2 Consistency and asymptotic normality

Jun Shao, Eric Slud, Yang Cheng, Sheng Wang, and Carma Hogue

Previous | Next

To consider asymptotics, we view the population U MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadwfaaa a@39D6@  as one of a sequence of populations { U ( m ) ,m=1,2, }, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaacmqaba GaamyvamaaCaaaleqabaWaaeWaaeaacaWGTbaacaGLOaGaayzkaaaa aOGaaGilaiaad2gacqGH9aqpcaaIXaGaaiilaiaaikdacaGGSaGaeS OjGSeacaGL7bGaayzFaaGaaiilaaaa@4611@  where the number of units in U ( m ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadwfada ahaaWcbeqaamaabmaabaGaamyBaaGaayjkaiaawMcaaaaaaaa@3C7E@  increases to infinity as m. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaad2gacq GHsgIRcqGHEisPcaGGUaaaaa@3DFE@  This paper treats only the case of strata in which a large sample n h MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaad6gada WgaaWcbaGaamiAaaqabaaaaa@3B08@  is drawn; that is, we assume that for each stratum h, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadIgaca GGSaaaaa@3A99@  the sample size n h MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaad6gada WgaaWcbaGaamiAaaqabaaaaa@3B08@  depends on m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaad2gaaa a@39EE@  and increases to infinity as m, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaad2gacq GHsgIRcqGHEisPcaGGSaaaaa@3DFC@  but we omit the index m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaad2gaaa a@39EE@  for simplicity. All limiting processes are considered as m. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaad2gacq GHsgIRcqGHEisPcaGGUaaaaa@3DFE@ Following authors such as Isaki and Fuller (1982) and Deville and Särndal (1992), we term this a superpopulation asymptotic framework. Under the design-based framework considered in Section 2.1, the attribute vectors in the underlying populations need not be viewed as random vectors. However, under the model-assisted framework considered in Section 2.2, regression models are assumed for attribute vectors.

Since each estimator is a sum of independent estimators constructed within each stratum, for simplicity we present asymptotic results for the case of H=1. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadIeacq GH9aqpcaaIXaGaaiOlaaaa@3C3C@  The results and conclusions immediately apply to the case of a fixed H MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadIeaaa a@39C9@  and can also be extended to the situation where H MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadIeaaa a@39C9@  increases to infinity. (It is typical for large-scale surveys to have many strata, although the number of ASPEP government-by-type strata that were split into substrata was somewhat less than 100.) Since we only consider H=1, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadIeacq GH9aqpcaaIXaGaaiOlaaaa@3C3C@  we omit the index h MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadIgaaa a@39E9@  for stratum in this section, e.g., n hj = n j , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaad6gada WgaaWcbaGaamiAaiaadQgaaeqaaOGaeyypa0JaamOBamaaBaaaleaa caWGQbaabeaakiaacYcaaaa@3FCF@   n h =n, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaad6gada WgaaWcbaGaamiAaaqabaGccqGH9aqpcaWGUbGaaiilaaaa@3DBB@   N hj = N j , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaad6eada WgaaWcbaGaamiAaiaadQgaaeqaaOGaeyypa0JaamOtamaaBaaaleaa caWGQbaabeaakiaacYcaaaa@3F8F@  and N h =N. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaad6eada WgaaWcbaGaamiAaaqabaGccqGH9aqpcaWGobGaaiOlaaaa@3D7D@  Also, for j=1,2, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOAaiabg2 da9iaaigdacaGGSaGaaGOmaiaacYcaaaa@3AC0@  the estimators β ^ j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiqbek7aIz aajaWaaSbaaSqaaiaadQgaaeqaaaaa@3BC8@  and β ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiqbek7aIz aajaaaaa@3AAD@  are defined by the displayed formulas following equations (1.2) and (1.3), with subscript h MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadIgaaa a@39E9@  suppressed, together with

μ ^ xj = X ^ j / N ^ j , α ^ j = Y ^ j / N ^ j β ^ j μ ^ xj , σ ^ xj 2 = N ^ j 1 i S j π i 1 ( x i μ ^ xj ) 2 σ ^ xe,j 2 = n j i S j ( x i μ ^ xj ) 2 ( y i α ^ j β ^ j x i ) 2 / ( π i 2 N ^ j 2 ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaqbaeaabiWaaa uaaiqbeY7aTzaajaWaaSbaaSqaaiaadIhacaWGQbaabeaaaOqaaiab g2da9aqaamaalyaabaGabmiwayaajaWaaSbaaSqaaiaadQgaaeqaaa GcbaGabmOtayaajaWaaSbaaSqaaiaadQgaaeqaaOGaaiilaaaacaaM f8UafqySdeMbaKaadaWgaaWcbaGaamOAaaqabaGccqGH9aqpdaWcga qaaiqadMfagaqcamaaBaaaleaacaWGQbaabeaaaOqaaiqad6eagaqc amaaBaaaleaacaWGQbaabeaaaaGccqGHsislcuaHYoGygaqcamaaBa aaleaacaWGQbaabeaakiqbeY7aTzaajaWaaSbaaSqaaiaadIhacaWG QbaabeaakiaaiYcacaaMf8Uafq4WdmNbaKaadaqhaaWcbaGaamiEai aadQgaaeaacaaIYaaaaOGaeyypa0JabmOtayaajaWaa0baaSqaaiaa dQgaaeaacqGHsislcaaIXaaaaOWaaabuaeqaleaacaWGPbGaeyicI4 Saam4uamaaBaaabaGaamOAaaqabaaabeqdcqGHris5aOGaeqiWda3a a0baaSqaaiaadMgaaeaacqGHsislcaaIXaaaaOWaaeWaaeaacaWG4b WaaSbaaSqaaiaadMgaaeqaaOGaeyOeI0IafqiVd0MbaKaadaWgaaWc baGaamiEaiaadQgaaeqaaaGccaGLOaGaayzkaaWaaWbaaSqabeaaca aIYaaaaaGcbaGafq4WdmNbaKaadaqhaaWcbaGaamiEaiaadwgacaaI SaGaamOAaaqaaiaaikdaaaaakeaacqGH9aqpaeaacaWGUbWaaSbaaS qaaiaadQgaaeqaaOWaaabuaeqaleaacaWGPbGaeyicI4Saam4uamaa BaaabaGaamOAaaqabaaabeqdcqGHris5aOWaaeWaaeaacaWG4bWaaS baaSqaaiaadMgaaeqaaOGaeyOeI0IafqiVd0MbaKaadaWgaaWcbaGa amiEaiaadQgaaeqaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaaIYa aaaOWaaSGbaeaadaqadaqaaiaadMhadaWgaaWcbaGaamyAaaqabaGc cqGHsislcuaHXoqygaqcamaaBaaaleaacaWGQbaabeaakiabgkHiTi qbek7aIzaajaWaaSbaaSqaaiaadQgaaeqaaOGaamiEamaaBaaaleaa caWGPbaabeaaaOGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaO qaamaabmaabaGaeqiWda3aa0baaSqaaiaadMgaaeaacaaIYaaaaOGa bmOtayaajaWaa0baaSqaaiaadQgaaeaacaaIYaaaaaGccaGLOaGaay zkaaaaaiaac6caaaaaaa@A1EA@

Furthermore, for simplicity we consider asymptotics only under with-replacement sampling. The results can be applied to the case of without replacement sampling if the sampling fraction n/N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaalyaaba GaamOBaaqaaiaad6eaaaaaaa@3AD8@  is negligible.

2.1 Design-based asymptotic framework

First, we establish the asymptotic normality of Y ^ reg,1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiqadMfaga qcamaaBaaaleaacaqGYbGaaeyzaiaabEgacaaISaGaaGymaaqabaaa aa@3E4E@  and Y ^ reg,2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiqadMfaga qcamaaBaaaleaacaqGYbGaaeyzaiaabEgacaaISaGaaGOmaaqabaaa aa@3E4F@  under repeated sampling, that is, when y i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadMhada WgaaWcbaGaamyAaaqabaaaaa@3B14@  and x i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadIhada WgaaWcbaGaamyAaaqabaaaaa@3B13@  are fixed for iU, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadMgacq GHiiIZcaWGvbGaaiilaaaa@3CF8@  and S j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadofada WgaaWcbaGaamOAaaqabaaaaa@3AEF@  is a random PPS sample.

