3. Estimation with common first-stage selection

Guillaume Chauvet and Guylène Tandeau de Marsac

Previous | Next

Here we are interested in the case of two samples selected using a two-stage design, with common first-stage selection. Population U MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyvaaaa@36C1@ is partitioned to obtain a population U I ={ u 1 ,, u M } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyvamaaBa aaleaacaWGjbaabeaakiabg2da9maacmaabaGaamyDamaaBaaaleaa caaIXaaabeaakiaaiYcacqWIMaYscaaISaGaamyDamaaBaaaleaaca WGnbaabeaaaOGaay5Eaiaaw2haaaaa@4177@ of M MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaaaa@36B9@ primary sampling units. In the first stage, a sample S I MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaBa aaleaacaWGjbaabeaaaaa@37B9@ of primary sampling units (PSU) is selected, with a selection probability π Ii MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWda3aaS baaSqaaiaadMeacaWGPbaabeaaaaa@398C@ for a PSU u i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacaWGPbaabeaaaaa@37FB@ . In the second stage, in each primary sampling unit u i S I MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacaWGPbaabeaakiabgIGiolaadofadaWgaaWcbaGaamysaaqa baaaaa@3B5B@ , the following is selected: a sample S i A MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaDa aaleaacaWGPbaabaGaamyqaaaaaaa@38A0@ in u i A u i U A MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaDa aaleaacaWGPbaabaGaamyqaaaakiabggMi6kaadwhadaWgaaWcbaGa amyAaaqabaGccqGHPiYXcaWGvbWaaSbaaSqaaiaadgeaaeqaaaaa@401D@ , with a (conditional) selection probability π k|i A >0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWda3aa0 baaSqaaiaadUgacaGG8bGaamyAaaqaaiaadgeaaaGccqGH+aGpcaaI Waaaaa@3D41@ for k u i A MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AaiabgI GiolaadwhadaqhaaWcbaGaamyAaaqaaiaadgeaaaaaaa@3B36@ ; a sample S i B MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaDa aaleaacaWGPbaabaGaamOqaaaaaaa@38A1@ in u i B u i U B MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaDa aaleaacaWGPbaabaGaamOqaaaakiabggMi6kaadwhadaWgaaWcbaGa amyAaaqabaGccqGHPiYXcaWGvbWaaSbaaSqaaiaadkeaaeqaaaaa@401F@ , with a (conditional) selection probability π k|i B >0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWda3aa0 baaSqaaiaadUgacaGG8bGaamyAaaqaaiaadkeaaaGccqGH+aGpcaaI Waaaaa@3D41@ for unit k u i B MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AaiabgI GiolaadwhadaqhaaWcbaGaamyAaaqaaiaadkeaaaaaaa@3B37@ . We make the following hypotheses, which are common for two-stage selection: the second stage of selection in the primary sampling unit u i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacaWGPbaabeaaaaa@37FB@ depends only on i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaaaa@36D5@ ; between two primary sampling units u i u j S I MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacaWGPbaabeaakiabgcMi5kaadwhadaWgaaWcbaGaamOAaaqa baGccqGHiiIZcaWGtbWaaSbaaSqaaiaadMeaaeqaaaaa@3F41@ , the samples S i A MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaDa aaleaacaWGPbaabaGaamyqaaaaaaa@38A0@ and S j A MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaDa aaleaacaWGQbaabaGaamyqaaaaaaa@38A1@ (respectively, S i B MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaDa aaleaacaWGPbaabaGaamOqaaaaaaa@38A1@ and S j B MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaDa aaleaacaWGQbaabaGaamOqaaaaaaa@38A2@ ) are conditionally independent to S I MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaBa aaleaacaWGjbaabeaaaaa@37B9@ (property of independence). We also assume that within each primary sampling unit u i S I MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacaWGPbaabeaakiabgIGiolaadofadaWgaaWcbaGaamysaaqa baaaaa@3B5B@ , the sub-samples S i A MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaDa aaleaacaWGPbaabaGaamyqaaaaaaa@38A0@ and S i B MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaDa aaleaacaWGPbaabaGaamOqaaaaaaa@38A1@ are conditionally independent to S I MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaBa aaleaacaWGjbaabeaaaaa@37B9@ .

For a domain d 1 U A MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizamaaBa aaleaacaaIXaaabeaakiabgkOimlaadwfadaWgaaWcbaGaamyqaaqa baaaaa@3B89@ , the sub-total Y d 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaWGKbWaaSbaaWqaaiaaigdaaeqaaaWcbeaaaaa@38CD@ is estimated by Y ^ d 1 A = u i S I d Ii Y ^ d 1 ,i A MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmywayaaja Waa0baaSqaaiaadsgadaWgaaadbaGaaGymaaqabaaaleaacaWGbbaa aOGaeyypa0ZaaabeaeqaleaacaWG1bWaaSbaaWqaaiaadMgaaeqaaS GaeyicI4Saam4uamaaBaaameaacaWGjbaabeaaaSqab0GaeyyeIuoa kiaadsgadaWgaaWcbaGaamysaiaadMgaaeqaaOGabmywayaajaWaa0 baaSqaaiaadsgadaWgaaadbaGaaGymaaqabaWccaaISaGaamyAaaqa aiaadgeaaaaaaa@4A60@ with d Ii = ( π Ii ) 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizamaaBa aaleaacaWGjbGaamyAaaqabaGccqGH9aqpdaqadaqaaiabec8aWnaa BaaaleaacaWGjbGaamyAaaqabaaakiaawIcacaGLPaaadaahaaWcbe qaaiabgkHiTiaaigdaaaaaaa@40D5@ the sampling weight of the primary sampling unit u i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacaWGPbaabeaaaaa@37FB@ , Y ^ d 1 ,i A = k S i A d k|i A y k 1( k d 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmywayaaja Waa0baaSqaaiaadsgadaWgaaadbaGaaGymaaqabaWccaaISaGaamyA aaqaaiaadgeaaaGccqGH9aqpdaaeqaqabSqaaiaadUgacqGHiiIZca WGtbWaa0baaWqaaiaadMgaaeaacaWGbbaaaaWcbeqdcqGHris5aOGa amizamaaDaaaleaacaWGRbGaaiiFaiaadMgaaeaacaWGbbaaaOGaam yEamaaBaaaleaacaWGRbaabeaakiaaigdadaqadaqaaiaadUgacqGH iiIZcaWGKbWaaSbaaSqaaiaaigdaaeqaaaGccaGLOaGaayzkaaaaaa@50F9@ the estimator of the sub-total Y d 1 ,i = k u i y k 1( k d 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaWGKbWaaSbaaWqaaiaaigdaaeqaaSGaaGilaiaadMgaaeqa aOGaeyypa0ZaaabeaeqaleaacaWGRbGaeyicI4SaamyDamaaBaaame aacaWGPbaabeaaaSqab0GaeyyeIuoakiaadMhadaWgaaWcbaGaam4A aaqabaGccaaIXaWaaeWaaeaacaWGRbGaeyicI4SaamizamaaBaaale aacaaIXaaabeaaaOGaayjkaiaawMcaaaaa@4AB9@ over d 1 u i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizamaaBa aaleaacaaIXaaabeaakiabgMIihlaadwhadaWgaaWcbaGaamyAaaqa baaaaa@3B73@ , and d k|i A = ( π k|i A ) 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizamaaDa aaleaacaWGRbGaaiiFaiaadMgaaeaacaWGbbaaaOGaeyypa0ZaaeWa aeaacqaHapaCdaqhaaWcbaGaam4AaiaacYhacaWGPbaabaGaamyqaa aaaOGaayjkaiaawMcaamaaCaaaleqabaGaeyOeI0IaaGymaaaaaaa@44A7@ the sampling weight of k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaaaa@36D7@ in u i A MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaDa aaleaacaWGPbaabaGaamyqaaaaaaa@38C2@ . For a domain d 2 U B MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizamaaBa aaleaacaaIYaaabeaakiabgkOimlaadwfadaWgaaWcbaGaamOqaaqa baaaaa@3B8B@ , the sub-total Y d 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaWGKbWaaSbaaWqaaiaaikdaaeqaaaWcbeaaaaa@38CE@ is estimated by Y ^ d 2 B = u i S I d Ii Y ^ d 2 ,i B MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmywayaaja Waa0baaSqaaiaadsgadaWgaaadbaGaaGOmaaqabaaaleaacaWGcbaa aOGaeyypa0ZaaabeaeqaleaacaWG1bWaaSbaaWqaaiaadMgaaeqaaS GaeyicI4Saam4uamaaBaaameaacaWGjbaabeaaaSqab0GaeyyeIuoa kiaadsgadaWgaaWcbaGaamysaiaadMgaaeqaaOGabmywayaajaWaa0 baaSqaaiaadsgadaWgaaadbaGaaGOmaaqabaWccaaISaGaamyAaaqa aiaadkeaaaaaaa@4A64@ with Y ^ d 2 ,i B = k S i B d k|i B y k 1( k d 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmywayaaja Waa0baaSqaaiaadsgadaWgaaadbaGaaGOmaaqabaWccaaISaGaamyA aaqaaiaadkeaaaGccqGH9aqpdaaeqaqabSqaaiaadUgacqGHiiIZca WGtbWaa0baaWqaaiaadMgaaeaacaWGcbaaaaWcbeqdcqGHris5aOGa amizamaaDaaaleaacaWGRbGaaiiFaiaadMgaaeaacaWGcbaaaOGaam yEamaaBaaaleaacaWGRbaabeaakiaaigdadaqadaqaaiaadUgacqGH iiIZcaWGKbWaaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaaaaa@50FE@ the estimator of the sub-total Y d 2 ,i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaWGKbWaaSbaaWqaaiaaikdaaeqaaSGaaGilaiaadMgaaeqa aaaa@3A72@ and d k|i B = ( π k|i B ) 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizamaaDa aaleaacaWGRbGaaiiFaiaadMgaaeaacaWGcbaaaOGaeyypa0ZaaeWa aeaacqaHapaCdaqhaaWcbaGaam4AaiaacYhacaWGPbaabaGaamOqaa aaaOGaayjkaiaawMcaamaaCaaaleqabaGaeyOeI0IaaGymaaaaaaa@44A9@ the sampling weight of k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaaaa@36D7@ in u i B MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaDa aaleaacaWGPbaabaGaamOqaaaaaaa@38C3@ . This yields in particular the estimators

Y ^ ab A = u i S I d Ii Y ^ ab,i A  where  Y ^ ab,i A = k S i A d k|i A y k 1( kab ),          (3.1) Y ^ b A = u i S I d Ii Y ^ b,i A   where    Y ^ b,i A = k S i A d k|i A y k 1( kb ),          (3.2) Y ^ ab B = u i S I d Ii Y ^ ab,i B  where  Y ^ ab,i B = k S i B d k|i B y k 1( kab ).          (3.3) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaaceWGzb GbaKaadaqhaaWcbaGaamyyaiaadkgaaeaacaWGbbaaaOGaeyypa0Za aabuaeqaleaacaWG1bWaaSbaaWqaaiaadMgaaeqaaSGaeyicI4Saam 4uamaaBaaameaacaWGjbaabeaaaSqab0GaeyyeIuoakiaadsgadaWg aaWcbaGaamysaiaadMgaaeqaaOGabmywayaajaWaa0baaSqaaiaadg gacaWGIbGaaGilaiaadMgaaeaacaWGbbaaaOGaaeiiaiaabEhacaqG ObGaaeyzaiaabkhacaqGLbGaaeiiaiqadMfagaqcamaaDaaaleaaca WGHbGaamOyaiaaiYcacaWGPbaabaGaamyqaaaakiabg2da9maaqafa beWcbaGaam4AaiabgIGiolaadofadaqhaaadbaGaamyAaaqaaiaadg eaaaaaleqaniabggHiLdGccaWGKbWaa0baaSqaaiaadUgacaGG8bGa amyAaaqaaiaadgeaaaGccaWG5bWaaSbaaSqaaiaadUgaaeqaaOGaaG ymamaabmaabaGaam4AaiabgIGiolaadggacaWGIbaacaGLOaGaayzk aaGaaGilaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabc cacaqGGaGaaeiiaiaabccacaqGOaGaae4maiaab6cacaqGXaGaaeyk aaqaaiqadMfagaqcamaaDaaaleaacaWGIbaabaGaamyqaaaakiabg2 da9maaqafabeWcbaGaamyDamaaBaaameaacaWGPbaabeaaliabgIGi olaadofadaWgaaadbaGaamysaaqabaaaleqaniabggHiLdGccaWGKb WaaSbaaSqaaiaadMeacaWGPbaabeaakiqadMfagaqcamaaDaaaleaa caWGIbGaaGilaiaadMgaaeaacaWGbbaaaOGaaeiiaiaabccacaqG3b GaaeiAaiaabwgacaqGYbGaaeyzaiaabccacaqGGaGaaeiiaiqadMfa gaqcamaaDaaaleaacaWGIbGaaGilaiaadMgaaeaacaWGbbaaaOGaey ypa0ZaaabuaeqaleaacaWGRbGaeyicI4Saam4uamaaDaaameaacaWG PbaabaGaamyqaaaaaSqab0GaeyyeIuoakiaadsgadaqhaaWcbaGaam 4AaiaacYhacaWGPbaabaGaamyqaaaakiaadMhadaWgaaWcbaGaam4A aaqabaGccaaIXaWaaeWaaeaacaWGRbGaeyicI4SaamOyaaGaayjkai aawMcaaiaaiYcacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabcca caqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabIcacaqGZaGaaeOlai aabkdacaqGPaaabaGabmywayaajaWaa0baaSqaaiaadggacaWGIbaa baGaamOqaaaakiabg2da9maaqafabeWcbaGaamyDamaaBaaameaaca WGPbaabeaaliabgIGiolaadofadaWgaaadbaGaamysaaqabaaaleqa niabggHiLdGccaWGKbWaaSbaaSqaaiaadMeacaWGPbaabeaakiqadM fagaqcamaaDaaaleaacaWGHbGaamOyaiaaiYcacaWGPbaabaGaamOq aaaakiaabccacaqG3bGaaeiAaiaabwgacaqGYbGaaeyzaiaabccace WGzbGbaKaadaqhaaWcbaGaamyyaiaadkgacaaISaGaamyAaaqaaiaa dkeaaaGccqGH9aqpdaaeqbqabSqaaiaadUgacqGHiiIZcaWGtbWaa0 baaWqaaiaadMgaaeaacaWGcbaaaaWcbeqdcqGHris5aOGaamizamaa DaaaleaacaWGRbGaaiiFaiaadMgaaeaacaWGcbaaaOGaamyEamaaBa aaleaacaWGRbaabeaakiaaigdadaqadaqaaiaadUgacqGHiiIZcaWG HbGaamOyaaGaayjkaiaawMcaaiaai6cacaqGGaGaaeiiaiaabccaca qGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeikaiaa bodacaqGUaGaae4maiaabMcaaaaa@F5DF@

3.1 Hartley estimator

The Hartley estimator given in (2.1) may be re-expressed as

Y ^ θ = u i S I d Ii Y ^ θ,i           (3.4) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmywayaaja WaaSbaaSqaaiabeI7aXbqabaGccqGH9aqpdaaeqbqabSqaaiaadwha daWgaaadbaGaamyAaaqabaWccqGHiiIZcaWGtbWaaSbaaWqaaiaadM eaaeqaaaWcbeqdcqGHris5aOGaamizamaaBaaaleaacaWGjbGaamyA aaqabaGcceWGzbGbaKaadaWgaaWcbaGaeqiUdeNaaGilaiaadMgaae qaaOGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaa bccacaqGGaGaaeiiaiaabIcacaqGZaGaaeOlaiaabsdacaqGPaaaaa@52A2@

with Y ^ θ,i = Y ^ a,i A +θ Y ^ ab,i A +( 1θ ) Y ^ ab,i B + Y ^ b,i B MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmywayaaja WaaSbaaSqaaiabeI7aXjaaiYcacaWGPbaabeaakiabg2da9iqadMfa gaqcamaaDaaaleaacaWGHbGaaGilaiaadMgaaeaacaWGbbaaaOGaey 4kaSIaeqiUdeNabmywayaajaWaa0baaSqaaiaadggacaWGIbGaaGil aiaadMgaaeaacaWGbbaaaOGaey4kaSYaaeWaaeaacaaIXaGaeyOeI0 IaeqiUdehacaGLOaGaayzkaaGabmywayaajaWaa0baaSqaaiaadgga caWGIbGaaGilaiaadMgaaeaacaWGcbaaaOGaey4kaSIabmywayaaja Waa0baaSqaaiaadkgacaaISaGaamyAaaqaaiaadkeaaaaaaa@5849@ the Hartley estimator of sub-total Y i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaWGPbaabeaaaaa@37DF@ over unit primary sampling unit u i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacaWGPbaabeaaaaa@37FB@ . We get E( Y ^ θ | S I )= i S I d Ii Y i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaabm aabaGabmywayaajaWaaSbaaSqaaiabeI7aXbqabaGccaGG8bGaam4u amaaBaaaleaacaWGjbaabeaaaOGaayjkaiaawMcaaiabg2da9maaqa babeWcbaGaamyAaiabgIGiolaadofadaWgaaadbaGaamysaaqabaaa leqaniabggHiLdGccaWGKbWaaSbaaSqaaiaadMeacaWGPbaabeaaki aadMfadaWgaaWcbaGaamyAaaqabaaaaa@4A07@ , then

V( Y ^ θ )=V( i S I d Ii Y i )+EV( Y ^ θ | S I ).          (3.5) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaabm aabaGabmywayaajaWaaSbaaSqaaiabeI7aXbqabaaakiaawIcacaGL PaaacqGH9aqpcaWGwbWaaeWaaeaadaaeqbqabSqaaiaadMgacqGHii IZcaWGtbWaaSbaaWqaaiaadMeaaeqaaaWcbeqdcqGHris5aOGaamiz amaaBaaaleaacaWGjbGaamyAaaqabaGccaWGzbWaaSbaaSqaaiaadM gaaeqaaaGccaGLOaGaayzkaaGaey4kaSIaamyraiaadAfadaqadaqa aiqadMfagaqcamaaBaaaleaacqaH4oqCaeqaaOGaaiiFaiaadofada WgaaWcbaGaamysaaqabaaakiaawIcacaGLPaaacaaIUaGaaeiiaiaa bccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaae iiaiaabIcacaqGZaGaaeOlaiaabwdacaqGPaaaaa@5E3B@

In (3.5), the first term of the right member does not depend on θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiUdehaaa@379D@ . Hartley’s optimal estimator can, therefore, be calculated by minimizing the second term only. This gives:

θ opt| S I = EV( Y ^ ab B | S I )+ECov( Y ^ ab B , Y ^ b B | S I )ECov( Y ^ a A , Y ^ ab A | S I ) EV( Y ^ ab A | S I )+EV( Y ^ ab B | S I ) ,           (3.6) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiUde3aaS baaSqaaiaad+gacaWGWbGaamiDaiaacYhacaWGtbWaaSbaaWqaaiaa dMeaaeqaaaWcbeaakiabg2da9maalaaabaGaamyraiaadAfadaqada qaaiqadMfagaqcamaaDaaaleaacaWGHbGaamOyaaqaaiaadkeaaaGc caGG8bGaam4uamaaBaaaleaacaWGjbaabeaaaOGaayjkaiaawMcaai abgUcaRiaadweacaWGdbGaam4BaiaadAhadaqadaqaaiqadMfagaqc amaaDaaaleaacaWGHbGaamOyaaqaaiaadkeaaaGccaaISaGabmyway aajaWaa0baaSqaaiaadkgaaeaacaWGcbaaaOGaaiiFaiaadofadaWg aaWcbaGaamysaaqabaaakiaawIcacaGLPaaacqGHsislcaWGfbGaam 4qaiaad+gacaWG2bWaaeWaaeaaceWGzbGbaKaadaqhaaWcbaGaamyy aaqaaiaadgeaaaGccaaISaGabmywayaajaWaa0baaSqaaiaadggaca WGIbaabaGaamyqaaaakiaacYhacaWGtbWaaSbaaSqaaiaadMeaaeqa aaGccaGLOaGaayzkaaaabaGaamyraiaadAfadaqadaqaaiqadMfaga qcamaaDaaaleaacaWGHbGaamOyaaqaaiaadgeaaaGccaGG8bGaam4u amaaBaaaleaacaWGjbaabeaaaOGaayjkaiaawMcaaiabgUcaRiaadw eacaWGwbWaaeWaaeaaceWGzbGbaKaadaqhaaWcbaGaamyyaiaadkga aeaacaWGcbaaaOGaaiiFaiaadofadaWgaaWcbaGaamysaaqabaaaki aawIcacaGLPaaaaaGaaGilaiaabccacaqGGaGaaeiiaiaabccacaqG GaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeikaiaabo dacaqGUaGaaeOnaiaabMcaaaa@881C@

which can be estimated by

θ ^ opt = V ^ ( Y ^ ab B )+ Cov ^ ( Y ^ ab B , Y ^ b B ) Cov ^ ( Y ^ a A , Y ^ ab A ) V ^ ( Y ^ ab A )+ V ^ ( Y ^ ab B )           (3.7) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiUdeNbaK aadaWgaaWcbaGaam4BaiaadchacaWG0baabeaakiabg2da9maalaaa baGabmOvayaajaWaaeWaaeaaceWGzbGbaKaadaqhaaWcbaGaamyyai aadkgaaeaacaWGcbaaaaGccaGLOaGaayzkaaGaey4kaSYaaecaaeaa caWGdbGaam4BaiaadAhaaiaawkWaamaabmaabaGabmywayaajaWaa0 baaSqaaiaadggacaWGIbaabaGaamOqaaaakiaaiYcaceWGzbGbaKaa daqhaaWcbaGaamOyaaqaaiaadkeaaaaakiaawIcacaGLPaaacqGHsi sldaqiaaqaaiaadoeacaWGVbGaamODaaGaayPadaWaaeWaaeaaceWG zbGbaKaadaqhaaWcbaGaamyyaaqaaiaadgeaaaGccaaISaGabmyway aajaWaa0baaSqaaiaadggacaWGIbaabaGaamyqaaaaaOGaayjkaiaa wMcaaaqaaiqadAfagaqcamaabmaabaGabmywayaajaWaa0baaSqaai aadggacaWGIbaabaGaamyqaaaaaOGaayjkaiaawMcaaiabgUcaRiqa dAfagaqcamaabmaabaGabmywayaajaWaa0baaSqaaiaadggacaWGIb aabaGaamOqaaaaaOGaayjkaiaawMcaaaaacaqGGaGaaeiiaiaabcca caqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeikai aabodacaqGUaGaae4naiaabMcaaaa@736C@

by replacing each variance and covariance term with an unbiased estimator conditional on the first stage.

3.2 Kalton and Anderson estimator

With the sample design considered, we get d k A = d Ii d k|i A MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizamaaDa aaleaacaWGRbaabaGaamyqaaaakiabg2da9iaadsgadaWgaaWcbaGa amysaiaadMgaaeqaaOGaamizamaaDaaaleaacaWGRbGaaiiFaiaadM gaaeaacaWGbbaaaaaa@4158@ for any unit k u i A MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AaiabgI GiolaadwhadaqhaaWcbaGaamyAaaqaaiaadgeaaaaaaa@3B36@ , and d k B = d Ii d k|i B MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizamaaDa aaleaacaWGRbaabaGaamOqaaaakiabg2da9iaadsgadaWgaaWcbaGa amysaiaadMgaaeqaaOGaamizamaaDaaaleaacaWGRbGaaiiFaiaadM gaaeaacaWGcbaaaaaa@415A@ for any unit k u i B MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AaiabgI GiolaadwhadaqhaaWcbaGaamyAaaqaaiaadkeaaaaaaa@3B37@ . Therefore, the Kalton and Anderson estimator given in (2.4) can be re-expressed as

Y ^ KA = i S I d Ii Y ^ KA,i           (3.8) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmywayaaja WaaSbaaSqaaiaadUeacaWGbbaabeaakiabg2da9maaqafabeWcbaGa amyAaiabgIGiolaadofadaWgaaadbaGaamysaaqabaaaleqaniabgg HiLdGccaWGKbWaaSbaaSqaaiaadMeacaWGPbaabeaakiqadMfagaqc amaaBaaaleaacaWGlbGaamyqaiaaiYcacaWGPbaabeaakiaabccaca qGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaa bccacaqGOaGaae4maiaab6cacaqG4aGaaeykaaaa@5134@

with Y ^ KA,i = k S A d k|i A m k|i A y k + k S B d k|i B m k|i B y k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmywayaaja WaaSbaaSqaaiaadUeacaWGbbGaaGilaiaadMgaaeqaaOGaeyypa0Za aabeaeqaleaacaWGRbGaeyicI4Saam4uamaaCaaameqabaGaamyqaa aaaSqab0GaeyyeIuoakiaadsgadaqhaaWcbaGaam4AaiaacYhacaWG PbaabaGaamyqaaaakiaad2gadaqhaaWcbaGaam4AaiaacYhacaWGPb aabaGaamyqaaaakiaadMhadaWgaaWcbaGaam4AaaqabaGccqGHRaWk daaeqaqabSqaaiaadUgacqGHiiIZcaWGtbWaaWbaaWqabeaacaWGcb aaaaWcbeqdcqGHris5aOGaamizamaaDaaaleaacaWGRbGaaiiFaiaa dMgaaeaacaWGcbaaaOGaamyBamaaDaaaleaacaWGRbGaaiiFaiaadM gaaeaacaWGcbaaaOGaamyEamaaBaaaleaacaWGRbaabeaaaaa@6002@ the Kalton and Anderson estimator of the sub-total Y i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaWGPbaabeaaaaa@37DF@ , where

m k|i A ={ 1 if ka u i , d k|i B d k|i A + d k|i B if kab u i ,    and    m k|i B ={ 1 if kb u i , d k|i A d k|i A + d k|i B if kab u i . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBamaaDa aaleaacaWGRbGaaiiFaiaadMgaaeaacaWGbbaaaOGaeyypa0Zaaiqa aeaafaqaaeGacaaabaGaaGymaaqaaiaabMgacaqGMbGaaeiiaiaadU gacqGHiiIZcaWGHbGaeyykICSaamyDamaaBaaaleaacaWGPbaabeaa kiaaiYcaaeaadaWcaaqaaiaadsgadaqhaaWcbaGaam4AaiaacYhaca WGPbaabaGaamOqaaaaaOqaaiaadsgadaqhaaWcbaGaam4AaiaacYha caWGPbaabaGaamyqaaaakiabgUcaRiaadsgadaqhaaWcbaGaam4Aai aacYhacaWGPbaabaGaamOqaaaaaaaakeaacaqGPbGaaeOzaiaabcca caWGRbGaeyicI4SaamyyaiaadkgacqGHPiYXcaWG1bWaaSbaaSqaai aadMgaaeqaaOGaaGilaaaaaiaawUhaaiaabccacaqGGaGaaeiiaiaa bggacaqGUbGaaeizaiaabccacaqGGaGaaeiiaiaad2gadaqhaaWcba Gaam4AaiaacYhacaWGPbaabaGaamOqaaaakiabg2da9maaceaabaqb aeaabiGaaaqaaiaaigdaaeaacaqGPbGaaeOzaiaabccacaWGRbGaey icI4SaamOyaiabgMIihlaadwhadaWgaaWcbaGaamyAaaqabaGccaaI SaaabaWaaSaaaeaacaWGKbWaa0baaSqaaiaadUgacaGG8bGaamyAaa qaaiaadgeaaaaakeaacaWGKbWaa0baaSqaaiaadUgacaGG8bGaamyA aaqaaiaadgeaaaGccqGHRaWkcaWGKbWaa0baaSqaaiaadUgacaGG8b GaamyAaaqaaiaadkeaaaaaaaGcbaGaaeyAaiaabAgacaqGGaGaam4A aiabgIGiolaadggacaWGIbGaeyykICSaamyDamaaBaaaleaacaWGPb aabeaakiaai6caaaaacaGL7baaaaa@9543@

3.3 Bankier estimator

With the sampling design considered, we get π k HT = π Ii ( π k|i A + π k|i B π k|i A π k|i B ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWda3aa0 baaSqaaiaadUgaaeaacaWGibGaamivaaaakiabg2da9iabec8aWnaa BaaaleaacaWGjbGaamyAaaqabaGcdaqadaqaaiabec8aWnaaDaaale aacaWGRbGaaiiFaiaadMgaaeaacaWGbbaaaOGaey4kaSIaeqiWda3a a0baaSqaaiaadUgacaGG8bGaamyAaaqaaiaadkeaaaGccqGHsislcq aHapaCdaqhaaWcbaGaam4AaiaacYhacaWGPbaabaGaamyqaaaakiab ec8aWnaaDaaaleaacaWGRbGaaiiFaiaadMgaaeaacaWGcbaaaaGcca GLOaGaayzkaaaaaa@58E0@ for any k u i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AaiabgI GiolaadwhadaWgaaWcbaGaamyAaaqabaaaaa@3A6F@ . Therefore, the Bankier estimator given in (2.5) can be re-expressed as

Y ^ HT = i S I d Ii Y ^ HT,i           (3.9) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmywayaaja WaaSbaaSqaaiaadIeacaWGubaabeaakiabg2da9maaqafabeWcbaGa amyAaiabgIGiolaadofadaWgaaadbaGaamysaaqabaaaleqaniabgg HiLdGccaWGKbWaaSbaaSqaaiaadMeacaWGPbaabeaakiqadMfagaqc amaaBaaaleaacaWGibGaamivaiaaiYcacaWGPbaabeaakiaabccaca qGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaa bccacaqGOaGaae4maiaab6cacaqG5aGaaeykaaaa@5155@

with Y ^ HT,i = k S i A S i B ( y k / π k|i HT ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmywayaaja WaaSbaaSqaaiaadIeacaWGubGaaGilaiaadMgaaeqaaOGaeyypa0Za aabeaeqaleaacaWGRbGaeyicI4Saam4uamaaDaaameaacaWGPbaaba GaamyqaaaaliabgQIiilaadofadaqhaaadbaGaamyAaaqaaiaadkea aaaaleqaniabggHiLdGcdaqadaqaamaalyaabaGaamyEamaaBaaale aacaWGRbaabeaaaOqaaiabec8aWnaaDaaaleaacaWGRbGaaiiFaiaa dMgaaeaacaWGibGaamivaaaaaaaakiaawIcacaGLPaaaaaa@5123@ the Bankier estimator for the sub-total Y i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaWGPbaabeaaaaa@37DF@ , and π k|i HT = π k|i A MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWda3aa0 baaSqaaiaadUgacaGG8bGaamyAaaqaaiaadIeacaWGubaaaOGaeyyp a0JaeqiWda3aa0baaSqaaiaadUgacaGG8bGaamyAaaqaaiaadgeaaa aaaa@42F3@ if ka MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AaiabgI Giolaadggaaaa@3941@ , π k|i HT = π k|i B MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWda3aa0 baaSqaaiaadUgacaGG8bGaamyAaaqaaiaadIeacaWGubaaaOGaeyyp a0JaeqiWda3aa0baaSqaaiaadUgacaGG8bGaamyAaaqaaiaadkeaaa aaaa@42F4@ if kb MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AaiabgI Giolaadkgaaaa@3942@ , π k|i HT = π k|i A + π k|i B π k|i A π k|i B MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWda3aa0 baaSqaaiaadUgacaGG8bGaamyAaaqaaiaadIeacaWGubaaaOGaeyyp a0JaeqiWda3aa0baaSqaaiaadUgacaGG8bGaamyAaaqaaiaadgeaaa GccqGHRaWkcqaHapaCdaqhaaWcbaGaam4AaiaacYhacaWGPbaabaGa amOqaaaakiabgkHiTiabec8aWnaaDaaaleaacaWGRbGaaiiFaiaadM gaaeaacaWGbbaaaOGaeqiWda3aa0baaSqaaiaadUgacaGG8bGaamyA aaqaaiaadkeaaaaaaa@558C@ if kab MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AaiabgI GiolaadggacaWGIbaaaa@3A28@ .

Each of the three estimators examined is obtained by applying the estimation method PSU by PSU, conditional on the first stage. This result is particularly attractive for Hartley’s optimal method, since the optimal coefficient estimator given in (3.7) only requires variance estimators conditional on the first stage.

Previous | Next

Date modified: