983), Stasny (1987), Stasny (1988) et d’autres.

Preuve du résultat 5.5

Preuve. L’estimateur non linéaire ψ ^ m p v MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiYdKNbaK aadaWgaaWcbaGaamyBaiaadchacaWG2baabeaaaaa@3AD3@ , peut être exprimé comme une fonction des totaux estimés N ^ i j ,   R ^ i ,   C ^ j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOtayaaja WaaSbaaSqaaiaadMgacaWGQbaabeaakiaacYcacaqGGaGabmOuayaa jaWaaSbaaSqaaiaadMgaaeqaaOGaaiilaiaabccaceWGdbGbaKaada WgaaWcbaGaamOAaaqabaaaaa@3F81@  et M ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmytayaaja aaaa@36C9@  (où i , j = 1 , , G MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiaaiY cacaWGQbGaeyypa0JaaGymaiaacYcacqWIMaYscaaISaGaam4raaaa @3D8F@  ). Alors,

ψ ^ m p v = f ( N ^ i j , R ^ i , C ^ j , M ^ ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiYdKNbaK aadaWgaaWcbaGaamyBaiaadchacaWG2baabeaakiabg2da9iaadAga daqadaqaaiqad6eagaqcamaaBaaaleaacaWGPbGaamOAaaqabaGcca aISaGabmOuayaajaWaaSbaaSqaaiaadMgaaeqaaOGaaGilaiqadoea gaqcamaaBaaaleaacaWGQbaabeaakiaaiYcaceWGnbGbaKaaaiaawI cacaGLPaaacaGGUaaaaa@490A@

Enfin, l’approximation du premier degré de Taylor au point ( N ^ i j = N i j , R ^ i = R i , C ^ j = C j , M ^ = M ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaace WGobGbaKaadaWgaaWcbaGaamyAaiaadQgaaeqaaOGaeyypa0JaamOt amaaBaaaleaacaWGPbGaamOAaaqabaGccaaISaGabmOuayaajaWaaS baaSqaaiaadMgaaeqaaOGaeyypa0JaamOuamaaBaaaleaacaWGPbaa beaakiaaiYcaceWGdbGbaKaadaWgaaWcbaGaamOAaaqabaGccqGH9a qpcaWGdbWaaSbaaSqaaiaadQgaaeqaaOGaaGilaiqad2eagaqcaiab g2da9iaad2eaaiaawIcacaGLPaaaaaa@4D2A@  est donnée par

ψ ^ m p v = ψ U + a 1 i j ( N ^ i j N i j ) + a 1 i ( R ^ i R i )                                + a 2 j ( C ^ j C j ) + a 2 ( M ^ M ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacuaHip qEgaqcamaaBaaaleaacaWGTbGaamiCaiaadAhaaeqaaOGaeyypa0Ja eqiYdK3aaSbaaSqaaiaadwfaaeqaaOGaey4kaSIaamyyamaaBaaale aacaaIXaaabeaakmaaqafabeWcbaGaamyAaaqab0GaeyyeIuoakmaa qafabeWcbaGaamOAaaqab0GaeyyeIuoakmaabmaabaGabmOtayaaja WaaSbaaSqaaiaadMgacaWGQbaabeaakiabgkHiTiaad6eadaWgaaWc baGaamyAaiaadQgaaeqaaaGccaGLOaGaayzkaaGaey4kaSIaamyyam aaBaaaleaacaaIXaaabeaakmaaqafabeWcbaGaamyAaaqab0Gaeyye IuoakmaabmaabaGabmOuayaajaWaaSbaaSqaaiaadMgaaeqaaOGaey OeI0IaamOuamaaBaaaleaacaWGPbaabeaaaOGaayjkaiaawMcaaaqa aiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGa GaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabcca caqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiai aabccacqGHRaWkcaWGHbWaaSbaaSqaaiaaikdaaeqaaOWaaabuaeqa leaacaWGQbaabeqdcqGHris5aOWaaeWaaeaaceWGdbGbaKaadaWgaa WcbaGaamOAaaqabaGccqGHsislcaWGdbWaaSbaaSqaaiaadQgaaeqa aaGccaGLOaGaayzkaaGaey4kaSIaamyyamaaBaaaleaacaaIYaaabe aakmaabmaabaGabmytayaajaGaeyOeI0IaamytaaGaayjkaiaawMca aaaaaa@7F62@

a 1 = f ( N ^ i j , R ^ i , C ^ j , M ^ ) R ^ i | N ^ i j = N i j R ^ i = R i C ^ j = C j M ^ = M = f ( N ^ i j , R ^ i , C ^ j , M ^ ) N ^ i j | N ^ i j = N i j R ^ i = R i C ^ j = C j M ^ = M = j C j + M ( i j N i j + i R i + j C j + M ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBa aaleaacaaIXaaabeaakiabg2da9maaeiaabaWaaSaaaeaacqGHciIT caWGMbWaaeWaaeaaceWGobGbaKaadaWgaaWcbaGaamyAaiaadQgaae qaaOGaaGilaiqadkfagaqcamaaBaaaleaacaWGPbaabeaakiaaiYca ceWGdbGbaKaadaWgaaWcbaGaamOAaaqabaGccaaISaGabmytayaaja aacaGLOaGaayzkaaaabaGaeyOaIyRabmOuayaajaWaaSbaaSqaaiaa dMgaaeqaaaaaaOGaayjcSdWaaSbaaSqaaqaaceqaaiqad6eagaqcam aaBaaabaGaamyAaiaadQgaaeqaaiabg2da9iaad6eadaWgaaqaaiaa dMgacaWGQbaabeaaaeaaceWGsbGbaKaadaWgaaqaaiaadMgaaeqaai abg2da9iaadkfadaWgaaqaaiaadMgaaeqaaaqaaiqadoeagaqcamaa BaaabaGaamOAaaqabaGaeyypa0Jaam4qamaaBaaabaGaamOAaaqaba aabaGabmytayaajaGaeyypa0JaamytaaaaaeqaaOGaeyypa0ZaaqGa aeaadaWcaaqaaiabgkGi2kaadAgadaqadaqaaiqad6eagaqcamaaBa aaleaacaWGPbGaamOAaaqabaGccaaISaGabmOuayaajaWaaSbaaSqa aiaadMgaaeqaaOGaaGilaiqadoeagaqcamaaBaaaleaacaWGQbaabe aakiaaiYcaceWGnbGbaKaaaiaawIcacaGLPaaaaeaacqGHciITceWG obGbaKaadaWgaaWcbaGaamyAaiaadQgaaeqaaaaaaOGaayjcSdWaaS baaSqaaqaaceqaaiqad6eagaqcamaaBaaabaGaamyAaiaadQgaaeqa aiabg2da9iaad6eadaWgaaqaaiaadMgacaWGQbaabeaaaeaaceWGsb GbaKaadaWgaaqaaiaadMgaaeqaaiabg2da9iaadkfadaWgaaqaaiaa dMgaaeqaaaqaaiqadoeagaqcamaaBaaabaGaamOAaaqabaGaeyypa0 Jaam4qamaaBaaabaGaamOAaaqabaaabaGabmytayaajaGaeyypa0Ja amytaaaaaeqaaOGaeyypa0ZaaSaaaeaadaaeqaqaaiaadoeadaWgaa WcbaGaamOAaaqabaaabaGaamOAaaqab0GaeyyeIuoakiabgUcaRiaa d2eaaeaadaqadaqaamaaqababaWaaabeaeaacaWGobWaaSbaaSqaai aadMgacaWGQbaabeaaaeaacaWGQbaabeqdcqGHris5aaWcbaGaamyA aaqab0GaeyyeIuoakiabgUcaRmaaqababaGaamOuamaaBaaaleaaca WGPbaabeaaaeaacaWGPbaabeqdcqGHris5aOGaey4kaSYaaabeaeaa caWGdbWaaSbaaSqaaiaadQgaaeqaaaqaaiaadQgaaeqaniabggHiLd GccqGHRaWkcaWGnbaacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaa aaaaaaa@A6AB@

et

a 2 = f ( N ^ i j , R ^ i , C ^ j , M ^ ) C ^ j | N ^ i j = N i j R ^ i = R i C ^ j = C j M ^ = M = f ( N ^ i j , R ^ i , C ^ j , M ^ ) M ^ | N ^ i j = N i j R ^ i = R i C ^ j = C j M ^ = M = i j N i j + i R i ( i j N i j + i R i + j C j + M ) 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBa aaleaacaaIYaaabeaakiabg2da9maaeiaabaWaaSaaaeaacqGHciIT caWGMbWaaeWaaeaaceWGobGbaKaadaWgaaWcbaGaamyAaiaadQgaae qaaOGaaGilaiqadkfagaqcamaaBaaaleaacaWGPbaabeaakiaaiYca ceWGdbGbaKaadaWgaaWcbaGaamOAaaqabaGccaaISaGabmytayaaja aacaGLOaGaayzkaaaabaGaeyOaIyRabm4qayaajaWaaSbaaSqaaiaa dQgaaeqaaaaaaOGaayjcSdWaaSbaaSqaaqaaceqaaiqad6eagaqcam aaBaaabaGaamyAaiaadQgaaeqaaiabg2da9iaad6eadaWgaaqaaiaa dMgacaWGQbaabeaaaeaaceWGsbGbaKaadaWgaaqaaiaadMgaaeqaai abg2da9iaadkfadaWgaaqaaiaadMgaaeqaaaqaaiqadoeagaqcamaa BaaabaGaamOAaaqabaGaeyypa0Jaam4qamaaBaaabaGaamOAaaqaba aabaGabmytayaajaGaeyypa0JaamytaaaaaeqaaOGaeyypa0ZaaqGa aeaadaWcaaqaaiabgkGi2kaadAgadaqadaqaaiqad6eagaqcamaaBa aaleaacaWGPbGaamOAaaqabaGccaaISaGabmOuayaajaWaaSbaaSqa aiaadMgaaeqaaOGaaGilaiqadoeagaqcamaaBaaaleaacaWGQbaabe aakiaaiYcaceWGnbGbaKaaaiaawIcacaGLPaaaaeaacqGHciITceWG nbGbaKaaaaaacaGLiWoadaWgaaWcbaabaiqabaGabmOtayaajaWaaS baaeaacaWGPbGaamOAaaqabaGaeyypa0JaamOtamaaBaaabaGaamyA aiaadQgaaeqaaaqaaiqadkfagaqcamaaBaaabaGaamyAaaqabaGaey ypa0JaamOuamaaBaaabaGaamyAaaqabaaabaGabm4qayaajaWaaSba aeaacaWGQbaabeaacqGH9aqpcaWGdbWaaSbaaeaacaWGQbaabeaaae aaceWGnbGbaKaacqGH9aqpcaWGnbaaaaqabaGccqGH9aqpcqGHsisl daWcaaqaamaaqababaWaaabeaeaacaWGobWaaSbaaSqaaiaadMgaca WGQbaabeaaaeaacaWGQbaabeqdcqGHris5aaWcbaGaamyAaaqab0Ga eyyeIuoakiabgUcaRmaaqababaGaamOuamaaBaaaleaacaWGPbaabe aaaeaacaWGPbaabeqdcqGHris5aaGcbaWaaeWaaeaadaaeqaqaamaa qababaGaamOtamaaBaaaleaacaWGPbGaamOAaaqabaaabaGaamOAaa qab0GaeyyeIuoaaSqaaiaadMgaaeqaniabggHiLdGccqGHRaWkdaae qaqaaiaadkfadaWgaaWcbaGaamyAaaqabaaabaGaamyAaaqab0Gaey yeIuoakiabgUcaRmaaqababaGaam4qamaaBaaaleaacaWGQbaabeaa aeaacaWGQbaabeqdcqGHris5aOGaey4kaSIaamytaaGaayjkaiaawM caamaaCaaaleqabaGaaGOmaaaaaaGccaGGUaaaaa@ADEC@

Preuve du résultat 5.8

Preuve. Pour calculer la valeur prévue conformément au plan d’échantillonnage, il s’ensuit que

A E p ( ψ ^ mpv ) E p ( ψ ^ 0 ) = ψ U + a 1 i j ( E p ( N ^ ij ) N ij )+ a 1 i ( E p ( R ^ i ) R i )                    + a 2 j ( E p ( C ^ j ) C j )+ a 2 ( E p ( M ^ )M ) = ψ U . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabqGaaa aabaGaamyqaiaadweadaWgaaWcbaGaamiCaaqabaGcdaqadaqaaiqb eI8a5zaajaWaaSbaaSqaaiaad2gacaWGWbGaamODaaqabaaakiaawI cacaGLPaaaaeaacqGHfjcqcaWGfbWaaSbaaSqaaiaadchaaeqaaOWa aeWaaeaacuaHipqEgaqcamaaBaaaleaacaaIWaaabeaaaOGaayjkai aawMcaaaqaaaqaaiabg2da9iabeI8a5naaBaaaleaacaWGvbaabeaa kiabgUcaRiaadggadaWgaaWcbaGaaGymaaqabaGcdaaeqbqabSqaai aadMgaaeqaniabggHiLdGcdaaeqbqabSqaaiaadQgaaeqaniabggHi LdGcdaqadaqaaiaadweadaWgaaWcbaGaamiCaaqabaGcdaqadaqaai qad6eagaqcamaaBaaaleaacaWGPbGaamOAaaqabaaakiaawIcacaGL PaaacqGHsislcaWGobWaaSbaaSqaaiaadMgacaWGQbaabeaaaOGaay jkaiaawMcaaiabgUcaRiaadggadaWgaaWcbaGaaGymaaqabaGcdaae qbqabSqaaiaadMgaaeqaniabggHiLdGcdaqadaqaaiaadweadaWgaa WcbaGaamiCaaqabaGcdaqadaqaaiqadkfagaqcamaaBaaaleaacaWG PbaabeaaaOGaayjkaiaawMcaaiabgkHiTiaadkfadaWgaaWcbaGaam yAaaqabaaakiaawIcacaGLPaaaaeaaaeaacaqGGaGaaeiiaiaabcca caqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiai aabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGa ey4kaSIaamyyamaaBaaaleaacaaIYaaabeaakmaaqafabeWcbaGaam OAaaqab0GaeyyeIuoakmaabmaabaGaamyramaaBaaaleaacaWGWbaa beaakmaabmaabaGabm4qayaajaWaaSbaaSqaaiaadQgaaeqaaaGcca GLOaGaayzkaaGaeyOeI0Iaam4qamaaBaaaleaacaWGQbaabeaaaOGa ayjkaiaawMcaaiabgUcaRiaadggadaWgaaWcbaGaaGOmaaqabaGcda qadaqaaiaadweadaWgaaWcbaGaamiCaaqabaGcdaqadaqaaiqad2ea gaqcaaGaayjkaiaawMcaaiabgkHiTiaad2eaaiaawIcacaGLPaaaae aaaeaacqGH9aqpcqaHipqEdaWgaaWcbaGaamyvaaqabaGccaGGUaaa aaaa@99EF@

En suivant un processus semblable pour les estimateurs restants, on obtient le résultat. Cette preuve découle de l’application de la méthode de pseudo-vraisemblance qui induit les estimations sans biais pour les paramètres de population dans le modèle comme le prouve le corollaire 1 de Binder (1983, p. 291).

Preuve du résultat 5.10

Preuve. En supposant ψ ^ m p v MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiYdKNbaK aadaWgaaWcbaGaamyBaiaadchacaWG2baabeaaaaa@3AD3@ , en remplaçant les expressions pour N ^ i j ,   R ^ i ,   C ^ j ,   M ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOtayaaja WaaSbaaSqaaiaadMgacaWGQbaabeaakiaacYcacaqGGaGabmOuayaa jaWaaSbaaSqaaiaadMgaaeqaaOGaaiilaiaabccaceWGdbGbaKaada WgaaWcbaGaamOAaaqabaGccaGGSaGaaeiiaiqad2eagaqcaaaa@41C0@  et en faisant quelques simplifications algébriques, on peut exprimer la variance approximative comme suit :

A V ( ψ ^ m p v ) = V a r ( a 1 i j N ^ i j + a 1 i R ^ i + a 2 j C ^ j + a 2 M ^ ) = V a r ( k S E k ψ π k ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiaadA fadaqadaqaaiqbeI8a5zaajaWaaSbaaSqaaiaad2gacaWGWbGaamOD aaqabaaakiaawIcacaGLPaaacqGH9aqpcaWGwbGaamyyaiaadkhada qadaqaaiaadggadaWgaaWcbaGaaGymaaqabaGcdaaeqbqabSqaaiaa dMgaaeqaniabggHiLdGcdaaeqbqabSqaaiaadQgaaeqaniabggHiLd GcceWGobGbaKaadaWgaaWcbaGaamyAaiaadQgaaeqaaOGaey4kaSIa amyyamaaBaaaleaacaaIXaaabeaakmaaqafabeWcbaGaamyAaaqab0 GaeyyeIuoakiqadkfagaqcamaaBaaaleaacaWGPbaabeaakiabgUca RiaadggadaWgaaWcbaGaaGOmaaqabaGcdaaeqbqabSqaaiaadQgaae qaniabggHiLdGcceWGdbGbaKaadaWgaaWcbaGaamOAaaqabaGccqGH RaWkcaWGHbWaaSbaaSqaaiaaikdaaeqaaOGabmytayaajaaacaGLOa GaayzkaaGaeyypa0JaamOvaiaadggacaWGYbWaaeWaaeaadaaeqbqa bSqaaiaadUgacqGHiiIZcaWGtbaabeqdcqGHris5aOWaaSaaaeaaca WGfbWaa0baaSqaaiaadUgaaeaacqaHipqEaaaakeaacqaHapaCdaWg aaWcbaGaam4AaaqabaaaaaGccaGLOaGaayzkaaGaaiOlaaaa@73C8@

Initialement, nous avons

E k ψ = a 1 i j y 1 i k y 2 j k + a 1 i y 1 i k ( 1 z 2 k ) + a 2 j y 2 j k ( 1 z 1 k ) + a 2 ( 1 z 1 k ) ( 1 z 2 k ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaDa aaleaacaWGRbaabaGaeqiYdKhaaOGaeyypa0JaamyyamaaBaaaleaa caaIXaaabeaakmaaqafabeWcbaGaamyAaaqab0GaeyyeIuoakmaaqa fabeWcbaGaamOAaaqab0GaeyyeIuoakiaadMhadaWgaaWcbaGaaGym aiaadMgacaWGRbaabeaakiaadMhadaWgaaWcbaGaaGOmaiaadQgaca WGRbaabeaakiabgUcaRiaadggadaWgaaWcbaGaaGymaaqabaGcdaae qbqabSqaaiaadMgaaeqaniabggHiLdGccaWG5bWaaSbaaSqaaiaaig dacaWGPbGaam4AaaqabaGcdaqadaqaaiaaigdacqGHsislcaWG6bWa aSbaaSqaaiaaikdacaWGRbaabeaaaOGaayjkaiaawMcaaiabgUcaRi aadggadaWgaaWcbaGaaGOmaaqabaGcdaaeqbqabSqaaiaadQgaaeqa niabggHiLdGccaWG5bWaaSbaaSqaaiaaikdacaWGQbGaam4Aaaqaba GcdaqadaqaaiaaigdacqGHsislcaWG6bWaaSbaaSqaaiaaigdacaWG RbaabeaaaOGaayjkaiaawMcaaiabgUcaRiaadggadaWgaaWcbaGaaG OmaaqabaGcdaqadaqaaiaaigdacqGHsislcaWG6bWaaSbaaSqaaiaa igdacaWGRbaabeaaaOGaayjkaiaawMcaamaabmaabaGaaGymaiabgk HiTiaadQhadaWgaaWcbaGaaGOmaiaadUgaaeqaaaGccaGLOaGaayzk aaGaaiOlaaaa@7951@

Alors, sachant que i j y 1 i k y 2 j k = i y 1 i k = j y 2 j k = 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabeaeqale aacaWGPbaabeqdcqGHris5aOWaaabeaeqaleaacaWGQbaabeqdcqGH ris5aOGaamyEamaaBaaaleaacaaIXaGaamyAaiaadUgaaeqaaOGaam yEamaaBaaaleaacaaIYaGaamOAaiaadUgaaeqaaOGaeyypa0Zaaabe aeqaleaacaWGPbaabeqdcqGHris5aOGaamyEamaaBaaaleaacaaIXa GaamyAaiaadUgaaeqaaOGaeyypa0ZaaabeaeqaleaacaWGQbaabeqd cqGHris5aOGaamyEamaaBaaaleaacaaIYaGaamOAaiaadUgaaeqaaO Gaeyypa0JaaGymaaaa@545E@  et après un peu d’algèbre, il s’ensuit que

E k ψ = a 1 ( 2 z 2 k ) + a 2 ( 1 z 1 k ) ( 2 z 2 k ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaDa aaleaacaWGRbaabaGaeqiYdKhaaOGaeyypa0JaamyyamaaBaaaleaa caaIXaaabeaakmaabmaabaGaaGOmaiabgkHiTiaadQhadaWgaaWcba GaaGOmaiaadUgaaeqaaaGccaGLOaGaayzkaaGaey4kaSIaamyyamaa BaaaleaacaaIYaaabeaakmaabmaabaGaaGymaiabgkHiTiaadQhada WgaaWcbaGaaGymaiaadUgaaeqaaaGccaGLOaGaayzkaaWaaeWaaeaa caaIYaGaeyOeI0IaamOEamaaBaaaleaacaaIYaGaam4Aaaqabaaaki aawIcacaGLPaaacaGGUaaaaa@5225@

Après un processus analogue pour ρ ^ R R , m p v MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqyWdiNbaK aadaWgaaWcbaGaamOuaiaadkfacaaISaGaamyBaiaadchacaWG2baa beaaaaa@3D29@  et ρ ^ M M , m p v MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqyWdiNbaK aadaWgaaWcbaGaamytaiaad2eacaaISaGaamyBaiaadchacaWG2baa beaaaaa@3D1F@ , les autres expressions de la variance dans ce résultat sont obtenues.

Preuve du résultat 5.12

Preuve. On obtient la preuve en suivant l’expression (3.3) de Binder (1983) et en tenant compte de ce qui suit

J η i = U u k ( η i ) η i J p i j = U u k ( p i j ) p i j . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaabbeaacaWGkb WaaSbaaSqaaiabeE7aOnaaBaaabaGaamyAaaqabaaabeaakiabg2da 9maalaaabaGaeyOaIy7aaabeaeaacaWG1bWaaSbaaSqaaiaadUgaae qaaOWaaeWaaeaacqaH3oaAdaWgaaWcbaGaamyAaaqabaaakiaawIca caGLPaaaaSqaaiaadwfaaeqaniabggHiLdaakeaacqGHciITcqaH3o aAdaWgaaWcbaGaamyAaaqabaaaaaGcbaGaamOsamaaBaaaleaacaWG WbWaaSbaaeaacaWGPbGaamOAaaqabaaabeaakiabg2da9maalaaaba GaeyOaIy7aaabeaeaacaWG1bWaaSbaaSqaaiaadUgaaeqaaOWaaeWa aeaacaWGWbWaaSbaaSqaaiaadMgacaWGQbaabeaaaOGaayjkaiaawM caaaWcbaGaamyvaaqab0GaeyyeIuoaaOqaaiabgkGi2kaadchadaWg aaWcbaGaamyAaiaadQgaaeqaaaaakiaac6caaaaa@5EAE@

De plus,

  u k ( η i ) η i = 2 y 1 i k y 1 i k z 2 k η i 2 ( 1 z 1 k ) j y 2 j k p i j 2 ( i η i p i j ) 2 u k ( p i j ) p i j = y 1 i k y 2 j k p i j 2 η i 2 ( i η i p i j ) 2 y 2 j k ( 1 z 1 k ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaqGGa WaaSaaaeaacqGHciITcaWG1bWaaSbaaSqaaiaadUgaaeqaaOWaaeWa aeaacqaH3oaAdaWgaaWcbaGaamyAaaqabaaakiaawIcacaGLPaaaae aacqGHciITcqaH3oaAdaWgaaWcbaGaamyAaaqabaaaaOGaeyypa0Ja eyOeI0YaaSaaaeaacaaIYaGaamyEamaaBaaaleaacaaIXaGaamyAai aadUgaaeqaaOGaeyOeI0IaamyEamaaBaaaleaacaaIXaGaamyAaiaa dUgaaeqaaOGaamOEamaaBaaaleaacaaIYaGaam4Aaaqabaaakeaacq aH3oaAdaqhaaWcbaGaamyAaaqaaiaaikdaaaaaaOGaeyOeI0YaaeWa aeaacaaIXaGaeyOeI0IaamOEamaaBaaaleaacaaIXaGaam4Aaaqaba aakiaawIcacaGLPaaadaaeqbqabSqaaiaadQgaaeqaniabggHiLdGc daWcaaqaaiaadMhadaWgaaWcbaGaaGOmaiaadQgacaWGRbaabeaaki aadchadaqhaaWcbaGaamyAaiaadQgaaeaacaaIYaaaaaGcbaWaaeWa aeaadaaeqaqaaiabeE7aOnaaBaaaleaacaWGPbaabeaakiaadchada WgaaWcbaGaamyAaiaadQgaaeqaaaqaaiaadMgaaeqaniabggHiLdaa kiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaaaaaGcbaWaaSaaae aacqGHciITcaWG1bWaaSbaaSqaaiaadUgaaeqaaOWaaeWaaeaacaWG WbWaaSbaaSqaaiaadMgacaWGQbaabeaaaOGaayjkaiaawMcaaaqaai abgkGi2kaadchadaWgaaWcbaGaamyAaiaadQgaaeqaaaaakiabg2da 9iabgkHiTmaalaaabaGaamyEamaaBaaaleaacaaIXaGaamyAaiaadU gaaeqaaOGaamyEamaaBaaaleaacaaIYaGaamOAaiaadUgaaeqaaaGc baGaamiCamaaDaaaleaacaWGPbGaamOAaaqaaiaaikdaaaaaaOGaey OeI0YaaSaaaeaacqaH3oaAdaqhaaWcbaGaamyAaaqaaiaaikdaaaaa keaadaqadaqaamaaqababaGaeq4TdG2aaSbaaSqaaiaadMgaaeqaaO GaamiCamaaBaaaleaacaWGPbGaamOAaaqabaaabaGaamyAaaqab0Ga eyyeIuoaaOGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaaGcca WG5bWaaSbaaSqaaiaaikdacaWGQbGaam4AaaqabaGcdaqadaqaaiaa igdacqGHsislcaWG6bWaaSbaaSqaaiaaigdacaWGRbaabeaaaOGaay jkaiaawMcaaiaac6caaaaa@A571@

Preuve du résultat 5.16

Preuve.

A V p ( μ ^ ij,mpv ) = a 7 2 Va r p ( N ^ ij )+ a 8 2 A V p ( η ^ i,mpv )+ a 9 2 A V p ( p ^ ij )       +2 a 7 a 8 Cov( N ^ ij , η ^ i,mpv )+2 a 7 a 9 Cov( N ^ ij , p ^ ij )2 a 8 a 9 Cov( η ^ i,mpv , p ^ ij ) a 7 2 Va r p ( N ^ ij )+ a 8 2 A V p ( η ^ i,mpv )+ a 9 2 A V p ( p ^ ij ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabmGaaa qaaiaadgeacaWGwbWaaSbaaSqaaiaadchaaeqaaOWaaeWaaeaacuaH 8oqBgaqcamaaBaaaleaacaWGPbGaamOAaiaaiYcacaWGTbGaamiCai aadAhaaeqaaaGccaGLOaGaayzkaaaabaGaeyypa0JaamyyamaaDaaa leaacaaI3aaabaGaaGOmaaaakiaadAfacaWGHbGaamOCamaaBaaale aacaWGWbaabeaakmaabmaabaGabmOtayaajaWaaSbaaSqaaiaadMga caWGQbaabeaaaOGaayjkaiaawMcaaiabgUcaRiaadggadaqhaaWcba GaaGioaaqaaiaaikdaaaGccaWGbbGaamOvamaaBaaaleaacaWGWbaa beaakmaabmaabaGafq4TdGMbaKaadaWgaaWcbaGaamyAaiaaiYcaca WGTbGaamiCaiaadAhaaeqaaaGccaGLOaGaayzkaaGaey4kaSIaamyy amaaDaaaleaacaaI5aaabaGaaGOmaaaakiaadgeacaWGwbWaaSbaaS qaaiaadchaaeqaaOWaaeWaaeaaceWGWbGbaKaadaWgaaWcbaGaamyA aiaadQgaaeqaaaGccaGLOaGaayzkaaaabaaabaGaaeiiaiaabccaca qGGaGaaeiiaiaabccacaqGGaGaey4kaSIaaGOmaiaadggadaWgaaWc baGaaG4naaqabaGccaWGHbWaaSbaaSqaaiaaiIdaaeqaaOGaam4qai aad+gacaWG2bWaaeWaaeaaceWGobGbaKaadaWgaaWcbaGaamyAaiaa dQgaaeqaaOGaaGilaiqbeE7aOzaajaWaaSbaaSqaaiaadMgacaaISa GaamyBaiaadchacaWG2baabeaaaOGaayjkaiaawMcaaiabgUcaRiaa ikdacaWGHbWaaSbaaSqaaiaaiEdaaeqaaOGaamyyamaaBaaaleaaca aI5aaabeaakiaadoeacaWGVbGaamODamaabmaabaGabmOtayaajaWa aSbaaSqaaiaadMgacaWGQbaabeaakiaaiYcaceWGWbGbaKaadaWgaa WcbaGaamyAaiaadQgaaeqaaaGccaGLOaGaayzkaaGaaGOmaiaadgga daWgaaWcbaGaaGioaaqabaGccaWGHbWaaSbaaSqaaiaaiMdaaeqaaO Gaam4qaiaad+gacaWG2bWaaeWaaeaacuaH3oaAgaqcamaaBaaaleaa caWGPbGaaGilaiaad2gacaWGWbGaamODaaqabaGccaaISaGabmiCay aajaWaaSbaaSqaaiaadMgacaWGQbaabeaaaOGaayjkaiaawMcaaaqa aaqaaiabgwKiajaadggadaqhaaWcbaGaaG4naaqaaiaaikdaaaGcca WGwbGaamyyaiaadkhadaWgaaWcbaGaamiCaaqabaGcdaqadaqaaiqa d6eagaqcamaaBaaaleaacaWGPbGaamOAaaqabaaakiaawIcacaGLPa aacqGHRaWkcaWGHbWaa0baaSqaaiaaiIdaaeaacaaIYaaaaOGaamyq aiaadAfadaWgaaWcbaGaamiCaaqabaGcdaqadaqaaiqbeE7aOzaaja WaaSbaaSqaaiaadMgacaaISaGaamyBaiaadchacaWG2baabeaaaOGa ayjkaiaawMcaaiabgUcaRiaadggadaqhaaWcbaGaaGyoaaqaaiaaik daaaGccaWGbbGaamOvamaaBaaaleaacaWGWbaabeaakmaabmaabaGa bmiCayaajaWaaSbaaSqaaiaadMgacaWGQbaabeaaaOGaayjkaiaawM caaiaac6caaaaaaa@C7F7@

Parce que

C o v ( N ^ i j , η ^ i , m p v ) = E p ( N ^ i j η ^ i , m p v ) E p ( N ^ i j ) E p ( η ^ i , m p v ) N ^ i j , U η i , U N ^ i j , U η i , U = 0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWGdb Gaam4BaiaadAhadaqadaqaaiqad6eagaqcamaaBaaaleaacaWGPbGa amOAaaqabaGccaaISaGafq4TdGMbaKaadaWgaaWcbaGaamyAaiaaiY cacaWGTbGaamiCaiaadAhaaeqaaaGccaGLOaGaayzkaaGaeyypa0Ja amyramaaBaaaleaacaWGWbaabeaakmaabmaabaGabmOtayaajaWaaS baaSqaaiaadMgacaWGQbaabeaakiqbeE7aOzaajaWaaSbaaSqaaiaa dMgacaaISaGaamyBaiaadchacaWG2baabeaaaOGaayjkaiaawMcaai abgkHiTiaadweadaWgaaWcbaGaamiCaaqabaGcdaqadaqaaiqad6ea gaqcamaaBaaaleaacaWGPbGaamOAaaqabaaakiaawIcacaGLPaaaca WGfbWaaSbaaSqaaiaadchaaeqaaOWaaeWaaeaacuaH3oaAgaqcamaa BaaaleaacaWGPbGaaGilaiaad2gacaWGWbGaamODaaqabaaakiaawI cacaGLPaaaaeaacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabcca caqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiai aabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGa aeiiaiaabccacqGHfjcqceWGobGbaKaadaWgaaWcbaGaamyAaiaadQ gacaaISaGaamyvaaqabaGccqaH3oaAdaWgaaWcbaGaamyAaiaaiYca caWGvbaabeaakiabgkHiTiqad6eagaqcamaaBaaaleaacaWGPbGaam OAaiaaiYcacaWGvbaabeaakiabeE7aOnaaBaaaleaacaWGPbGaaGil aiaadwfaaeqaaOGaeyypa0JaaGimaiaac6caaaaa@8940@

Alors, il est possible d’obtenir ce qui suit :

E p ( N ^ i j η ^ i , m p v ) N ^ i j , U , η i , U MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaBa aaleaacaWGWbaabeaakmaabmaabaGabmOtayaajaWaaSbaaSqaaiaa dMgacaWGQbaabeaakiqbeE7aOzaajaWaaSbaaSqaaiaadMgacaaISa GaamyBaiaadchacaWG2baabeaaaOGaayjkaiaawMcaaiabgwKiajqa d6eagaqcamaaBaaaleaacaWGPbGaamOAaiaaiYcacaWGvbaabeaaki aaiYcacqaH3oaAdaWgaaWcbaGaamyAaiaaiYcacaWGvbaabeaaaaa@4D97@

au moyen de la linéarisation de Taylor pour ( N ^ i j , U , η i , U ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaace WGobGbaKaadaWgaaWcbaGaamyAaiaadQgacaaISaGaamyvaaqabaGc caaISaGaeq4TdG2aaSbaaSqaaiaadMgacaaISaGaamyvaaqabaaaki aawIcacaGLPaaaaaa@410C@ . Les autres covariances sont obtenues de façon semblable.

Bibliographie

Ash, S. (2005). Calibration weights for estimators of longitudinal data with an application to the National Long Term Care Survey. Proceedings of the Section on Survey Research Methods of the American Statistical Association. American Statistical Association: Alexandria, VA, 2694–2699.

Binder, D. (1983). On the variances of asymptotically normal estimators from complex surveys. International Statistical Review, 51, 279-292.

Blumenthal, S. (1968). Multinomial sampling with partially categorized data. Journal of the American Statistical Association, 63, 542-551.

Cassel, C.M., Särndal, C.E. et Wretman, J.H. (1976). Foundations of Inference in Survey Sampling. New York: Wiley.

Chambers, R.L. et Skinner, C.J. (2003). Analysis of Survey Data. John Wiley and Sons, Chichester: UK.

Chen, T. et Fienberg, S.E. (1974). Two-dimensional contingency tables with both completely and partially cross-classified data. Biometrics, 30, 629-642.

Clogg, C.C. et Eliason, S.R. (1987). Some common problems in log-linear analysis. Sociological Methods and Research, 16, 8-44.

Deville, J. et Särndal, C. (1992). Calibration estimators in survey sampling. Journal of the American Statistical Association, 87, 376-382.

Fienberg, S.E. et Stasny, E.A. (1983). L’estimation des flux bruts mensuels de l’activité sur le marché du travail. Techniques d’enquête, 9(1), 85-110.

Fuller, W.A. (2009). Sampling Statistics. Wiley.

Gambino, J.G. et Silva, P.L. (2009). Sampling and estimation in household surveys. Dans D. Pfeffermann et C.R. Rao (Eds.), Handbook of Statistics. Vol. 29A. Sample Surveys: Design, Methods and Applications (pp. 407-439). Amsterdam: Elsevier.

Gutiérrez, H.A. (2009). TeachingSampling: Sampling designs and parameter estimation in finite population. R package version 2.0.1.

Hocking, R.R. et Oxspring, H.H. (1971). Maximun likelihood estimation with incomplete multinomial data. Journal of the American Statistical Association, 66, 65-70.

IBGE (2007). Pesquisa Mensal de Emprego. Vol. 23, 2nd edition.

Kalton, G. (2009). Designs for surveys over time. Dans D. Pfeffermann and C.R. Rao (Eds.), Handbook of Statistics. Vol. 29A. Sample Surveys: Design, Methods and Applications (pp. 89-108). Amsterdam: Elsevier.

Kim, J. K. et Park, M. (2010). Calibration estimation in survey sampling. International Statistical Review, 78, 21-39.

Lohr, S.L. (1999). Sampling: Design and Analysis. Pacific Grove: Duxbury Press.

Lu, Y. et Lohr, S. (2010). L’estimation des flux bruts dans les enquêtes à base de sondage double. Techniques d’enquête, 36(1), 13-24.

Lumley, T. (2010). Complex Surveys: A Guide to Analysis using R. New York: Wiley.

Pessoa, D.G.C. et Silva, P.L. (1998). Análise de Dados Amostrais Complexos. São Paulo : Associação Brasileira de Estatística.

Pfeffermann, D. (1993). The role of sampling weights when modeling survey data. International Statistical Review, 61, 317-337.

R Development Core Team (2012). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0.

Rao, J.N.K. et Thomas, D.R. (1988). The analysis of cross-classified data from complex surveys. Sociological Methodology, 18, 213-269.

Reinfurt, D.W. (1970). The analyis of categorical data with supplemented margins including applications to mixed models. Thèse de doctorat non publiée. Department of Biostatistics. University of North Carolina.

Särndal, C.E. (2011). The 2010 Morris Hansen lecture: Dealing with survey nonresponse in data collection. Journal of Official Statistics, 27, 1-21.

Särndal, C.E. et Lundström, S. (2005). Estimation in Surveys with Nonresponse. John Wiley and Sons, Chichester: UK.

Särndal, C.E. et Lundström, S. (2010). Plan d’estimation : détermination de vecteurs auxiliaires en vue de réduire le biais de non-réponse. Techniques d’enquête, 36(2), 141-156.

Sikkel, D., Hox, J. et de Leeuw, E. (2008). Using auxiliary data for adjustment in longitudinal research. Dans P. Lynn (Ed), Methodology of longitudinal surveys. New York: Wiley. Une version antérieure est disponible au http://www.iser.essex.ac.uk/ulsc/mols2006/programme/data/papers/Sikkel.pdf

Skinner, C.J. et Vallet, L.A. (2010). Fitting log-linear models to contingency tables from surveys with complex sampling designs: An investigation of the Clogg-Eliason approach. Sociological Methods and Research, 39, 83-108.

Stasny, E.A. (1987). Some Markov-chain models for nonresponse in estimating gross labor force flows. Journal of Official Statistics, 3, 359-373.

Stasny, E.A. (1988). Modeling nonignorable nonresponse in categorical panel data with an example in estimating gross labor-flows. Journal of Business and Economic Statistics, 6, 207-219.

Précédent

Date de modification :