Theorem 1 Suppose that S 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadofada WgaaWcbaGaaGymaaqabaaaaa@3ABB@  and S 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadofada WgaaWcbaGaaGOmaaqabaaaaa@3ABC@  are independent PPS samples with replacement from U 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadwfada WgaaWcbaGaaGymaaqabaaaaa@3ABD@  and U 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadwfada WgaaWcbaGaaGOmaaqabaGccaGGSaaaaa@3B78@  respectively, where unit i U j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadMgacq GHiiIZcaWGvbWaaSbaaSqaaiaadQgaaeqaaaaa@3D63@  has probability p ij = z i / i U j z i >0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadchada WgaaWcbaGaamyAaiaadQgaaeqaaOGaeyypa0ZaaSGbaeaacaWG6bWa aSbaaSqaaiaadMgaaeqaaaGcbaWaaabeaeqaleaacaWGPbGaeyicI4 SaamyvamaaBaaabaGaamOAaaqabaaabeqdcqGHris5aOGaamOEamaa BaaaleaacaWGPbaabeaakiaaysW7caqG+aGaaGjbVlaaicdaaaaaaa@4C45@  of being selected, and sampling weight π i 1 =1/ ( n j p ij ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabec8aWn aaDaaaleaacaWGPbaabaGaeyOeI0IaaGymaaaakiaaysW7cqGH9aqp caaMe8+aaSGbaeaacaaIXaaabaWaaeWaaeaacaWGUbWaaSbaaSqaai aadQgaaeqaaOGaamiCamaaBaaaleaacaWGPbGaamOAaaqabaaakiaa wIcacaGLPaaaaaaaaa@4920@  for j=1,2, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadQgacq GH9aqpcaaIXaGaaiilaiaaikdacaGGSaaaaa@3DC8@  and that the following four conditions hold, as the population sequence index m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaad2gaaa a@39EE@  goes to . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabg6HiLk aac6caaaa@3B1F@

(C1) There exist constants φ j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabeA8aQn aaBaaaleaacaWGQbaabeaaaaa@3BD4@  and ω j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabeM8a3n aaBaaaleaacaWGQbaabeaaaaa@3BE4@  such that n/ n j φ j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaakaaaba WaaSGbaeaacaWGUbaabaGaamOBamaaBaaaleaacaWGQbaabeaaaaaa beaakiabgkziUkabeA8aQnaaBaaaleaacaWGQbaabeaaaaa@40F2@  and N j /N ω j . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaalyaaba GaamOtamaaBaaaleaacaWGQbaabeaaaOqaaiaad6eaaaGaeyOKH4Qa eqyYdC3aaSbaaSqaaiaadQgaaeqaaOGaaiOlaaaa@416E@

(C2)  For j=1,2, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOAaiabg2 da9iaaigdacaGGSaGaaGOmaiaacYcaaaa@3AC0@  there exist constants μ yj , μ xj MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabeY7aTn aaBaaaleaacaWG5bGaamOAaaqabaGccaaISaGaeqiVd02aaSbaaSqa aiaadIhacaWGQbaabeaaaaa@4159@  and β j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabek7aIn aaBaaaleaacaWGQbaabeaaaaa@3BB8@  such that

Y ¯ j = Y j / N j = i U j y i / N j μ yj , X ¯ j = X j / N j = i U j x i / N j μ xj MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiqadMfaga qeamaaBaaaleaacaWGQbaabeaakiabg2da9maalyaabaGaamywamaa BaaaleaacaWGQbaabeaaaOqaaiaad6eadaWgaaWcbaGaamOAaaqaba aaaOGaeyypa0ZaaabuaeqaleaacaWGPbGaeyicI4SaamyvamaaBaaa baGaamOAaaqabaaabeqdcqGHris5aOWaaSGbaeaacaWG5bWaaSbaaS qaaiaadMgaaeqaaaGcbaGaamOtamaaBaaaleaacaWGQbaabeaaaaGc cqGHsgIRcqaH8oqBdaWgaaWcbaGaamyEaiaadQgaaeqaaOGaaGilai qadIfagaqeamaaBaaaleaacaWGQbaabeaakiabg2da9maalyaabaGa amiwamaaBaaaleaacaWGQbaabeaaaOqaaiaad6eadaWgaaWcbaGaam OAaaqabaaaaOGaeyypa0ZaaabuaeqaleaacaWGPbGaeyicI4Saamyv amaaBaaabaGaamOAaaqabaaabeqdcqGHris5aOWaaSGbaeaacaWG4b WaaSbaaSqaaiaadMgaaeqaaaGcbaGaamOtamaaBaaaleaacaWGQbaa beaaaaGccqGHsgIRcqaH8oqBdaWgaaWcbaGaamiEaiaadQgaaeqaaa aa@6B14@

exist, as do the limits N j 1 i U j ( x i μ xj ) 2 σ xj 2 >0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaad6eada qhaaWcbaGaamOAaaqaaiabgkHiTiaaigdaaaGcdaaeqaqabSqaaiaa dMgacqGHiiIZcaWGvbWaaSbaaeaacaWGQbaabeaaaeqaniabggHiLd GcdaqadaqaaiaadIhadaWgaaWcbaGaamyAaaqabaGccqGHsislcqaH 8oqBdaWgaaWcbaGaamiEaiaadQgaaeqaaaGccaGLOaGaayzkaaWaaW baaSqabeaacaaIYaaaaOGaeyOKH4Qaeq4Wdm3aa0baaSqaaiaadIha caWGQbaabaGaaGOmaaaakiaaysW7caqG+aGaaGjbVlaaicdacaGGSa aaaa@581D@  and in addition,

( n j / N j ) i U j x i ( y i Y j / N j β j ( x i X j / N j ) )0asn,N. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaabmaaba WaaSGbaeaadaGcaaqaaiaad6gadaWgaaWcbaGaamOAaaqabaaabeaa aOqaaiaad6eadaWgaaWcbaGaamOAaaqabaaaaaGccaGLOaGaayzkaa WaaabuaeqaleaacaWGPbGaeyicI4SaamyvamaaBaaabaGaamOAaaqa baaabeqdcqGHris5aOGaamiEamaaBaaaleaacaWGPbaabeaakmaabm aabaGaamyEamaaBaaaleaacaWGPbaabeaakiabgkHiTmaalyaabaGa amywamaaBaaaleaacaWGQbaabeaaaOqaaiaad6eadaWgaaWcbaGaam OAaaqabaaaaOGaeyOeI0IaeqOSdi2aaSbaaSqaaiaadQgaaeqaaOWa aeWaaeaacaWG4bWaaSbaaSqaaiaadMgaaeqaaOGaeyOeI0YaaSGbae aacaWGybWaaSbaaSqaaiaadQgaaeqaaaGcbaGaamOtamaaBaaaleaa caWGQbaabeaaaaaakiaawIcacaGLPaaaaiaawIcacaGLPaaacqGHsg IRcaaIWaGaaGjbVlaaykW7caqGHbGaae4CaiaaysW7caaMc8UaamOB aiaaiYcacaWGobGaeyOKH4QaeyOhIuQaaGOlaaaa@6DAC@

(C3) The limits D N j = i U j p ij b ij b ij T / N j 2 D j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadseada WgaaWcbaGaamOtamaaBaaabaGaamOAaaqabaaabeaakiabg2da9maa qababeWcbaGaamyAaiabgIGiolaadwfadaWgaaqaaiaadQgaaeqaaa qab0GaeyyeIuoakmaalyaabaGaamiCamaaBaaaleaacaWGPbGaamOA aaqabaGccaWGIbWaaSbaaSqaaiaadMgacaWGQbaabeaakiaadkgada qhaaWcbaGaamyAaiaadQgaaeaacaWGubaaaaGcbaGaamOtamaaDaaa leaacaWGQbaabaGaaGOmaaaaaaGccqGHsgIRcaWGebWaaSbaaSqaai aadQgaaeqaaaaa@53A0@  exist, where for i U j , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadMgacq GHiiIZcaWGvbWaaSbaaSqaaiaadQgaaeqaaOGaaiilaaaa@3E1D@

b ij = [ 1/ p ij N j , x i / p ij X j , y i / p ij Y j ] T , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadkgada WgaaWcbaGaamyAaiaadQgaaeqaaOGaeyypa0ZaamWaaeaadaWcgaqa aiaaigdaaeaacaWGWbWaaSbaaSqaaiaadMgacaWGQbaabeaaaaGccq GHsislcaWGobWaaSbaaSqaaiaadQgaaeqaaOGaaGilamaalyaabaGa amiEamaaBaaaleaacaWGPbaabeaaaOqaaiaadchadaWgaaWcbaGaam yAaiaadQgaaeqaaaaakiabgkHiTiaadIfadaWgaaWcbaGaamOAaaqa baGccaaISaWaaSGbaeaacaWG5bWaaSbaaSqaaiaadMgaaeqaaaGcba GaamiCamaaBaaaleaacaWGPbGaamOAaaqabaaaaOGaeyOeI0Iaamyw amaaBaaaleaacaWGQbaabeaaaOGaay5waiaaw2faamaaCaaaleqaba GaamivaaaakiaaiYcaaaa@593C@

v T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadAhada ahaaWcbeqaaiaadsfaaaaaaa@3AFD@  denotes the vector transpose, and D j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadseada WgaaWcbaGaamOAaaqabaaaaa@3AE0@  is positive definite. The limit σ xe,j 2 = MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabeo8aZn aaDaaaleaacaWG4bGaamyzaiaaiYcacaWGQbaabaGaaGOmaaaakiab g2da9aaa@4044@   lim N j 2 i U j ( x i μ xj ) 2 ( y i α j β j x i ) 2 / p ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiGacYgaca GGPbGaaiyBaiaad6eadaqhaaWcbaGaamOAaaqaaiabgkHiTiaaikda aaGcdaaeqaqabSqaaiaadMgacqGHiiIZcaWGvbWaaSbaaeaacaWGQb aabeaaaeqaniabggHiLdGcdaWcgaqaamaabmaabaGaamiEamaaBaaa leaacaWGPbaabeaakiabgkHiTiabeY7aTnaaBaaaleaacaWG4bGaam OAaaqabaaakiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaGcdaqa daqaaiaadMhadaWgaaWcbaGaamyAaaqabaGccqGHsislcqaHXoqyda WgaaWcbaGaamOAaaqabaGccqGHsislcqaHYoGydaWgaaWcbaGaamOA aaqabaGccaWG4bWaaSbaaSqaaiaadMgaaeqaaaGccaGLOaGaayzkaa WaaWbaaSqabeaacaaIYaaaaaGcbaGaamiCamaaBaaaleaacaWGPbGa amOAaaqabaaaaaaa@6051@  also exists, for α j = μ yj β j μ xj . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabeg7aHn aaBaaaleaacaWGQbaabeaakiabg2da9iabeY7aTnaaBaaaleaacaWG 5bGaamOAaaqabaGccqGHsislcqaHYoGydaWgaaWcbaGaamOAaaqaba GccqaH8oqBdaWgaaWcbaGaamiEaiaadQgaaeqaaOGaaGOlaaaa@48E2@

(C4) The elements of Λ j = i U j p ij c ij c ij T / N j 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabfU5amn aaBaaaleaacaWGQbaabeaakiabg2da9maaqababeWcbaGaamyAaiab gIGiolaadwfadaWgaaqaaiaadQgaaeqaaaqab0GaeyyeIuoakmaaly aabaGaamiCamaaBaaaleaacaWGPbGaamOAaaqabaGccaWGJbWaaSba aSqaaiaadMgacaWGQbaabeaakiaadogadaqhaaWcbaGaamyAaiaadQ gaaeaacaWGubaaaaGcbaGaamOtamaaDaaaleaacaWGQbaabaGaaGin aaaaaaaaaa@4F81@  form a bounded sequence, where for i U j , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadMgacq GHiiIZcaWGvbWaaSbaaSqaaiaadQgaaeqaaOGaaiilaaaa@3E1D@

c ij = [ ( 1/ p ij N j ) 2 , ( x i / p ij X j ) 2 , ( y i / p ij Y j ) 2 ] T . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadogada WgaaWcbaGaamyAaiaadQgaaeqaaOGaeyypa0ZaamWaaeaadaqadaqa amaalyaabaGaaGymaaqaaiaadchadaWgaaWcbaGaamyAaiaadQgaae qaaOGaeyOeI0IaamOtamaaBaaaleaacaWGQbaabeaaaaaakiaawIca caGLPaaadaahaaWcbeqaaiaaikdaaaGccaaISaWaaeWaaeaadaWcga qaaiaadIhadaWgaaWcbaGaamyAaaqabaaakeaacaWGWbWaaSbaaSqa aiaadMgacaWGQbaabeaakiabgkHiTiaadIfadaWgaaWcbaGaamOAaa qabaaaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaOGaaGil amaabmaabaWaaSGbaeaacaWG5bWaaSbaaSqaaiaadMgaaeqaaaGcba GaamiCamaaBaaaleaacaWGPbGaamOAaaqabaGccqGHsislcaWGzbWa aSbaaSqaaiaadQgaaeqaaaaaaOGaayjkaiaawMcaamaaCaaaleqaba GaaGOmaaaaaOGaay5waiaaw2faamaaCaaaleqabaGaamivaaaakiaa c6caaaa@60AD@

Then, as m, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyBaiabgk ziUkabg6HiLkaacYcaaaa@3AF4@  the following conclusions hold.

(a) For j=1,2, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadQgacq GH9aqpcaaIXaGaaiilaiaaikdacaGGSaaaaa@3DC8@   μ ^ xj P μ xj , μ ^ yj P μ yj , β ^ j P β j , α ^ j P α j , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiqbeY7aTz aajaWaaSbaaSqaaiaadIhacaWGQbaabeaakiabgkziUoaaBaaaleaa daWgaaqaaiaadcfaaeqaaaqabaGccaaMc8UaeqiVd02aaSbaaSqaai aadIhacaWGQbaabeaakiaaiYcacuaH8oqBgaqcamaaBaaaleaacaWG 5bGaamOAaaqabaGccqGHsgIRdaWgaaWcbaWaaSbaaeaacaWGqbaabe aaaeqaaOGaaGPaVlabeY7aTnaaBaaaleaacaWG5bGaamOAaaqabaGc caaISaGafqOSdiMbaKaadaWgaaWcbaGaamOAaaqabaGccqGHsgIRda WgaaWcbaWaaSbaaeaacaWGqbaabeaaaeqaaOGaaGPaVlabek7aInaa BaaaleaacaWGQbaabeaakiaaiYcacuaHXoqygaqcamaaBaaaleaaca WGQbaabeaakiabgkziUoaaBaaaleaadaWgaaqaaiaadcfaaeqaaaqa baGccaaMc8UaeqySde2aaSbaaSqaaiaadQgaaeqaaOGaaiilaaaa@6914@  and σ ^ xj 2 P σ xj 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiqbeo8aZz aajaWaa0baaSqaaiaadIhacaWGQbaabaGaaGOmaaaakiabgkziUoaa BaaaleaadaWgaaqaaiaadcfaaeqaaaqabaGccaaMc8Uaeq4Wdm3aa0 baaSqaaiaadIhacaWGQbaabaGaaGOmaaaakiaacYcaaaa@47A4@  where P MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabgkziUo aaBaaaleaadaWgaaqaaiaadcfaaeqaaaqabaaaaa@3C0B@  denotes convergence in probability.

(b) The combined-stratum estimator β ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaaysW7cu aHYoGygaqcaiaaysW7aaa@3DC7@  has the exact expression

β ^ = j=1 2 β ^ j σ ^ xj 2 N ^ j +( X ^ 2 X ^ 1 )( Y ^ 2 Y ^ 1 ) N ^ 1 N ^ 2 / ( N ^ 1 + N ^ 2 ) j=1 2 σ ^ xj 2 N ^ j + ( X ^ 2 X ^ 1 ) 2 N ^ 1 N ^ 2 / ( N ^ 1 + N ^ 2 )      (2.1) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiqbek7aIz aajaGaeyypa0ZaaSaaaeaadaaeWaqaaiqbek7aIzaajaWaaSbaaSqa aiaadQgaaeqaaOGafq4WdmNbaKaadaqhaaWcbaGaamiEaiaadQgaae aacaaIYaaaaOGabmOtayaajaWaaSbaaSqaaiaadQgaaeqaaaqaaiaa dQgacqGH9aqpcaaIXaaabaGaaGOmaaqdcqGHris5aOGaey4kaSYaae WaaeaaceWGybGbaKaadaWgaaWcbaGaaGOmaaqabaGccqGHsislceWG ybGbaKaadaWgaaWcbaGaaGymaaqabaaakiaawIcacaGLPaaadaqada qaaiqadMfagaqcamaaBaaaleaacaaIYaaabeaakiabgkHiTiqadMfa gaqcamaaBaaaleaacaaIXaaabeaaaOGaayjkaiaawMcaamaalyaaba GabmOtayaajaWaaSbaaSqaaiaaigdaaeqaaOGabmOtayaajaWaaSba aSqaaiaaikdaaeqaaaGcbaWaaeWaaeaaceWGobGbaKaadaWgaaWcba GaaGymaaqabaGccqGHRaWkceWGobGbaKaadaWgaaWcbaGaaGOmaaqa baaakiaawIcacaGLPaaaaaaabaWaaabmaeaacuaHdpWCgaqcamaaDa aaleaacaWG4bGaamOAaaqaaiaaikdaaaGcceWGobGbaKaadaWgaaWc baGaamOAaaqabaaabaGaamOAaiabg2da9iaaigdaaeaacaaIYaaani abggHiLdGccqGHRaWkdaqadaqaaiqadIfagaqcamaaBaaaleaacaaI YaaabeaakiabgkHiTiqadIfagaqcamaaBaaaleaacaaIXaaabeaaaO GaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaakmaalyaabaGabmOt ayaajaWaaSbaaSqaaiaaigdaaeqaaOGabmOtayaajaWaaSbaaSqaai aaikdaaeqaaaGcbaWaaeWaaeaaceWGobGbaKaadaWgaaWcbaGaaGym aaqabaGccqGHRaWkceWGobGbaKaadaWgaaWcbaGaaGOmaaqabaaaki aawIcacaGLPaaaaaaaaiaaxMaacaWLjaGaaCzcaiaacIcacaaIYaGa aiOlaiaaigdacaGGPaaaaa@8533@

and the in-probability limit

β= j=1 2 β j σ xj 2 ω j +( μ x2 μ x1 )( μ y2 μ y1 ) ω 1 ω 2 j=1 2 σ xj 2 ω j + ( μ x2 μ x1 ) 2 ω 1 ω 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabek7aIj abg2da9maalaaabaWaaabmaeaacqaHYoGydaWgaaWcbaGaamOAaaqa baGccqaHdpWCdaqhaaWcbaGaamiEaiaadQgaaeaacaaIYaaaaOGaeq yYdC3aaSbaaSqaaiaadQgaaeqaaaqaaiaadQgacqGH9aqpcaaIXaaa baGaaGOmaaqdcqGHris5aOGaey4kaSYaaeWaaeaacqaH8oqBdaWgaa WcbaGaamiEaiaaikdaaeqaaOGaeyOeI0IaeqiVd02aaSbaaSqaaiaa dIhacaaIXaaabeaaaOGaayjkaiaawMcaamaabmaabaGaeqiVd02aaS baaSqaaiaadMhacaaIYaaabeaakiabgkHiTiabeY7aTnaaBaaaleaa caWG5bGaaGymaaqabaaakiaawIcacaGLPaaacqaHjpWDdaWgaaWcba GaaGymaaqabaGccqaHjpWDdaWgaaWcbaGaaGOmaaqabaaakeaadaae Waqaaiabeo8aZnaaDaaaleaacaWG4bGaamOAaaqaaiaaikdaaaGccq aHjpWDdaWgaaWcbaGaamOAaaqabaaabaGaamOAaiabg2da9iaaigda aeaacaaIYaaaniabggHiLdGccqGHRaWkdaqadaqaaiabeY7aTnaaBa aaleaacaWG4bGaaGOmaaqabaGccqGHsislcqaH8oqBdaWgaaWcbaGa amiEaiaaigdaaeqaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaaIYa aaaOGaeqyYdC3aaSbaaSqaaiaaigdaaeqaaOGaeqyYdC3aaSbaaSqa aiaaikdaaeqaaaaakiaai6caaaa@840F@

(c)  n j ( β ^ j β j ) d N( 0, σ xe,j 2 / σ x,j 4 ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaakaaaba GaamOBamaaBaaaleaacaWGQbaabeaaaeqaaOWaaeWaaeaacuaHYoGy gaqcamaaBaaaleaacaWGQbaabeaakiabgkHiTiabek7aInaaBaaale aacaWGQbaabeaaaOGaayjkaiaawMcaaiabgkziUoaaBaaaleaacaWG KbaabeaakiaaykW7caWGobWaaeWaaeaacaaIWaGaaGilamaalyaaba Gaeq4Wdm3aa0baaSqaaiaadIhacaWGLbGaaGilaiaadQgaaeaacaaI YaaaaaGcbaGaeq4Wdm3aa0baaSqaaiaadIhacaaISaGaamOAaaqaai aaisdaaaaaaaGccaGLOaGaayzkaaGaaiilaaaa@57FB@  where d MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabgkziUo aaBaaaleaacaWGKbaabeaaaaa@3BFE@  denotes convergence in distribution, and σ ^ xe,j 2 P σ xe,j 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiqbeo8aZz aajaWaa0baaSqaaiaadIhacaWGLbGaaGilaiaadQgaaeaacaaIYaaa aOGaeyOKH46aaSbaaSqaamaaBaaabaGaamiuaaqabaaabeaakiaayk W7cqaHdpWCdaqhaaWcbaGaamiEaiaadwgacaaISaGaamOAaaqaaiaa ikdaaaGccaGGUaaaaa@4AE6@

(d) For k=1,2, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadUgacq GH9aqpcaaIXaGaaiilaiaaikdacaGGSaaaaa@3DC9@

n ( Y ^ reg,k Y )/N d N( 0, σ k 2 )      (2.2) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaakaaaba GaamOBaaWcbeaakmaalyaabaWaaeWaaeaaceWGzbGbaKaadaWgaaWc baGaaeOCaiaabwgacaqGNbGaaGilaiaadUgaaeqaaOGaeyOeI0Iaam ywaaGaayjkaiaawMcaaaqaaiaad6eaaaGaeyOKH46aaSbaaSqaaiaa dsgaaeqaaOGaaGPaVlaad6eadaqadaqaaiaaicdacaaISaGaeq4Wdm 3aa0baaSqaaiaadUgaaeaacaaIYaaaaaGccaGLOaGaayzkaaGaaCzc aiaaxMaacaWLjaGaaiikaiaaikdacaGGUaGaaGOmaiaacMcaaaa@5554@

where σ k 2 = j=1 2 a kj T D j a kj MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabeo8aZn aaDaaaleaacaWGRbaabaGaaGOmaaaakiabg2da9maaqadabeWcbaGa amOAaiabg2da9iaaigdaaeaacaaIYaaaniabggHiLdGccaaMc8Uaam yyamaaDaaaleaacaWGRbGaamOAaaqaaiaadsfaaaGccaWGebWaaSba aSqaaiaadQgaaeqaaOGaamyyamaaBaaaleaacaWGRbGaamOAaaqaba aaaa@4D60@  and

a 1j = ω j φ j [ ( μ y β μ x ),β,1 ] T , a 2j = ω j φ j [ ( μ yj β j μ xj ), β j ,1 ] T , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadggada WgaaWcbaGaaGymaiaadQgaaeqaaOGaeyypa0JaeqyYdC3aaSbaaSqa aiaadQgaaeqaaOGaeqOXdO2aaSbaaSqaaiaadQgaaeqaaOWaamWaae aacqGHsisldaqadaqaaiabeY7aTnaaBaaaleaacaWG5baabeaakiab gkHiTiabek7aIjabeY7aTnaaBaaaleaacaWG4baabeaaaOGaayjkai aawMcaaiaaiYcacqGHsislcqaHYoGycaaISaGaaGymaaGaay5waiaa w2faamaaCaaaleqabaGaamivaaaakiaaiYcacaaMf8UaamyyamaaBa aaleaacaaIYaGaamOAaaqabaGccqGH9aqpcqaHjpWDdaWgaaWcbaGa amOAaaqabaGccqaHgpGAdaWgaaWcbaGaamOAaaqabaGcdaWadaqaai abgkHiTmaabmaabaGaeqiVd02aaSbaaSqaaiaadMhacaWGQbaabeaa kiabgkHiTiabek7aInaaBaaaleaacaWGQbaabeaakiabeY7aTnaaBa aaleaacaWG4bGaamOAaaqabaaakiaawIcacaGLPaaacaaISaGaeyOe I0IaeqOSdi2aaSbaaSqaaiaadQgaaeqaaOGaaGilaiaaigdaaiaawU facaGLDbaadaahaaWcbeqaaiaadsfaaaGccaaISaaaaa@787B@

μ x = ω 1 μ x1 + ω 2 μ x2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabeY7aTn aaBaaaleaacaWG4baabeaakiabg2da9iabeM8a3naaBaaaleaacaaI XaaabeaakiabeY7aTnaaBaaaleaacaWG4bGaaGymaaqabaGccqGHRa WkcqaHjpWDdaWgaaWcbaGaaGOmaaqabaGccqaH8oqBdaWgaaWcbaGa amiEaiaaikdaaeqaaOGaaiilaaaa@4B43@   μ y = ω 1 μ y1 + ω 2 μ y2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabeY7aTn aaBaaaleaacaWG5baabeaakiabg2da9iabeM8a3naaBaaaleaacaaI XaaabeaakiabeY7aTnaaBaaaleaacaWG5bGaaGymaaqabaGccqGHRa WkcqaHjpWDdaWgaaWcbaGaaGOmaaqabaGccqaH8oqBdaWgaaWcbaGa amyEaiaaikdaaeqaaOGaaiilaaaa@4B46@  and D j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadseada WgaaWcbaGaamOAaaqabaaaaa@3AE0@  is given in condition (C3).

The conditions (C1)-(C4) of Theorem 1 provide a general formulation of the superpopulation framework for large-sample design-based statistical inference, within which the survey regression coefficients estimate well-defined frame-population descriptive parameters. The results in parts (a)-(b) show that the in-probability limits β j , α j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabek7aIn aaBaaaleaacaWGQbaabeaakiaaiYcacqaHXoqydaWgaaWcbaGaamOA aaqabaaaaa@3F32@  of β ^ j , α ^ j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiqbek7aIz aajaWaaSbaaSqaaiaadQgaaeqaaOGaaGilaiqbeg7aHzaajaWaaSba aSqaaiaadQgaaeqaaaaa@3F52@  have the standard interpretation as superpopulation least-squares slopes and intercepts. (These slope and intercept parameters also keep their usual model-based interpretations under the model (2.7) introduced in Section 2.2.) The asymptotic distribution theory for β ^ j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaaysW7cu aHYoGygaqcamaaBaaaleaacaWGQbaabeaakiaaysW7aaa@3EEC@  in conclusion (c) allows us to deduce the large-sample behavior of Y ^ dec MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaaysW7ce WGzbGbaKaadaWgaaWcbaGaaeizaiaabwgacaqGJbaabeaakiaaysW7 aaa@3FEF@  from that provided in (d) for Y ^ reg,k . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaaysW7ce WGzbGbaKaadaWgaaWcbaGaaeOCaiaabwgacaqGNbGaaGilaiaadUga aeqaaOGaaiOlaaaa@40CC@

Under the further conditions

β 1 = β 2 , α 1 = α 2 ,      (2.3) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabek7aIn aaBaaaleaacaaIXaaabeaakiabg2da9iabek7aInaaBaaaleaacaaI YaaabeaakiaaiYcacqaHXoqydaWgaaWcbaGaaGymaaqabaGccqGH9a qpcqaHXoqydaWgaaWcbaGaaGOmaaqabaGccaaISaGaaCzcaiaaxMaa caWLjaGaaCzcaiaaxMaacaGGOaGaaGOmaiaac6cacaaIZaGaaiykaa aa@4D68@

it is clear from Theorem 1(b) that β j =β, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaaysW7cq aHYoGydaWgaaWcbaGaamOAaaqabaGccqGH9aqpcqaHYoGycaGGSaaa aa@40A6@  and σ 1 2 = σ 2 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabeo8aZn aaDaaaleaacaaIXaaabaGaaGOmaaaakiabg2da9iabeo8aZnaaDaaa leaacaaIYaaabaGaaGOmaaaaaaa@40DB@  in (2.2), so that Y ^ reg,1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiqadMfaga qcamaaBaaaleaacaqGYbGaaeyzaiaabEgacaaISaGaaGymaaqabaaa aa@3E4E@  and Y ^ reg,2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiqadMfaga qcamaaBaaaleaacaqGYbGaaeyzaiaabEgacaaISaGaaGOmaaqabaaa aa@3E4F@  and Y ^ dec MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiqadMfaga qcamaaBaaaleaacaqGKbGaaeyzaiaabogaaeqaaaaa@3CCB@  are all asymptotically the same up to remainders of smaller order than N/ n , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaalyaaba GaamOtaaqaamaakaaabaGaamOBaaWcbeaaaaGccaGGSaaaaa@3BAD@  as we now show. Also, if β 1 β 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabek7aIn aaBaaaleaacaaIXaaabeaakiabgcMi5kabek7aInaaBaaaleaacaaI YaaabeaakiaacYcaaaa@4098@  then Y ^ reg,2 Y ^ dec MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiqadMfaga qcamaaBaaaleaacaqGYbGaaeyzaiaabEgacaaISaGaaGOmaaqabaGc cqGHsislceWGzbGbaKaadaWgaaWcbaGaaeizaiaabwgacaqGJbaabe aaaaa@4315@  continues to be o P ( N/ n ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaaysW7ca WGVbWaaSbaaSqaaiaadcfaaeqaaOWaaeWaaeaadaWcgaqaaiaad6ea aeaadaGcaaqaaiaad6gaaSqabaaaaaGccaGLOaGaayzkaaGaaiilaa aa@40C2@  and the test of equality of slopes rejects, i.e., P( Y ^ dec = Y ^ reg,2 )1, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadcfada qadaqaaiqadMfagaqcamaaBaaaleaacaqGKbGaaeyzaiaabogaaeqa aOGaeyypa0JabmywayaajaWaaSbaaSqaaiaabkhacaqGLbGaae4zai aaiYcacaaIYaaabeaaaOGaayjkaiaawMcaaiabgkziUkaaigdacaGG Saaaaa@48EE@  and therefore Y ^ dec MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiqadMfaga qcamaaBaaaleaacaqGKbGaaeyzaiaabogaaeqaaaaa@3CCB@  has the same asymptotic distribution as Y ^ reg,2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiqadMfaga qcamaaBaaaleaacaqGYbGaaeyzaiaabEgacaaISaGaaGOmaaqabaGc caGGSaaaaa@3F09@  which is more efficient than Y ^ reg,1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiqadMfaga qcamaaBaaaleaacaqGYbGaaeyzaiaabEgacaaISaGaaGymaaqabaaa aa@3E4E@  according to the result in Section 2.2.

Theorem 2 Assume the same hypotheses (C1)-(C4) as in Theorem 1.

(a) When (2.3) holds, then as m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaaysW7ca WGTbGaeyOKH4QaeyOhIukaaa@3ED9@

n ( β ^ 2 β ^ 1 ) d N( 0, σ d 2 ), σ d 2 = j=1 2 σ xe,j 2 φ j 2 σ xj 4 ,      (2.4) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaakaaaba GaamOBaaWcbeaakmaabmaabaGafqOSdiMbaKaadaWgaaWcbaGaaGOm aaqabaGccqGHsislcuaHYoGygaqcamaaBaaaleaacaaIXaaabeaaaO GaayjkaiaawMcaaiabgkziUoaaBaaaleaacaWGKbaabeaakiaaykW7 caWGobWaaeWaaeaacaaIWaGaaGilaiabeo8aZnaaDaaaleaacaWGKb aabaGaaGOmaaaaaOGaayjkaiaawMcaaiaaiYcacaaMc8UaaGPaVlaa ykW7caaMf8Uaeq4Wdm3aa0baaSqaaiaadsgaaeaacaaIYaaaaOGaey ypa0ZaaabCaeqaleaacaWGQbGaeyypa0JaaGymaaqaaiaaikdaa0Ga eyyeIuoakiaaykW7caaMc8+aaSaaaeaacqaHdpWCdaqhaaWcbaGaam iEaiaadwgacaaISaGaamOAaaqaaiaaikdaaaaakeaacqaHgpGAdaqh aaWcbaGaamOAaaqaaiaaikdaaaGccqaHdpWCdaqhaaWcbaGaamiEai aadQgaaeaacaaI0aaaaaaakiaaiYcacaWLjaGaaCzcaiaaxMaacaWL jaGaaCzcaiaacIcacaaIYaGaaiOlaiaaisdacaGGPaaaaa@7824@

and the estimators Y ^ reg,1 , Y ^ reg,2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaaysW7ce WGzbGbaKaadaWgaaWcbaGaaeOCaiaabwgacaqGNbGaaGilaiaaigda aeqaaOGaaGilaiqadMfagaqcamaaBaaaleaacaqGYbGaaeyzaiaabE gacaaISaGaaGOmaaqabaGccaGGSaaaaa@46A8@  are all asymptotically normally distributed and equivalent in the sense that

n N 2 [ ( Y ^ reg,1 Y ^ reg,2 ) 2 + ( Y ^ reg,2 Y ^ dec ) 2 ] P 0      (2.5) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaalaaaba GaamOBaaqaaiaad6eadaahaaWcbeqaaiaaikdaaaaaaOWaamWaaeaa daqadaqaaiqadMfagaqcamaaBaaaleaacaqGYbGaaeyzaiaabEgaca aISaGaaGymaaqabaGccqGHsislceWGzbGbaKaadaWgaaWcbaGaaeOC aiaabwgacaqGNbGaaGilaiaaikdaaeqaaaGccaGLOaGaayzkaaWaaW baaSqabeaacaaIYaaaaOGaey4kaSYaaeWaaeaaceWGzbGbaKaadaWg aaWcbaGaaeOCaiaabwgacaqGNbGaaGilaiaaikdaaeqaaOGaeyOeI0 IabmywayaajaWaaSbaaSqaaiaabsgacaqGLbGaae4yaaqabaaakiaa wIcacaGLPaaadaahaaWcbeqaaiaaikdaaaaakiaawUfacaGLDbaacq GHsgIRdaWgaaWcbaWaaSbaaeaacaWGqbaabeaaaeqaaOGaaGPaVlaa icdacaWLjaGaaCzcaiaaxMaacaGGOaGaaGOmaiaac6cacaaI1aGaai ykaaaa@6424@

(b) When β 1 β 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabek7aIn aaBaaaleaacaaIXaaabeaakiabgcMi5kabek7aInaaBaaaleaacaaI YaaabeaakiaacYcaaaa@4098@   P( Y ^ dec = Y ^ reg,2 )1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadcfada qadaqaaiqadMfagaqcamaaBaaaleaacaqGKbGaaeyzaiaabogaaeqa aOGaeyypa0JabmywayaajaWaaSbaaSqaaiaabkhacaqGLbGaae4zai aaiYcacaaIYaaabeaaaOGaayjkaiaawMcaaiabgkziUkaaigdaaaa@483E@  and n ( Y ^ dec Y )/N d N( 0, σ 2 2 ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaakaaaba GaamOBaaWcbeaakmaalyaabaWaaeWaaeaaceWGzbGbaKaadaWgaaWc baGaaeizaiaabwgacaqGJbaabeaakiabgkHiTiaadMfaaiaawIcaca GLPaaaaeaacaWGobaaaiabgkziUoaaBaaaleaadaWgaaqaaiaadsga aeqaaaqabaGccaaMc8UaamOtamaabmaabaGaaGimaiaaiYcacqaHdp WCdaqhaaWcbaGaaGOmaaqaaiaaikdaaaaakiaawIcacaGLPaaacaGG Uaaaaa@4ED2@

A more refined study of the asymptotic behavior of the estimators Y ^ dec MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaaysW7ce WGzbGbaKaadaWgaaWcbaGaaeizaiaabwgacaqGJbaabeaakiaaysW7 aaa@3FEF@  can be undertaken in the spirit of Saleh (2006), as with contiguous or Pitman alternatives for non-survey statistical models, by assuming that n ( β 1 β 2 )r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaaysW7da Gcaaqaaiaad6gaaSqabaGcdaqadaqaaiabek7aInaaBaaaleaacaaI XaaabeaakiabgkHiTiabek7aInaaBaaaleaacaaIYaaabeaaaOGaay jkaiaawMcaaiabgkziUkaadkhacaaMe8oaaa@47AD@  for a constant r. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadkhaca GGUaaaaa@3AA5@  Under this assumption, it can be shown that Y ^ reg,1 Y ^ reg,2 = o P ( N/ n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiqadMfaga qcamaaBaaaleaacaqGYbGaaeyzaiaabEgacaaISaGaaGymaaqabaGc cqGHsislceWGzbGbaKaadaWgaaWcbaGaaeOCaiaabwgacaqGNbGaaG ilaiaaikdaaeqaaOGaeyypa0Jaam4BamaaBaaaleaacaWGqbaabeaa kmaabmaabaWaaSGbaeaacaWGobaabaWaaOaaaeaacaWGUbaaleqaaa aaaOGaayjkaiaawMcaaaaa@4B31@  and, therefore, the three centered and scaled estimators n ( Y ^ dec Y ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaakaaaba GaamOBaaWcbeaakmaabmaabaGabmywayaajaWaaSbaaSqaaiaabsga caqGLbGaae4yaaqabaGccqGHsislcaWGzbaacaGLOaGaayzkaaGaaG ilaaaa@41F7@   n ( Y ^ reg,2 Y ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaakaaaba GaamOBaaWcbeaakmaabmaabaGabmywayaajaWaaSbaaSqaaiaabkha caqGLbGaae4zaiaaiYcacaaIYaaabeaakiabgkHiTiaadMfaaiaawI cacaGLPaaacaGGSaaaaa@4375@  and n ( Y ^ reg,1 Y ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaakaaaba GaamOBaaWcbeaakmaabmaabaGabmywayaajaWaaSbaaSqaaiaabkha caqGLbGaae4zaiaaiYcacaaIXaaabeaakiabgkHiTiaadMfaaiaawI cacaGLPaaaaaa@42C4@ all have the same asymptotic normal distribution with mean 0. Furthermore,

P( Y ^ dec = Y ^ reg,2 )Φ( z τ/2 +r/ σ d )+Φ( z τ/2 r/ σ d ),      (2.6) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadcfada qadaqaaiqadMfagaqcamaaBaaaleaacaqGKbGaaeyzaiaabogaaeqa aOGaeyypa0JabmywayaajaWaaSbaaSqaaiaabkhacaqGLbGaae4zai aaiYcacaaIYaaabeaaaOGaayjkaiaawMcaaiabgkziUkabfA6agnaa bmaabaGaeyOeI0IaamOEamaaBaaaleaacqaHepaDcaGGVaGaaGOmaa qabaGccqGHRaWkdaWcgaqaaiaadkhaaeaacqaHdpWCdaWgaaWcbaGa amizaaqabaaaaaGccaGLOaGaayzkaaGaey4kaSIaeuOPdy0aaeWaae aacqGHsislcaWG6bWaaSbaaSqaaiabes8a0jaac+cacaaIYaaabeaa kiabgkHiTmaalyaabaGaamOCaaqaaiabeo8aZnaaBaaaleaacaWGKb aabeaaaaaakiaawIcacaGLPaaacaaISaGaaCzcaiaaxMaacaWLjaGa aCzcaiaaxMaacaGGOaGaaGOmaiaac6cacaaI2aGaaiykaaaa@6A2B@

where σ d 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabeo8aZn aaDaaaleaacaWGKbaabaGaaGOmaaaaaaa@3C91@  is given in (2.4), and z τ/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadQhada WgaaWcbaWaaSGbaeaacqaHepaDaeaacaaIYaaaaaqabaaaaa@3CBE@  and Φ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabfA6agb aa@3A76@  are respectively the standard normal percentage point and distribution function. Thus, P( Y ^ dec = Y ^ reg,2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadcfada qadaqaaiqadMfagaqcamaaBaaaleaacaqGKbGaaeyzaiaabogaaeqa aOGaeyypa0JabmywayaajaWaaSbaaSqaaiaabkhacaqGLbGaae4zai aaiYcacaaIYaaabeaaaOGaayjkaiaawMcaaaaa@4596@  has a limit different from 1. In particular, the limit in (2.6) equals τ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabes8a0b aa@3AC1@  when β 1 = β 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabek7aIn aaBaaaleaacaaIXaaabeaakiabg2da9iabek7aInaaBaaaleaacaaI Yaaabeaaaaa@3F1D@  (i.e., when r=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadkhacq GH9aqpcaaIWaaaaa@3BB3@  ).

2.2 Model-assisted asymptotic setting

We elaborate in this section the behavior of estimators Y ^ reg,k , Y ^ dec MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiqadMfaga qcamaaBaaaleaacaqGYbGaaeyzaiaabEgacaaISaGaam4AaaqabaGc caaISaGabmywayaajaWaaSbaaSqaaiaabsgacaqGLbGaae4yaaqaba aaaa@4312@  under the assumed probabilistic model that the triples ( x i , y i , z i ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaacIcaca WG4bWaaSbaaSqaaiaadMgaaeqaaOGaaGilaiaadMhadaWgaaWcbaGa amyAaaqabaGccaaISaGaamOEamaaBaaaleaacaWGPbaabeaakiaacM caaaa@4227@  in the finite population, i U j , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadMgacq GHiiIZcaWGvbWaaSbaaSqaaiaadQgaaeqaaOGaaiilaaaa@3E1D@  are independent and identically distributed (iid), where the size-variables z i >0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaaysW7ca WG6bWaaSbaaSqaaiaadMgaaeqaaOGaaGjbVlaab6dacaaMe8UaaGim aaaa@4141@  are used in defining PPS with-replacement draw probabilities p ij = z i / i U j z i , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaaysW7ca WGWbWaaSbaaSqaaiaadMgacaWGQbaabeaakiabg2da9maalyaabaGa amOEamaaBaaaleaacaWGPbaabeaaaOqaamaaqababeWcbaGabmyAay aafaGaeyicI4SaamyvamaaBaaabaGaamOAaaqabaaabeqdcqGHris5 aOGaaGPaVlaadQhadaWgaaWcbaGabmyAayaafaaabeaaaaGccaGGSa aaaa@4B90@  and where x i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadIhada WgaaWcbaGaamyAaaqabaaaaa@3B13@  and y i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadMhada WgaaWcbaGaamyAaaqabaaaaa@3B14@  follow the model

y i = α j + β j x i + ε i ,i U j ,      (2.7) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadMhada WgaaWcbaGaamyAaaqabaGccqGH9aqpcqaHXoqydaWgaaWcbaGaamOA aaqabaGccqGHRaWkcqaHYoGydaWgaaWcbaGaamOAaaqabaGccaWG4b WaaSbaaSqaaiaadMgaaeqaaOGaey4kaSIaeqyTdu2aaSbaaSqaaiaa dMgaaeqaaOGaaGilaiaaykW7caaMc8UaamyAaiabgIGiolaadwfada WgaaWcbaGaamOAaaqabaGccaaISaGaaCzcaiaaxMaacaWLjaGaaiik aiaaikdacaGGUaGaaG4naiaacMcaaaa@56BF@

with α j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabeg7aHn aaBaaaleaacaWGQbaabeaaaaa@3BB6@  and β j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabek7aIn aaBaaaleaacaWGQbaabeaaaaa@3BB8@  as unknown intercept and slope parameters for the regression within stratum U j . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadwfada WgaaWcbaGaamOAaaqabaGccaGGUaaaaa@3BAD@  The errors ε i ,i U j , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabew7aLn aaBaaaleaacaWGPbaabeaakiaaiYcacaWGPbGaeyicI4Saamyvamaa BaaaleaacaWGQbaabeaakiaacYcaaaa@419E@  are assumed to be iid with mean 0 and finite variance σ ε 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabeo8aZn aaDaaaleaacqaH1oqzaeaacaaIYaaaaaaa@3D4F@  and to be independent of ( x i , z i ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaacIcaca WG4bWaaSbaaSqaaiaadMgaaeqaaOGaaGilaiaadQhadaWgaaWcbaGa amyAaaqabaGccaGGPaGaaiilaaaa@3FFF@  and the variables x i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadIhada WgaaWcbaGaamyAaaqabaaaaa@3B13@  for i U j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaaysW7ca WGPbGaeyicI4SaamyvamaaBaaaleaacaWGQbaabeaaaaa@3EF0@  are assumed to have finite variance. Also, to enable PPS sampling, we assume that max i U j n j p ij <1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiGac2gaca GGHbGaaiiEamaaBaaaleaacaWGPbGaeyicI4SaamyvamaaBaaameaa caWGQbaabeaaaSqabaGccaWGUbWaaSbaaSqaaiaadQgaaeqaaOGaam iCamaaBaaaleaacaWGPbGaamOAaaqabaGccaaMe8UaaeipaiaaysW7 caaIXaaaaa@4A2D@  with probability approaching 1 for large m, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaad2gaca GGSaaaaa@3A9E@  i.e., for large n j , N j . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaaysW7ca WGUbWaaSbaaSqaaiaadQgaaeqaaOGaaGilaiaad6eadaWgaaWcbaGa amOAaaqabaGccaGGUaaaaa@4001@

In this section, asymptotic properties of estimators Y ^ reg,k , Y ^ dec MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaaysW7ce WGzbGbaKaadaWgaaWcbaGaaeOCaiaabwgacaqGNbGaaGilaiaadUga aeqaaOGaaGilaiqadMfagaqcamaaBaaaleaacaqGKbGaaeyzaiaabo gaaeqaaaaa@449F@  are considered with respect to the regression model and repeated sampling. By Theorem 1, the model-assisted estimators Y ^ reg,1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiqadMfaga qcamaaBaaaleaacaqGYbGaaeyzaiaabEgacaaISaGaaGymaaqabaaa aa@3E4E@  and Y ^ reg,2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiqadMfaga qcamaaBaaaleaacaqGYbGaaeyzaiaabEgacaaISaGaaGOmaaqabaaa aa@3E4F@  are still consistent and asymptotically normal for triples ( x i , y i , z i ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaacIcaca WG4bWaaSbaaSqaaiaadMgaaeqaaOGaaGilaiaadMhadaWgaaWcbaGa amyAaaqabaGccaaISaGaamOEamaaBaaaleaacaWGPbaabeaakiaacM cacaaMe8oaaa@43B4@  iid within strata, since the conditions (C1)-(C4) are satisfied under moment assumptions on z i ,1/ z i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaaysW7ca WG6bWaaSbaaSqaaiaadMgaaeqaaOGaaGilamaalyaabaGaaGymaaqa aiaadQhadaWgaaWcbaGaamyAaaqabaaaaOGaaGjbVdaa@41E3@  even if model (2.7) is incorrect. However, the estimators Y ^ reg,k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiqadMfaga qcamaaBaaaleaacaqGYbGaaeyzaiaabEgacaaISaGaam4Aaaqabaaa aa@3E83@  are efficient when model (2.7) is correct.

Theorem 3 Assume model (2.7) along with (C1), with E( x i 4 )<,E( ε i 4 )<, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadweada qadaqaaiaadIhadaqhaaWcbaGaamyAaaqaaiaaisdaaaaakiaawIca caGLPaaacaaMe8UaaeipaiaaysW7cqGHEisPcaaISaGaamyramaabm aabaGaeqyTdu2aa0baaSqaaiaadMgaaeaacaaI0aaaaaGccaGLOaGa ayzkaaGaaGjbVlaabYdacaaMe8UaeyOhIuQaaiilaaaa@5006@   E( z i )<, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadweada qadaqaaiaadQhadaWgaaWcbaGaamyAaaqabaaakiaawIcacaGLPaaa caaMe8UaaeipaiaaysW7cqGHEisPcaGGSaaaaa@436C@  and E( ( 1+ x i 4 )/ z i 3 )<. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadweada qadaqaamaalyaabaWaaeWaaeaacaaIXaGaey4kaSIaamiEamaaDaaa leaacaWGPbaabaGaaGinaaaaaOGaayjkaiaawMcaaaqaaiaadQhada qhaaWcbaGaamyAaaqaaiaaiodaaaaaaaGccaGLOaGaayzkaaGaaGjb VlaabYdacaaMe8UaeyOhIuQaaiOlaaaa@4A48@  Then all conclusions in Theorem 1 and Theorem 2 still hold. In particular, when β 1 β 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabek7aIn aaBaaaleaacaaIXaaabeaakiabgcMi5kabek7aInaaBaaaleaacaaI YaaabeaakiaacYcaaaa@4098@   σ 1 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabeo8aZn aaDaaaleaacaaIXaaabaGaaGOmaaaakiaacYcaaaa@3D1D@  the asymptotic variance of n ( Y ^ reg,1 Y )/N , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaakaaaba GaamOBaaWcbeaakmaalyaabaWaaeWaaeaaceWGzbGbaKaadaWgaaWc baGaaeOCaiaabwgacaqGNbGaaGilaiaaigdaaeqaaOGaeyOeI0Iaam ywaaGaayjkaiaawMcaaaqaaiaad6eaaaGaaiilaaaa@445D@  is larger than σ 2 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabeo8aZn aaDaaaleaacaaIYaaabaGaaGOmaaaakiaacYcaaaa@3D1E@  the asymptotic variance of n ( Y ^ reg,2 Y )/N . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaakaaaba GaamOBaaWcbeaakmaalyaabaWaaeWaaeaaceWGzbGbaKaadaWgaaWc baGaaeOCaiaabwgacaqGNbGaaGilaiaaikdaaeqaaOGaeyOeI0Iaam ywaaGaayjkaiaawMcaaaqaaiaad6eaaaGaaiOlaaaa@4460@  Furthermore,

n ( Y ^ dec Y )/N d N( 0,( 1π ) σ 1 2 +π σ 2 2 ),      (2.8) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaakaaaba GaamOBaaWcbeaakmaalyaabaWaaeWaaeaaceWGzbGbaKaadaWgaaWc baGaaeizaiaabwgacaqGJbaabeaakiabgkHiTiaadMfaaiaawIcaca GLPaaaaeaacaWGobaaaiabgkziUoaaBaaaleaacaWGKbaabeaakiaa d6eadaqadaqaaiaaicdacaaISaWaaeWaaeaacaaIXaGaeyOeI0Iaeq iWdahacaGLOaGaayzkaaGaeq4Wdm3aa0baaSqaaiaaigdaaeaacaaI YaaaaOGaey4kaSIaeqiWdaNaeq4Wdm3aa0baaSqaaiaaikdaaeaaca aIYaaaaaGccaGLOaGaayzkaaGaaGilaiaaxMaacaWLjaGaaCzcaiaa cIcacaaIYaGaaiOlaiaaiIdacaGGPaaaaa@5D97@

where π MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabec8aWb aa@3AB9@  is the limit of P( Y ^ dec = Y ^ reg,2 ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadcfada qadaqaaiqadMfagaqcamaaBaaaleaacaqGKbGaaeyzaiaabogaaeqa aOGaeyypa0JabmywayaajaWaaSbaaSqaaiaabkhacaqGLbGaae4zai aaiYcacaaIYaaabeaaaOGaayjkaiaawMcaaiaac6caaaa@4648@

Note that π MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabec8aWb aa@3AB9@  in (2.8) is equal to 1 when β 1 β 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabek7aIn aaBaaaleaacaaIXaaabeaakiabgcMi5kabek7aInaaBaaaleaacaaI Yaaabeaaaaa@3FDE@  and equal to τ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabes8a0b aa@3AC1@  when β 1 = β 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabek7aIn aaBaaaleaacaaIXaaabeaakiabg2da9iabek7aInaaBaaaleaacaaI Yaaabeaakiaac6caaaa@3FD9@

According to Theorem 3, under model (2.7), all three estimators defined in (1.2)-(1.4) have the same asymptotic efficiency when α 1 = α 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabeg7aHn aaBaaaleaacaaIXaaabeaakiabg2da9iabeg7aHnaaBaaaleaacaaI Yaaabeaaaaa@3F19@  and β 1 = β 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabek7aIn aaBaaaleaacaaIXaaabeaakiabg2da9iabek7aInaaBaaaleaacaaI Yaaabeaaaaa@3F1D@  (condition (2.3)). Furthermore, Y ^ reg,1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiqadMfaga qcamaaBaaaleaacaqGYbGaaeyzaiaabEgacaaISaGaaGymaaqabaaa aa@3E4E@  is asymptotically worse than Y ^ reg,2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiqadMfaga qcamaaBaaaleaacaqGYbGaaeyzaiaabEgacaaISaGaaGOmaaqabaaa aa@3E4F@  when β 1 β 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabek7aIn aaBaaaleaacaaIXaaabeaakiabgcMi5kabek7aInaaBaaaleaacaaI Yaaabeaakiaac6caaaa@409A@  Thus, why would we not always use Y ^ reg,2 ? MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiqadMfaga qcamaaBaaaleaacaqGYbGaaeyzaiaabEgacaaISaGaaGOmaaqabaGc caGG=aaaaa@3F1C@

The assertions in Theorem 3 are first-order asymptotic results. A more refined, second-order asymptotic result under the conditions in Theorem 3 and condition (2.3) when the sizes z i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadQhada WgaaWcbaGaamyAaaqabaaaaa@3B15@  are all equal is that, up to a term of order n 1 2 + n 2 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaad6gada qhaaWcbaGaaGymaaqaaiabgkHiTiaaikdaaaGccqGHRaWkcaWGUbWa a0baaSqaaiaaikdaaeaacqGHsislcaaIYaaaaOGaaiilaaaa@41AB@

mse( Y ^ reg,1 N ) σ ε 2 n [ mse( Y ^ reg,2 N ) σ ε 2 n ][ 1 n 1 n 2 ( X ¯ 1 X ¯ 2 ) 2 n D n ],      (2.9) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaab2gaca qGZbGaaeyzamaabmaabaWaaSaaaeaaceWGzbGbaKaadaWgaaWcbaGa aeOCaiaabwgacaqGNbGaaGilaiaaigdaaeqaaaGcbaGaamOtaaaaai aawIcacaGLPaaacqGHsisldaWcaaqaaiabeo8aZnaaDaaaleaacqaH 1oqzaeaacaaIYaaaaaGcbaGaamOBaaaacqGHKjYOdaWadaqaaiaab2 gacaqGZbGaaeyzamaabmaabaWaaSaaaeaaceWGzbGbaKaadaWgaaWc baGaaeOCaiaabwgacaqGNbGaaGilaiaaikdaaeqaaaGcbaGaamOtaa aaaiaawIcacaGLPaaacqGHsisldaWcaaqaaiabeo8aZnaaDaaaleaa cqaH1oqzaeaacaaIYaaaaaGcbaGaamOBaaaaaiaawUfacaGLDbaada WadaqaaiaaigdacqGHsisldaWcaaqaaiaad6gadaWgaaWcbaGaaGym aaqabaGccaWGUbWaaSbaaSqaaiaaikdaaeqaaOWaaeWaaeaaceWGyb GbaebadaWgaaWcbaGaaGymaaqabaGccqGHsislceWGybGbaebadaWg aaWcbaGaaGOmaaqabaaakiaawIcacaGLPaaadaahaaWcbeqaaiaaik daaaaakeaacaWGUbGaamiramaaBaaaleaacaWGUbaabeaaaaaakiaa wUfacaGLDbaacaaISaGaaCzcaiaaxMaacaWLjaGaaiikaiaaikdaca GGUaGaaGyoaiaacMcaaaa@761E@

where mse is the mean squared error conditional on x i s, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadIhada WgaaWcbaGaamyAaaqabaacbaGccaWFzaIaae4CaiaacYcaaaa@3D86@   X ¯ j = N j 1 i U j x i , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiqadIfaga qeamaaBaaaleaacaWGQbaabeaakiabg2da9iaad6eadaqhaaWcbaGa amOAaaqaaiabgkHiTiaaigdaaaGcdaaeqaqabSqaaiaadMgacqGHii IZcaWGvbWaaSbaaeaacaWGQbaabeaaaeqaniabggHiLdGccaWG4bWa aSbaaSqaaiaadMgaaeqaaOGaaiilaaaa@48D8@  and

D n = j=1 2 i U j ( x i X ¯ j ) 2 + n 1 n 2 ( X ¯ 1 X ¯ 2 ) 2 n . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadseada WgaaWcbaGaamOBaaqabaGccqGH9aqpdaaeWbqabSqaaiaadQgacqGH 9aqpcaaIXaaabaGaaGOmaaqdcqGHris5aOWaaabuaeqaleaacaWGPb GaeyicI4SaamyvamaaBaaabaGaamOAaaqabaaabeqdcqGHris5aOWa aeWaaeaacaWG4bWaaSbaaSqaaiaadMgaaeqaaOGaeyOeI0Iabmiway aaraWaaSbaaSqaaiaadQgaaeqaaaGccaGLOaGaayzkaaWaaWbaaSqa beaacaaIYaaaaOGaey4kaSYaaSaaaeaacaWGUbWaaSbaaSqaaiaaig daaeqaaOGaamOBamaaBaaaleaacaaIYaaabeaakmaabmaabaGabmiw ayaaraWaaSbaaSqaaiaaigdaaeqaaOGaeyOeI0IabmiwayaaraWaaS baaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaaI YaaaaaGcbaGaamOBaaaacaaIUaaaaa@5D77@

Result (2.9) indicates that, when weights are equal and β 1 = β 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabek7aIn aaBaaaleaacaaIXaaabeaakiabg2da9iabek7aInaaBaaaleaacaaI Yaaabeaaaaa@3F1D@  and α 1 = α 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabeg7aHn aaBaaaleaacaaIXaaabeaakiabg2da9iabeg7aHnaaBaaaleaacaaI YaaabeaakiaacYcaaaa@3FD3@  the finite sample performance of Y ^ reg,1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiqadMfaga qcamaaBaaaleaacaqGYbGaaeyzaiaabEgacaaISaGaaGymaaqabaaa aa@3E4E@  may be better than that of Y ^ reg,2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiqadMfaga qcamaaBaaaleaacaqGYbGaaeyzaiaabEgacaaISaGaaGOmaaqabaaa aa@3E4F@  for moderate n 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaad6gada WgaaWcbaGaaGymaaqabaaaaa@3AD6@  and n 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaad6gada WgaaWcbaGaaGOmaaqabaaaaa@3AD7@  . See the simulation results in Section 4. The proof of (2.9) is a special case of a more general result in Slud (2012) and, thus, is omitted.

In applications, we do not know whether β 1 = β 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabek7aIn aaBaaaleaacaaIXaaabeaakiabg2da9iabek7aInaaBaaaleaacaaI Yaaabeaakiaac6caaaa@3FD9@  Hence, the decision-based estimator Y ^ dec MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiqadMfaga qcamaaBaaaleaacaqGKbGaaeyzaiaabogaaeqaaaaa@3CCB@  is an adaptive procedure to select a good estimator. In view of (2.8), the performance of Y ^ dec MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiqadMfaga qcamaaBaaaleaacaqGKbGaaeyzaiaabogaaeqaaaaa@3CCB@  is close to (slightly worse than) that of Y ^ reg,2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiqadMfaga qcamaaBaaaleaacaqGYbGaaeyzaiaabEgacaaISaGaaGOmaaqabaaa aa@3E4F@  when β 1 β 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabek7aIn aaBaaaleaacaaIXaaabeaakiabgcMi5kabek7aInaaBaaaleaacaaI YaaabeaakiaacYcaaaa@4098@  and is close to (slightly worse than) that of Y ^ reg,1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiqadMfaga qcamaaBaaaleaacaqGYbGaaeyzaiaabEgacaaISaGaaGymaaqabaaa aa@3E4E@  when α 1 = α 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabeg7aHn aaBaaaleaacaaIXaaabeaakiabg2da9iabeg7aHnaaBaaaleaacaaI Yaaabeaaaaa@3F19@  and β 1 = β 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdbrVc=b0P0xb9peuD0xXdbvk9qq=xd9qqaq=Jf9sr 0=vr0=vrWZqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabek7aIn aaBaaaleaacaaIXaaabeaakiabg2da9iabek7aInaaBaaaleaacaaI Yaaabeaakiaac6caaaa@3FD9@ This is also supported by the simulation results in Section 4.

Previous | Next

Date modified: