5. Conclusion

Guillaume Chauvet and Guylène Tandeau de Marsac

Previous

We examined the Hartley (1962), Kalton and Anderson (1986) and Bankier (1986) estimators to pool the samples resulting from two survey waves. More particularly, we studied the case where the first sample represents the entire population (completely representative sample), while the second represents only a part (partially representative sample). Within the framework considered in the simulations (also see the Appendix for a more general framework), using the partially representative sample did not improve accuracy: if its size increases, the accuracy of the estimators in the Hartley class remains stable or improves slightly, while the accuracy of the Kalton and Anderson and Bankier estimators is worsened. Hartley’s optimal estimator itself, although more complex to calculate, offers accuracy that is only slightly improved as compared to the classic Horvitz-Thompson estimator calculated on the fully representative sample. Although our simulation study is limited, the results suggest that the estimator should be chosen carefully when there are multiple survey frames, and that a simple estimator is sometimes preferable, even if it uses only part of the information collected.

Acknowledgements

The authors would like to thank an associate editor and referee for their careful reading and comments, which helped to significantly improve the article, and David Haziza for the useful discussions.

Appendix

A1. Comparison of Hartley’s optimal estimator and the Horvitz-Thompson estimator

Let us take the framework and notations from Section 4: samples S A MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaCa aaleqabaGaamyqaaaaaaa@37B2@ and S B MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaCa aaleqabaGaamOqaaaaaaa@37B3@ are selected using a two-stage frame with common first stage selection. Stratified simple random sampling is used at the first stage, and simple random sampling in each primary sampling unit at the second stage. The sampling frame U A MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyvamaaBa aaleaacaWGbbaabeaaaaa@37B3@ corresponds to the entire population, while the sampling frame U B MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyvamaaBa aaleaacaWGcbaabeaaaaa@37B4@ covers only part of the population.

With Hartley’s optimal estimator, the formula (3.6) gives

θ opt| S I = EV( Y ^ ab B | S I )ECov( Y ^ a A , Y ^ ab A | S I ) EV( Y ^ ab B | S I )+EV( Y ^ ab A | S I ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiUde3aaS baaSqaaiaad+gacaWGWbGaamiDaiaacYhacaWGtbWaaSbaaWqaaiaa dMeaaeqaaaWcbeaakiabg2da9maalaaabaGaamyraiaadAfadaqada qaaiqadMfagaqcamaaDaaaleaacaWGHbGaamOyaaqaaiaadkeaaaGc caGG8bGaam4uamaaBaaaleaacaWGjbaabeaaaOGaayjkaiaawMcaai abgkHiTiaadweacaWGdbGaam4BaiaadAhadaqadaqaaiqadMfagaqc amaaDaaaleaacaWGHbaabaGaamyqaaaakiaaiYcaceWGzbGbaKaada qhaaWcbaGaamyyaiaadkgaaeaacaWGbbaaaOGaaiiFaiaadofadaWg aaWcbaGaamysaaqabaaakiaawIcacaGLPaaaaeaacaWGfbGaamOvam aabmaabaGabmywayaajaWaa0baaSqaaiaadggacaWGIbaabaGaamOq aaaakiaacYhacaWGtbWaaSbaaSqaaiaadMeaaeqaaaGccaGLOaGaay zkaaGaey4kaSIaamyraiaadAfadaqadaqaaiqadMfagaqcamaaDaaa leaacaWGHbGaamOyaaqaaiaadgeaaaGccaGG8bGaam4uamaaBaaale aacaWGjbaabeaaaOGaayjkaiaawMcaaaaacaaIUaaaaa@6D9C@

After some calculation, we get

EV( Y ^ ab A | S I )= h=1 H M h m h u hi U Ih ( N hi ) 2 1 f hi A n hi A { N hi B 1 N hi 1 S u hi B 2 + N hi B ( N hi N hi B ) ( y ¯ u hi B ) 2 N hi ( N hi 1 ) },          (A.1) ECov( Y ^ a A , Y ^ ab A | S I )= h=1 H M h m h u hi U Ih ( N hi ) 2 1 f hi A n hi A { N hi B ( y ¯ u hi B )( N hi y ¯ u hi N hi B y ¯ u hi B ) N hi ( N hi 1 ) } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWGfb GaamOvamaabmaabaGabmywayaajaWaa0baaSqaaiaadggacaWGIbaa baGaamyqaaaakiaacYhacaWGtbWaaSbaaSqaaiaadMeaaeqaaaGcca GLOaGaayzkaaGaeyypa0ZaaabCaeqaleaacaWGObGaeyypa0JaaGym aaqaaiaadIeaa0GaeyyeIuoakmaalaaabaGaamytamaaBaaaleaaca WGObaabeaaaOqaaiaad2gadaWgaaWcbaGaamiAaaqabaaaaOWaaabu aeqaleaacaWG1bWaaSbaaWqaaiaadIgacaWGPbaabeaaliabgIGiol aadwfadaWgaaadbaGaamysaiaadIgaaeqaaaWcbeqdcqGHris5aOWa aeWaaeaacaWGobWaaSbaaSqaaiaadIgacaWGPbaabeaaaOGaayjkai aawMcaamaaCaaaleqabaGaaGOmaaaakmaalaaabaGaaGymaiabgkHi TiaadAgadaqhaaWcbaGaamiAaiaadMgaaeaacaWGbbaaaaGcbaGaam OBamaaDaaaleaacaWGObGaamyAaaqaaiaadgeaaaaaaOWaaiWaaeaa daWcaaqaaiaad6eadaqhaaWcbaGaamiAaiaadMgaaeaacaWGcbaaaO GaeyOeI0IaaGymaaqaaiaad6eadaWgaaWcbaGaamiAaiaadMgaaeqa aOGaeyOeI0IaaGymaaaacaWGtbWaa0baaSqaaiaadwhadaqhaaadba GaamiAaiaadMgaaeaacaWGcbaaaaWcbaGaaGOmaaaakiabgUcaRmaa laaabaGaamOtamaaDaaaleaacaWGObGaamyAaaqaaiaadkeaaaGcda qadaqaaiaad6eadaWgaaWcbaGaamiAaiaadMgaaeqaaOGaeyOeI0Ia amOtamaaDaaaleaacaWGObGaamyAaaqaaiaadkeaaaaakiaawIcaca GLPaaadaqadaqaaiqadMhagaqeamaaBaaaleaacaWG1bWaa0baaWqa aiaadIgacaWGPbaabaGaamOqaaaaaSqabaaakiaawIcacaGLPaaada ahaaWcbeqaaiaaikdaaaaakeaacaWGobWaaSbaaSqaaiaadIgacaWG PbaabeaakmaabmaabaGaamOtamaaBaaaleaacaWGObGaamyAaaqaba GccqGHsislcaaIXaaacaGLOaGaayzkaaaaaaGaay5Eaiaaw2haaiaa iYcacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaae iiaiaabccacaqGGaGaaeikaiaabgeacaqGUaGaaeymaiaabMcaaeaa cqGHsislcaWGfbGaam4qaiaad+gacaWG2bWaaeWaaeaaceWGzbGbaK aadaqhaaWcbaGaamyyaaqaaiaadgeaaaGccaaISaGabmywayaajaWa a0baaSqaaiaadggacaWGIbaabaGaamyqaaaakiaacYhacaWGtbWaaS baaSqaaiaadMeaaeqaaaGccaGLOaGaayzkaaGaeyypa0ZaaabCaeqa leaacaWGObGaeyypa0JaaGymaaqaaiaadIeaa0GaeyyeIuoakmaala aabaGaamytamaaBaaaleaacaWGObaabeaaaOqaaiaad2gadaWgaaWc baGaamiAaaqabaaaaOWaaabuaeqaleaacaWG1bWaaSbaaWqaaiaadI gacaWGPbaabeaaliabgIGiolaadwfadaWgaaadbaGaamysaiaadIga aeqaaaWcbeqdcqGHris5aOWaaeWaaeaacaWGobWaaSbaaSqaaiaadI gacaWGPbaabeaaaOGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaa kmaalaaabaGaaGymaiabgkHiTiaadAgadaqhaaWcbaGaamiAaiaadM gaaeaacaWGbbaaaaGcbaGaamOBamaaDaaaleaacaWGObGaamyAaaqa aiaadgeaaaaaaOWaaiWaaeaadaWcaaqaaiaad6eadaqhaaWcbaGaam iAaiaadMgaaeaacaWGcbaaaOWaaeWaaeaaceWG5bGbaebadaWgaaWc baGaamyDamaaDaaameaacaWGObGaamyAaaqaaiaadkeaaaaaleqaaa GccaGLOaGaayzkaaWaaeWaaeaacaWGobWaaSbaaSqaaiaadIgacaWG PbaabeaakiqadMhagaqeamaaBaaaleaacaWG1bWaaSbaaeaacaWGOb GaamyAaaqabaaabeaakiabgkHiTiaad6eadaqhaaWcbaGaamiAaiaa dMgaaeaacaWGcbaaaOGabmyEayaaraWaaSbaaSqaaiaadwhadaqhaa adbaGaamiAaiaadMgaaeaacaWGcbaaaaWcbeaaaOGaayjkaiaawMca aaqaaiaad6eadaWgaaWcbaGaamiAaiaadMgaaeqaaOWaaeWaaeaaca WGobWaaSbaaSqaaiaadIgacaWGPbaabeaakiabgkHiTiaaigdaaiaa wIcacaGLPaaaaaaacaGL7bGaayzFaaaaaaa@F87D@

with y ¯ u hi = ( N hi ) 1 k u hi y k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyEayaara WaaSbaaSqaaiaadwhadaWgaaadbaGaamiAaiaadMgaaeqaaaWcbeaa kiabg2da9maabmaabaGaamOtamaaBaaaleaacaWGObGaamyAaaqaba aakiaawIcacaGLPaaadaahaaWcbeqaaiabgkHiTiaaigdaaaGcdaae qaqabSqaaiaadUgacqGHiiIZcaWG1bWaaSbaaWqaaiaadIgacaWGPb aabeaaaSqab0GaeyyeIuoakiaadMhadaWgaaWcbaGaam4Aaaqabaaa aa@4B1B@ , y ¯ u hi B = ( N hi B ) 1 k u hi B y k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyEayaara WaaSbaaSqaaiaadwhadaqhaaadbaGaamiAaiaadMgaaeaacaWGcbaa aaWcbeaakiabg2da9maabmaabaGaamOtamaaDaaaleaacaWGObGaam yAaaqaaiaadkeaaaaakiaawIcacaGLPaaadaahaaWcbeqaaiabgkHi TiaaigdaaaGcdaaeqaqabSqaaiaadUgacqGHiiIZcaWG1bWaa0baaW qaaiaadIgacaWGPbaabaGaamOqaaaaaSqab0GaeyyeIuoakiaadMha daWgaaWcbaGaam4Aaaqabaaaaa@4D73@ and S u hi B 2 = ( N hi B 1 ) 1 k u hi B ( y k y ¯ u hi B ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaDa aaleaacaWG1bWaa0baaWqaaiaadIgacaWGPbaabaGaamOqaaaaaSqa aiaaikdaaaGccqGH9aqpdaqadaqaaiaad6eadaqhaaWcbaGaamiAai aadMgaaeaacaWGcbaaaOGaeyOeI0IaaGymaaGaayjkaiaawMcaamaa CaaaleqabaGaeyOeI0IaaGymaaaakmaaqababeWcbaGaam4AaiabgI GiolaadwhadaqhaaadbaGaamiAaiaadMgaaeaacaWGcbaaaaWcbeqd cqGHris5aOWaaeWaaeaacaWG5bWaaSbaaSqaaiaadUgaaeqaaOGaey OeI0IabmyEayaaraWaaSbaaSqaaiaadwhadaqhaaadbaGaamiAaiaa dMgaaeaacaWGcbaaaaWcbeaaaOGaayjkaiaawMcaamaaCaaaleqaba GaaGOmaaaaaaa@5824@ .

The Horvitz-Thompson estimator based on the single sample S A MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaCa aaleqabaGaamyqaaaaaaa@37B2@ and Hartley’s optimal estimator agree if the coefficient θ opt| S I MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiUde3aaS baaSqaaiaad+gacaWGWbGaamiDaiaacYhacaWGtbWaaSbaaWqaaiaa dMeaaeqaaaWcbeaaaaa@3D89@ is equal to 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaaaa@36A2@ , which is the case if EV( Y ^ ab A | S I )=ECov( Y ^ a A , Y ^ ab A | S I ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyraiaadA fadaqadaqaaiqadMfagaqcamaaDaaaleaacaWGHbGaamOyaaqaaiaa dgeaaaGccaGG8bGaam4uamaaBaaaleaacaWGjbaabeaaaOGaayjkai aawMcaaiabg2da9iabgkHiTiaadweacaWGdbGaam4BaiaadAhadaqa daqaaiqadMfagaqcamaaDaaaleaacaWGHbaabaGaamyqaaaakiaaiY caceWGzbGbaKaadaqhaaWcbaGaamyyaiaadkgaaeaacaWGbbaaaOGa aiiFaiaadofadaWgaaWcbaGaamysaaqabaaakiaawIcacaGLPaaaaa a@50C1@ . This condition will be verified in particular if in (A.1) the terms between the brackets agree for each primary sampling unit u hi MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacaWGObGaamyAaaqabaaaaa@38E8@ . We get therefore θ opt| S I 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiUde3aaS baaSqaaiaad+gacaWGWbGaamiDaiaacYhacaWGtbWaaSbaaWqaaiaa dMeaaeqaaaWcbeaarqqr1ngBPrgifHhDYfgaiuaakiab=nKi7iaaig daaaa@440F@ if

    u hi U I N hi ( N hi B 1 ) N hi B S u hi B 2 y ¯ u hi B ( N hi y ¯ u hi N hi B y ¯ u hi B ) + ( N hi N hi B ) y ¯ u hi B N hi y ¯ u hi N hi B y ¯ u hi B 1.          (A.2) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyiaIiIaae iiaiaabccacaqGGaGaamyDamaaBaaaleaacaWGObGaamyAaaqabaGc cqGHiiIZcaWGvbWaaSbaaSqaaiaadMeaaeqaaOGaaGzbVpaalaaaba GaamOtamaaBaaaleaacaWGObGaamyAaaqabaGcdaqadaqaaiaad6ea daqhaaWcbaGaamiAaiaadMgaaeaacaWGcbaaaOGaeyOeI0IaaGymaa GaayjkaiaawMcaaaqaaiaad6eadaqhaaWcbaGaamiAaiaadMgaaeaa caWGcbaaaaaakmaalaaabaGaam4uamaaDaaaleaacaWG1bWaa0baaW qaaiaadIgacaWGPbaabaGaamOqaaaaaSqaaiaaikdaaaaakeaaceWG 5bGbaebadaWgaaWcbaGaamyDamaaDaaameaacaWGObGaamyAaaqaai aadkeaaaaaleqaaOWaaeWaaeaacaWGobWaaSbaaSqaaiaadIgacaWG PbaabeaakiqadMhagaqeamaaBaaaleaacaWG1bWaaSbaaWqaaiaadI gacaWGPbaabeaaaSqabaGccqGHsislcaWGobWaa0baaSqaaiaadIga caWGPbaabaGaamOqaaaakiqadMhagaqeamaaBaaaleaacaWG1bWaa0 baaWqaaiaadIgacaWGPbaabaGaamOqaaaaaSqabaaakiaawIcacaGL PaaaaaGaey4kaSYaaSaaaeaadaqadaqaaiaad6eadaWgaaWcbaGaam iAaiaadMgaaeqaaOGaeyOeI0IaamOtamaaDaaaleaacaWGObGaamyA aaqaaiaadkeaaaaakiaawIcacaGLPaaaceWG5bGbaebadaWgaaWcba GaamyDamaaDaaameaacaWGObGaamyAaaqaaiaadkeaaaaaleqaaaGc baGaamOtamaaBaaaleaacaWGObGaamyAaaqabaGcceWG5bGbaebada WgaaWcbaGaamyDamaaBaaameaacaWGObGaamyAaaqabaaaleqaaOGa eyOeI0IaamOtamaaDaaaleaacaWGObGaamyAaaqaaiaadkeaaaGcce WG5bGbaebadaWgaaWcbaGaamyDamaaDaaameaacaWGObGaamyAaaqa aiaadkeaaaaaleqaaaaarqqr1ngBPrgifHhDYfgaiuaakiab=nKi7i aaigdacaaIUaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGa aeiiaiaabccacaqGGaGaaeiiaiaabIcacaqGbbGaaeOlaiaabkdaca qGPaaaaa@9C8B@

Let us suppose that the mean value of y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaaaa@36E5@ is approximately the same in the frames U A MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyvamaaBa aaleaacaWGbbaabeaaaaa@37B3@ and U B MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyvamaaBa aaleaacaWGcbaabeaaaaa@37B4@ for each primary sampling unit, i.e. that   u hi U I MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyiaIiIaae iiaiaadwhadaWgaaWcbaGaamiAaiaadMgaaeqaaOGaeyicI4Saamyv amaaBaaaleaacaWGjbaabeaaaaa@3DBD@ y ¯ u hi B y ¯ u hi MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyEayaara WaaSbaaSqaaiaadwhadaqhaaadbaGaamiAaiaadMgaaeaacaWGcbaa aaWcbeaarqqr1ngBPrgifHhDYfgaiuaakiab=nKi7iqadMhagaqeam aaBaaaleaacaWG1bWaaSbaaWqaaiaadIgacaWGPbaabeaaaSqabaaa aa@4518@ . Then, the condition (A.2) will be verified approximately if   u hi U I MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyiaIiIaae iiaiaadwhadaWgaaWcbaGaamiAaiaadMgaaeqaaOGaeyicI4Saamyv amaaBaaaleaacaWGjbaabeaaaaa@3DBD@ c v u hi B 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaiaadA hadaqhaaWcbaGaamyDamaaDaaameaacaWGObGaamyAaaqaaiaadkea aaaaleaacaaIYaaaaaaa@3C88@ is close to 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaaaa@36A1@ , with c v u hi B = S u hi B 2 / y ¯ u hi B . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaiaadA hadaWgaaWcbaGaamyDamaaDaaameaacaWGObGaamyAaaqaaiaadkea aaaaleqaaOGaeyypa0ZaaSGbaeaadaGcaaqaaiaadofadaqhaaWcba GaamyDamaaDaaameaacaWGObGaamyAaaqaaiaadkeaaaaaleaacaaI YaaaaaqabaaakeaaceWG5bGbaebadaWgaaWcbaGaamyDamaaDaaame aacaWGObGaamyAaaqaaiaadkeaaaaaleqaaaaakabaaaaaaaaapeGa aiOlaaaa@4894@

In summary, the Horvitz-Thompson estimator based on the single sample S A MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaCa aaleqabaGaamyqaaaaaaa@37B2@ and Hartley’s optimal estimator will be close if within each primary sampling unit u hi MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacaWGObGaamyAaaqabaaaaa@38E8@ : (a) there is not much difference in the mean value of y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaaaa@36E5@ between the two bases, and (b) the variable y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaaaa@36E5@ has low dispersion within u hi B MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaDa aaleaacaWGObGaamyAaaqaaiaadkeaaaaaaa@39B0@ . In the simulations, the condition (a) is approximately met since the distribution of individuals between the sampling frames U A MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyvamaaBa aaleaacaWGbbaabeaaaaa@37B3@ and U B MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyvamaaBa aaleaacaWGcbaabeaaaaa@37B4@ is completely random; the condition (b) is approximately met with values of c v u hi B 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaiaadA hadaqhaaWcbaGaamyDamaaDaaameaacaWGObGaamyAaaqaaiaadkea aaaaleaacaaIYaaaaaaa@3C88@ varying from 0.02 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiaac6 cacaaIWaGaaGOmaaaa@38C9@ to 0.10 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiaac6 cacaaIXaGaaGimaaaa@38C8@ for population 1, and from 0.001 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiaac6 cacaaIWaGaaGimaiaaigdaaaa@3982@ to 0.005 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiaac6 cacaaIWaGaaGimaiaaiwdaaaa@3986@ for population 2.

References

Bankier, M.D. (1986). Estimators based on several stratified samples with applications to multiple frame surveys. Journal of the American Statistical Association, 81, p. 1074-1079.

Bourdalle, G., Christine, M. and Wilms, L. (2000). Échantillons maître et emploi. Série INSEE Méthodes, 21, p. 139-173.

Hansen, M.H. and Hurwitz, W.N. (1943). On the theory of sampling from finite populations. Annals of Mathematical Statistics, 14, p. 333-362.

Hartley, H.O. (1962). Multiple frame surveys. Proceedings of the Social Statistics Section, American Statistical Association, p. 203-206.

Horvitz, D.G. and Thompson, D.J. (1952). A generalization of sampling without replacement from a finite universe. Journal of the American Statistical Association, 47, p. 663-685.

Kalton, G. and Anderson, D.W. (1986). Sampling rare populations. Journal of the Royal Statistical Society, A, 149, p. 65-82.

Lavallée, P. (2002). Le sondage indirect, ou la méthode généralisée du partage des poids. Éditions de l'Université de Bruxelles (Belgium) and Éditions Ellipses (France).

Lavallée, P. (2007). Indirect sampling. New York: Springer.

Lohr, S.L. (2007). Recent developments in multiple frame surveys. Proceedings of the Survey Research Methods Section, American Statistical Association, 3257-3264.

Lohr, S.L. (2009). Multiple frame surveys. In Handbook of Statistics, Sample Surveys: Design, Methods and Applications, Eds., D. Pfeffermann and C.R. Rao. Amsterdam: North Holland, Vol. 29A, p. 71-88.

Lohr, S.L. (2011). Alternative survey sample designs: Sampling with multiple overlapping frames. Survey Methodology, Vol.37 no.2, p. 197-213.

Mecatti, F. (2007). A single frame multiplicity estimator for multiple frame surveys. Survey Methodology, Vol.33 no.2, p. 151-157.

Narain, R.D. (1951). On sampling without replacement with varying probabilities. Journal of the Indian Society of Agricultural Statistics, 3, p. 169-175.

Rao, J.N.K. and Wu, C. (2010). Pseudo-empirical likelihood inference for dual frame surveys. Journal of the American Statistical Association, 105, p. 1494-1503.

Saigo, H. (2010). Comparing four bootstrap methods for stratified three-stage sampling. Journal of Official Statistics, Vol. 26, No. 1, 2010, p. 193-207.

Previous

Date modified: