3 Équations d'estimation pondérées par les poids de sondage

J.N.K. Rao, F. Verret et M.A. Hidiroglou

Précédent | Suivant

Aux sections 3 et 4, nous étudions les méthodes d'établissement des équations d'estimation pondérées par les poids de sondage pour les paramètres des modèles multiniveaux qui conduisent à des estimateurs convergents sous le plan et sous le modèle, même lorsque les tailles d'échantillon dans les grappes sont petites. Les méthodes proposées dépendent uniquement des probabilités d'inclusion d'ordre un π i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFysPYR0xH8viFfea0dXdHaVhbvd9G8Grpq0xc9vqpq 0xbba9q8WqFfeaY=biNkVc=He9pgeu0dXdar=Jir=JbbG8Fq0xfr=x frVcFf0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaHapaCda WgaaWcbaGaamyAaaqabaaaaa@37B8@ et π j | i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFysPYR0xH8viFfea0dXdHaVhbvd9G8Grpq0xc9vqpq 0xbba9q8WqFfeaY=biNkVc=He9pgeu0dXdar=Jir=JbbG8Fq0xfr=x frVcFf0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaHapaCda WgaaWcbaGaamOAaiaacYhacaWGPbaabeaaaaa@39A7@ , et des probabilités d'inclusion conjointe π j k | i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFysPYR0xH8viFfea0dXdHaVhbvd9G8Grpq0xc9vqpq 0xbba9q8WqFfeaY=biNkVc=He9pgeu0dXdar=Jir=JbbG8Fq0xfr=x frVcFf0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaHapaCda WgaaWcbaGaamOAaiaadUgacaGG8bGaamyAaaqabaaaaa@3A97@ dans les grappes. À la section 3, nous présentons une approche simple, fondée sur les moments, des équations d'estimation pondérées, qui est applicable aux modèles de régression linéaires à erreurs emboîtées. À la section 4, nous proposons une méthode unifiée, fondée sur les log-vraisemblances composites pondérées. Cette méthode permet de traiter les modèles multiniveaux linéaires ainsi que linéaires généralisés, contrairement à la méthode fondée sur les moments, et elle aboutit à des estimateurs convergents sous le plan et sous le modèle. Elle ne dépend, elle aussi, que de π i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFysPYR0xH8viFfea0dXdHaVhbvd9G8Grpq0xc9vqpq 0xbba9q8WqFfeaY=biNkVc=He9pgeu0dXdar=Jir=JbbG8Fq0xfr=x frVcFf0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaHapaCda WgaaWcbaGaamyAaaqabaaaaa@37B8@ , π j | i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFysPYR0xH8viFfea0dXdHaVhbvd9G8Grpq0xc9vqpq 0xbba9q8WqFfeaY=biNkVc=He9pgeu0dXdar=Jir=JbbG8Fq0xfr=x frVcFf0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaHapaCda WgaaWcbaGaamOAaiaacYhacaWGPbaabeaaaaa@39A7@ et π j k | i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFysPYR0xH8viFfea0dXdHaVhbvd9G8Grpq0xc9vqpq 0xbba9q8WqFfeaY=biNkVc=He9pgeu0dXdar=Jir=JbbG8Fq0xfr=x frVcFf0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaHapaCda WgaaWcbaGaamOAaiaadUgacaGG8bGaamyAaaqabaaaaa@3A97@ .

3.1 Estimation ponctuelle

Nous commençons par illustrer l'approche des équations d'estimation pondérées, en utilisant le simple modèle de la moyenne (2.2). Ici, nous voulons estimer θ = ( μ , σ v 2 , σ e 2 ) T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFysPYR0xH8viFfea0dXdHaVhbvd9G8Grpq0xc9vqpq 0xbba9q8WqFfeaY=biNkVc=He9pgeu0dXdar=Jir=JbbG8Fq0xfr=x frVcFf0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWH4oGaey ypa0ZaaeWaaeaacqaH8oqBcaGGSaGaeq4Wdm3aa0baaSqaaiaadAha aeaacaaIYaaaaOGaaiilaiabeo8aZnaaDaaaleaacaWGLbaabaGaaG OmaaaaaOGaayjkaiaawMcaamaaCaaaleqabaGaamivaaaaaaa@4421@ en partant d'un plan d'échantillonnage en grappes à deux degrés qui concorde avec la hiérarchie du modèle. Nous avons choisi pour cela les trois fonctions d'estimation (FE) suivantes :

u 1 ( y i j , θ ) = y i j μ ,        ( 3.1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFysPYR0xH8viFfea0dXdHaVhbvd9G8Grpq0xc9vqpq 0xbba9q8WqFfeaY=biNkVc=He9pgeu0dXdar=Jir=JbbG8Fq0xfr=x frVcFf0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG1bWaaS baaSqaaiaaigdaaeqaaOWaaeWaaeaacaWG5bWaaSbaaSqaaiaadMga caWGQbaabeaakiaacYcacaWH4oaacaGLOaGaayzkaaGaeyypa0Jaam yEamaaBaaaleaacaWGPbGaamOAaaqabaGccqGHsislcqaH8oqBcaGG SaGaaCzcaiaaxMaadaqadaqaaabaaaaaaaaapeGaaG4maiaac6caca aIXaaapaGaayjkaiaawMcaaaaa@49EA@

u 2 ( y i j , θ ) = ( y i j μ ) 2 ( σ v 2 + σ e 2 )        ( 3.2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFysPYR0xH8viFfea0dXdHaVhbvd9G8Grpq0xc9vqpq 0xbba9q8WqFfeaY=biNkVc=He9pgeu0dXdar=Jir=JbbG8Fq0xfr=x frVcFf0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG1bWaaS baaSqaaiaaikdaaeqaaOWaaeWaaeaacaWG5bWaaSbaaSqaaiaadMga caWGQbaabeaakiaacYcacaWH4oaacaGLOaGaayzkaaGaeyypa0Zaae WaaeaacaWG5bWaaSbaaSqaaiaadMgacaWGQbaabeaakiabgkHiTiab eY7aTbGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaakiabgkHiTm aabmaabaGaeq4Wdm3aa0baaSqaaiaadAhaaeaacaaIYaaaaOGaey4k aSIaeq4Wdm3aa0baaSqaaiaadwgaaeaacaaIYaaaaaGccaGLOaGaay zkaaGaaCzcaiaaxMaadaqadaqaaabaaaaaaaaapeGaaG4maiaac6ca caaIYaaapaGaayjkaiaawMcaaaaa@5661@

u 3 ( y i j , y i k , θ ) = [ ( y i j μ ) ( y i k μ ) ] 2 2 σ e 2 = z i j k 2 2 σ e 2 , j k ,        ( 3.3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFysPYR0xH8viFfea0dXdHaVhbvd9G8Grpq0xc9vqpq 0xbba9q8WqFfeaY=biNkVc=He9pgeu0dXdar=Jir=JbbG8Fq0xfr=x frVcFf0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG1bWaaS baaSqaaiaaiodaaeqaaOWaaeWaaeaacaWG5bWaaSbaaSqaaiaadMga caWGQbaabeaakiaacYcacaWG5bWaaSbaaSqaaiaadMgacaWGRbaabe aakiaacYcacaWH4oaacaGLOaGaayzkaaGaeyypa0ZaamWaaeaadaqa daqaaiaadMhadaWgaaWcbaGaamyAaiaadQgaaeqaaOGaeyOeI0Iaeq iVd0gacaGLOaGaayzkaaGaaGPaVlaaykW7cqGHsislcaaMc8UaaGPa VpaabmaabaGaamyEamaaBaaaleaacaWGPbGaam4AaaqabaGccqGHsi slcqaH8oqBaiaawIcacaGLPaaaaiaawUfacaGLDbaadaahaaWcbeqa aiaaikdaaaGccqGHsislcaaIYaGaeq4Wdm3aa0baaSqaaiaadwgaae aacaaIYaaaaOGaeyypa0JaamOEamaaBaaaleaacaWGPbGaamOAaiaa dUgaaeqaaOWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaaGOmaiabeo 8aZnaaDaaaleaacaWGLbaabaGaaGOmaaaakiaacYcacaWGQbGaeyiy IKRaam4AaiaacYcacaWLjaGaaCzcamaabmaabaaeaaaaaaaaa8qaca aIZaGaaiOlaiaaiodaa8aacaGLOaGaayzkaaaaaa@7558@

z i j k = y i j y i k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFysPYR0xH8viFfea0dXdHaVhbvd9G8Grpq0xc9vqpq 0xbba9q8WqFfeaY=biNkVc=He9pgeu0dXdar=Jir=JbbG8Fq0xfr=x frVcFf0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG6bWaaS baaSqaaiaadMgacaWGQbGaam4AaaqabaGccqGH9aqpcaWG5bWaaSba aSqaaiaadMgacaWGQbaabeaakiabgkHiTiaadMhadaWgaaWcbaGaam yAaiaadUgaaeqaaaaa@40EF@ . Les équations d'estimation de recensement correspondantes sont données par

U 1 ( θ ) = i = 1 N j = 1 M i u 1 ( y i j , θ ) = 0 , U 2 ( θ ) = i = 1 N j = 1 M i u 2 ( y i j , θ ) = 0        ( 3.4 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFysPYR0xH8viFfea0dXdHaVhbvd9G8Grpq0xc9vqpq 0xbba9q8WqFfeaY=biNkVc=He9pgeu0dXdar=Jir=JbbG8Fq0xfr=x frVcFf0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGvbWaaS baaSqaaiaaigdaaeqaaOGaaiikaiaahI7acaGGPaGaeyypa0ZaaabC aeaadaaeWbqaaiaadwhadaWgaaWcbaGaaGymaaqabaGcdaqadaqaai aadMhadaWgaaWcbaGaamyAaiaadQgaaeqaaOGaaiilaiaahI7aaiaa wIcacaGLPaaaaSqaaiaadQgacqGH9aqpcaaIXaaabaGaamytamaaBa aameaacaWGPbaabeaaa0GaeyyeIuoaaSqaaiaadMgacqGH9aqpcaaI XaaabaGaamOtaaqdcqGHris5aOGaeyypa0JaaGimaiaacYcacaaMc8 UaamyvamaaBaaaleaacaaIYaaabeaakiaacIcacaWH4oGaaiykaiab g2da9maaqahabaWaaabCaeaacaWG1bWaaSbaaSqaaiaaikdaaeqaaO WaaeWaaeaacaWG5bWaaSbaaSqaaiaadMgacaWGQbaabeaakiaacYca caWH4oaacaGLOaGaayzkaaaaleaacaWGQbGaeyypa0JaaGymaaqaai aad2eadaWgaaadbaGaamyAaaqabaaaniabggHiLdaaleaacaWGPbGa eyypa0JaaGymaaqaaiaad6eaa0GaeyyeIuoakiabg2da9iaaicdaca WLjaGaaCzcamaabmaabaaeaaaaaaaaa8qacaaIZaGaaiOlaiaaisda a8aacaGLOaGaayzkaaaaaa@74EF@

U 3 ( θ ) = i = 1 N j < k = 1 M i u 3 ( y i j , y i k , θ ) = 0.        ( 3.5 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFysPYR0xH8viFfea0dXdHaVhbvd9G8Grpq0xc9vqpq 0xbba9q8WqFfeaY=biNkVc=He9pgeu0dXdar=Jir=JbbG8Fq0xfr=x frVcFf0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGvbWaaS baaSqaaiaaiodaaeqaaOGaaiikaiaahI7acaGGPaGaeyypa0ZaaabC aeaadaaeWbqaaiaadwhadaWgaaWcbaGaaG4maaqabaGcdaqadaqaai aadMhadaWgaaWcbaGaamyAaiaadQgaaeqaaOGaaiilaiaadMhadaWg aaWcbaGaamyAaiaadUgaaeqaaOGaaiilaiaahI7aaiaawIcacaGLPa aaaSqaaiaadQgacqGH8aapcaWGRbGaeyypa0JaaGymaaqaaiaad2ea daWgaaadbaGaamyAaaqabaaaniabggHiLdaaleaacaWGPbGaeyypa0 JaaGymaaqaaiaad6eaa0GaeyyeIuoakiabg2da9iaaicdacaGGUaGa aCzcaiaaxMaadaqadaqaaabaaaaaaaaapeGaaG4maiaac6cacaaI1a aapaGaayjkaiaawMcaaaaa@5CCB@

Le paramètre de recensement résultant, θ ˜ N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFysPYR0xH8viFfea0dXdHaVhbvd9G8Grpq0xc9vqpq 0xbba9q8WqFfeaY=biNkVc=He9pgeu0dXdar=Jir=JbbG8Fq0xfr=x frVcFf0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWH4oGbaG aadaWgaaWcbaGaamOtaaqabaaaaa@3733@ , est convergent sous le modèle pour θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFysPYR0xH8viFfea0dXdHaVhbvd9G8Grpq0xc9vqpq 0xbba9q8WqFfeaY=biNkVc=He9pgeu0dXdar=Jir=JbbG8Fq0xfr=x frVcFf0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWH4oaaaa@3625@ parce que les espérances sous le modèle des trois fonctions d'estimation (3.1) à (3.3) sont nulles. Il découle de (3.4) et (3.5) que les équations d'estimation pondérées par les poids de sondage (EEP) sont données par

U ^ w 1 ( θ ) = i s w i j s ( i ) w j | i u 1 ( y i j , θ ) i s w i U ^ w 1 i ( θ ) = 0        ( 3.6 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFysPYR0xH8viFfea0dXdHaVhbvd9G8Grpq0xc9vqpq 0xbba9q8WqFfeaY=biNkVc=He9pgeu0dXdar=Jir=JbbG8Fq0xfr=x frVcFf0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWGvbGbaK aadaWgaaWcbaGaam4DaiaaigdaaeqaaOGaaiikaiaahI7acaGGPaGa eyypa0ZaaabuaeaacaWG3bWaaSbaaSqaaiaadMgaaeqaaaqaaiaadM gacqGHiiIZcaWGZbaabeqdcqGHris5aOWaaabuaeaacaWG3bWaaSba aSqaaiaadQgacaGG8bGaamyAaaqabaGccaWG1bWaaSbaaSqaaiaaig daaeqaaOWaaeWaaeaacaWG5bWaaSbaaSqaaiaadMgacaWGQbaabeaa kiaacYcacaWH4oaacaGLOaGaayzkaaaaleaacaWGQbGaeyicI4Saam 4CaiaacIcacaWGPbGaaiykaaqab0GaeyyeIuoakiabggMi6oaaqafa baGaam4DamaaBaaaleaacaWGPbaabeaaaeaacaWGPbGaeyicI4Saam 4Caaqab0GaeyyeIuoakiqadwfagaqcamaaBaaaleaacaWG3bGaaGym aiaadMgaaeqaaOGaaiikaiaahI7acaGGPaGaeyypa0JaaGimaiaaxM aacaWLjaWaaeWaaeaaqaaaaaaaaaWdbiaaiodacaGGUaGaaGOnaaWd aiaawIcacaGLPaaaaaa@6E1C@

U ^ w 2 ( θ ) = i s w i j s ( i ) w j | i u 2 ( y i j , θ ) i s w i U ^ w 2 i ( θ ) = 0        ( 3.7 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFysPYR0xH8viFfea0dXdHaVhbvd9G8Grpq0xc9vqpq 0xbba9q8WqFfeaY=biNkVc=He9pgeu0dXdar=Jir=JbbG8Fq0xfr=x frVcFf0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWGvbGbaK aadaWgaaWcbaGaam4DaiaaikdaaeqaaOGaaiikaiaahI7acaGGPaGa eyypa0ZaaabuaeaacaWG3bWaaSbaaSqaaiaadMgaaeqaaaqaaiaadM gacqGHiiIZcaWGZbaabeqdcqGHris5aOWaaabuaeaacaWG3bWaaSba aSqaaiaadQgacaGG8bGaamyAaaqabaGccaWG1bWaaSbaaSqaaiaaik daaeqaaOWaaeWaaeaacaWG5bWaaSbaaSqaaiaadMgacaWGQbaabeaa kiaacYcacaWH4oaacaGLOaGaayzkaaaaleaacaWGQbGaeyicI4Saam 4CaiaacIcacaWGPbGaaiykaaqab0GaeyyeIuoakiabggMi6oaaqafa baGaam4DamaaBaaaleaacaWGPbaabeaaaeaacaWGPbGaeyicI4Saam 4Caaqab0GaeyyeIuoakiqadwfagaqcamaaBaaaleaacaWG3bGaaGOm aiaadMgaaeqaaOGaaiikaiaahI7acaGGPaGaeyypa0JaaGimaiaaxM aacaWLjaWaaeWaaeaaqaaaaaaaaaWdbiaaiodacaGGUaGaaG4naaWd aiaawIcacaGLPaaaaaa@6E20@

U ^ w 3 ( θ ) = i s w i j < k s ( i ) w j k | i u 3 ( y i j , y i k , θ ) i s w i U ^ w 3 i ( θ ) = 0 ,        ( 3.8 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFysPYR0xH8viFfea0dXdHaVhbvd9G8Grpq0xc9vqpq 0xbba9q8WqFfeaY=biNkVc=He9pgeu0dXdar=Jir=JbbG8Fq0xfr=x frVcFf0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWGvbGbaK aadaWgaaWcbaGaam4DaiaaiodaaeqaaOGaaiikaiaahI7acaGGPaGa eyypa0ZaaabuaeaacaWG3bWaaSbaaSqaaiaadMgaaeqaaaqaaiaadM gacqGHiiIZcaWGZbaabeqdcqGHris5aOWaaabuaeaacaWG3bWaaSba aSqaaiaadQgacaWGRbGaaiiFaiaadMgaaeqaaOGaamyDamaaBaaale aacaaIZaaabeaakmaabmaabaGaamyEamaaBaaaleaacaWGPbGaamOA aaqabaGccaGGSaGaamyEamaaBaaaleaacaWGPbGaam4AaaqabaGcca GGSaGaaCiUdaGaayjkaiaawMcaaaWcbaGaamOAaiabgYda8iaadUga cqGHiiIZcaWGZbGaaiikaiaadMgacaGGPaaabeqdcqGHris5aOGaey yyIO7aaabuaeaacaWG3bWaaSbaaSqaaiaadMgaaeqaaaqaaiaadMga cqGHiiIZcaWGZbaabeqdcqGHris5aOGabmyvayaajaWaaSbaaSqaai aadEhacaaIZaGaamyAaaqabaGccaGGOaGaaCiUdiaacMcacqGH9aqp caaIWaGaaiilaiaaxMaacaWLjaWaaeWaaeaaqaaaaaaaaaWdbiaaio dacaGGUaGaaGioaaWdaiaawIcacaGLPaaaaaa@757A@

w j k | i = π j k | i 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFysPYR0xH8viFfea0dXdHaVhbvd9G8Grpq0xc9vqpq 0xbba9q8WqFfeaY=biNkVc=He9pgeu0dXdar=Jir=JbbG8Fq0xfr=x frVcFf0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG3bWaaS baaSqaaiaadQgacaWGRbGaaiiFaiaadMgaaeqaaOGaeyypa0JaeqiW da3aa0baaSqaaiaadQgacaWGRbGaaiiFaiaadMgaaeaacqGHsislca aIXaaaaaaa@4245@ . L'estimateur EEP, θ ^ w MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFysPYR0xH8viFfea0dXdHaVhbvd9G8Grpq0xc9vqpq 0xbba9q8WqFfeaY=biNkVc=He9pgeu0dXdar=Jir=JbbG8Fq0xfr=x frVcFf0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWH4oGbaK aadaWgaaWcbaGaam4Daaqabaaaaa@375D@ , est obtenu en résolvant le système d'équations (3.6) à (3.8). Pour le modèle de la moyenne, nous obtenons les solutions explicites des EEP suivantes

μ ^ w = ( i s j s ( i ) w i j y i j ) / i s j s ( i ) w i j y ¯ w        ( 3.9 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFysPYR0xH8viFfea0dXdHaVhbvd9G8Grpq0xc9vqpq 0xbba9q8WqFfeaY=biNkVc=He9pgeu0dXdar=Jir=JbbG8Fq0xfr=x frVcFf0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacuaH8oqBga qcamaaBaaaleaacaWG3baabeaakiabg2da9maalyaabaWaaeWaaeaa daaeqbqaamaaqafabaGaam4DamaaBaaaleaacaWGPbGaamOAaaqaba GccaWG5bWaaSbaaSqaaiaadMgacaWGQbaabeaaaeaacaWGQbGaeyic I4Saam4CaiaacIcacaWGPbGaaiykaaqab0GaeyyeIuoaaSqaaiaadM gacqGHiiIZcaWGZbaabeqdcqGHris5aaGccaGLOaGaayzkaaaabaGa aGPaVpaaqafabaWaaabuaeaacaWG3bWaaSbaaSqaaiaadMgacaWGQb aabeaakiabggMi6kqadMhagaqeamaaBaaaleaacaWG3baabeaaaeaa caWGQbGaeyicI4Saam4CaiaacIcacaWGPbGaaiykaaqab0GaeyyeIu oaaSqaaiaadMgacqGHiiIZcaWGZbaabeqdcqGHris5aaaakiaaxMaa caWLjaWaaeWaaeaaqaaaaaaaaaWdbiaaiodacaGGUaGaaGyoaaWdai aawIcacaGLPaaaaaa@6925@

σ ^ v w 2 = i s j s ( i ) w i j ( y i j y ¯ w ) 2 / i s j s ( i ) w i j σ ^ e w 2        ( 3.10 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFysPYR0xH8viFfea0dXdHaVhbvd9G8Grpq0xc9vqpq 0xbba9q8WqFfeaY=biNkVc=He9pgeu0dXdar=Jir=JbbG8Fq0xfr=x frVcFf0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacuaHdpWCga qcamaaDaaaleaacaWG2bGaam4DaaqaaiaaikdaaaGccqGH9aqpdaWc gaqaamaaqafabaWaaabuaeaacaWG3bWaaSbaaSqaaiaadMgacaWGQb aabeaakmaabmaabaGaamyEamaaBaaaleaacaWGPbGaamOAaaqabaGc cqGHsislceWG5bGbaebadaWgaaWcbaGaam4DaaqabaaakiaawIcaca GLPaaadaahaaWcbeqaaiaaikdaaaaabaGaamOAaiabgIGiolaadoha caGGOaGaamyAaiaacMcaaeqaniabggHiLdaaleaacaWGPbGaeyicI4 Saam4Caaqab0GaeyyeIuoaaOqaaiaaykW7daaeqbqaamaaqafabaGa am4DamaaBaaaleaacaWGPbGaamOAaaqabaGccqGHsislcuaHdpWCga qcamaaDaaaleaacaWGLbGaam4DaaqaaiaaikdaaaaabaGaamOAaiab gIGiolaadohacaGGOaGaamyAaiaacMcaaeqaniabggHiLdaaleaaca WGPbGaeyicI4Saam4Caaqab0GaeyyeIuoaaaGccaWLjaGaaCzcamaa bmaabaaeaaaaaaaaa8qacaaIZaGaaiOlaiaaigdacaaIWaaapaGaay jkaiaawMcaaaaa@714C@

σ ^ e w 2 = i s w i j < k s ( i ) w j k | i z i j k 2 / ( 2 i s w i j < k s ( i ) w j k | i ) ,        ( 3.11 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFysPYR0xH8viFfea0dXdHaVhbvd9G8Grpq0xc9vqpq 0xbba9q8WqFfeaY=biNkVc=He9pgeu0dXdar=Jir=JbbG8Fq0xfr=x frVcFf0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacuaHdpWCga qcamaaDaaaleaacaWGLbGaam4DaaqaaiaaikdaaaGccqGH9aqpdaWc gaqaamaaqafabaGaam4DamaaBaaaleaacaWGPbaabeaakmaaqafaba Gaam4DamaaBaaaleaacaWGQbGaam4AaiaacYhacaWGPbaabeaakiaa dQhadaqhaaWcbaGaamyAaiaadQgacaWGRbaabaGaaGOmaaaaaeaaca WGQbGaeyipaWJaam4AaiabgIGiolaadohacaGGOaGaamyAaiaacMca aeqaniabggHiLdaaleaacaWGPbGaeyicI4Saam4Caaqab0GaeyyeIu oaaOqaaiaaykW7daqadaqaaiaaikdadaaeqbqaaiaadEhadaWgaaWc baGaamyAaaqabaaabaGaamyAaiabgIGiolaadohaaeqaniabggHiLd GcdaaeqbqaaiaadEhadaWgaaWcbaGaamOAaiaadUgacaGG8bGaamyA aaqabaaabaGaamOAaiabgYda8iaadUgacqGHiiIZcaWGZbGaaiikai aadMgacaGGPaaabeqdcqGHris5aaGccaGLOaGaayzkaaaaaiaacYca caWLjaGaaCzcamaabmaabaaeaaaaaaaaa8qacaaIZaGaaiOlaiaaig dacaaIXaaapaGaayjkaiaawMcaaaaa@7692@

w i j = w i w j | i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFysPYR0xH8viFfea0dXdHaVhbvd9G8Grpq0xc9vqpq 0xbba9q8WqFfeaY=biNkVc=He9pgeu0dXdar=Jir=JbbG8Fq0xfr=x frVcFf0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG3bWaaS baaSqaaiaadMgacaWGQbaabeaakiabg2da9iaadEhadaWgaaWcbaGa amyAaaqabaGccaWG3bWaaSbaaSqaaiaadQgacaGG8bGaamyAaaqaba aaaa@3F1B@ . Soulignons que la méthode des moments susmentionnés ne dépend pas de la loi de probabilité.

Nous notons que U ^ w t ( θ ) , t = 1 , 2 , 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFysPYR0xH8viFfea0dXdHaVhbvd9G8Grpq0xc9vqpq 0xbba9q8WqFfeaY=biNkVc=He9pgeu0dXdar=Jir=JbbG8Fq0xfr=x frVcFf0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWGvbGbaK aadaWgaaWcbaGaam4DaiaadshaaeqaaOGaaiikaiaahI7acaGGPaGa aiilaiaaykW7caaMc8UaamiDaiabg2da9iaaigdacaGGSaGaaGOmai aacYcacaaIZaaaaa@43EC@ sont les fonctions d'estimation d'espérance nulle par rapport au plan de sondage et au modèle, c.-à-d. E m E p { U ^ w t ( θ ) } = 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFysPYR0xH8viFfea0dXdHaVhbvd9G8Grpq0xc9vqpq 0xbba9q8WqFfeaY=biNkVc=He9pgeu0dXdar=Jir=JbbG8Fq0xfr=x frVcFf0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGfbWaaS baaSqaaiaad2gaaeqaaOGaamyramaaBaaaleaacaWGWbaabeaakmaa cmaabaGabmyvayaajaWaaSbaaSqaaiaadEhacaWG0baabeaakiaacI cacaWH4oGaaiykaaGaay5Eaiaaw2haaiabg2da9iaaicdaaaa@426B@ . En utilisant ce résultat, nous pouvons montrer que l'estimateur EEP θ ^ w = ( μ ^ w , σ ^ v w 2 , σ ^ e w 2 ) T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFysPYR0xH8viFfea0dXdHaVhbvd9G8Grpq0xc9vqpq 0xbba9q8WqFfeaY=biNkVc=He9pgeu0dXdar=Jir=JbbG8Fq0xfr=x frVcFf0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWH4oGbaK aadaWgaaWcbaGaam4DaaqabaGccqGH9aqpdaqadaqaaiqbeY7aTzaa jaWaaSbaaSqaaiaadEhaaeqaaOGaaiilaiqbeo8aZzaajaWaa0baaS qaaiaadAhacaWG3baabaGaaGOmaaaakiaacYcacuaHdpWCgaqcamaa DaaaleaacaWGLbGaam4DaaqaaiaaikdaaaaakiaawIcacaGLPaaada ahaaWcbeqaaiaadsfaaaaaaa@48BD@ est convergent sous le plan et sous le modèle pour θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFysPYR0xH8viFfea0dXdHaVhbvd9G8Grpq0xc9vqpq 0xbba9q8WqFfeaY=biNkVc=He9pgeu0dXdar=Jir=JbbG8Fq0xfr=x frVcFf0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWH4oaaaa@3625@ à mesure que le nombre d'unités de niveau 2 dans l'échantillon, n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFysPYR0xH8viFfea0dXdHaVhbvd9G8Grpq0xc9vqpq 0xbba9q8WqFfeaY=biNkVc=He9pgeu0dXdar=Jir=JbbG8Fq0xfr=x frVcFf0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGUbaaaa@35D4@ , augmente, même si les tailles d'échantillon dans les grappes, m i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFysPYR0xH8viFfea0dXdHaVhbvd9G8Grpq0xc9vqpq 0xbba9q8WqFfeaY=biNkVc=He9pgeu0dXdar=Jir=JbbG8Fq0xfr=x frVcFf0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGTbWaaS baaSqaaiaadMgaaeqaaaaa@36ED@ , sont petites. Cette propriété n'est pas nécessairement vérifiée pour les estimateurs présentés à la section 2. La méthode proposée nécessite toutefois les probabilités d'inclusion conjointe dans les grappes π j k | i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFysPYR0xH8viFfea0dXdHaVhbvd9G8Grpq0xc9vqpq 0xbba9q8WqFfeaY=biNkVc=He9pgeu0dXdar=Jir=JbbG8Fq0xfr=x frVcFf0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaHapaCda WgaaWcbaGaamOAaiaadUgacaGG8bGaamyAaaqabaaaaa@3A97@ . Ces probabilités sont obtenues facilement pour l'échantillonnage aléatoire simple ou stratifié dans les grappes, ou quand la fraction d'échantillonnage dans les grappes est faible. En outre, plusieurs bonnes approximations de π j k | i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFysPYR0xH8viFfea0dXdHaVhbvd9G8Grpq0xc9vqpq 0xbba9q8WqFfeaY=biNkVc=He9pgeu0dXdar=Jir=JbbG8Fq0xfr=x frVcFf0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaHapaCda WgaaWcbaGaamOAaiaadUgacaGG8bGaamyAaaqabaaaaa@3A97@ lorsque l'échantillonnage dans les grappes est effectué avec probabilités inégales sont disponibles, et ces approximations dépendent uniquement des probabilités d'inclusion marginales π j | i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFysPYR0xH8viFfea0dXdHaVhbvd9G8Grpq0xc9vqpq 0xbba9q8WqFfeaY=biNkVc=He9pgeu0dXdar=Jir=JbbG8Fq0xfr=x frVcFf0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaHapaCda WgaaWcbaGaamOAaiaacYhacaWGPbaabeaaaaa@39A7@ (Haziza, Mecatti et Rao 2008). L'estimateur EEP θ ^ w MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFysPYR0xH8viFfea0dXdHaVhbvd9G8Grpq0xc9vqpq 0xbba9q8WqFfeaY=biNkVc=He9pgeu0dXdar=Jir=JbbG8Fq0xfr=x frVcFf0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWH4oGbaK aadaWgaaWcbaGaam4Daaqabaaaaa@375D@ est également convergent sous le plan pour θ ˜ N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFysPYR0xH8viFfea0dXdHaVhbvd9G8Grpq0xc9vqpq 0xbba9q8WqFfeaY=biNkVc=He9pgeu0dXdar=Jir=JbbG8Fq0xfr=x frVcFf0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWH4oGbaG aadaWgaaWcbaGaamOtaaqabaaaaa@3733@ , en notant que E p { U ^ w t ( θ ˜ N ) } = 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFysPYR0xH8viFfea0dXdHaVhbvd9G8Grpq0xc9vqpq 0xbba9q8WqFfeaY=biNkVc=He9pgeu0dXdar=Jir=JbbG8Fq0xfr=x frVcFf0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGfbWaaS baaSqaaiaadchaaeqaaOWaaiWaaeaaceWGvbGbaKaadaWgaaWcbaGa am4DaiaadshaaeqaaOGaaiikaiqahI7agaacamaaBaaaleaacaWGob aabeaakiaacMcaaiaawUhacaGL9baacqGH9aqpcaaIWaaaaa@4191@ , t = 1 , 2 , 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFysPYR0xH8viFfea0dXdHaVhbvd9G8Grpq0xc9vqpq 0xbba9q8WqFfeaY=biNkVc=He9pgeu0dXdar=Jir=JbbG8Fq0xfr=x frVcFf0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG0bGaey ypa0JaaGymaiaacYcacaaIYaGaaiilaiaaiodaaaa@3A74@ .

Le choix des fonctions d'estimation (3.1) à (3.3) n'est pas forcément unique. Ainsi, nous pourrions remplacer l'équation précédente u 2 ( y i j , θ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFysPYR0xH8viFfea0dXdHaVhbvd9G8Grpq0xc9vqpq 0xbba9q8WqFfeaY=biNkVc=He9pgeu0dXdar=Jir=JbbG8Fq0xfr=x frVcFf0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG1bWaaS baaSqaaiaaikdaaeqaaOWaaeWaaeaacaWG5bWaaSbaaSqaaiaadMga caWGQbaabeaakiaacYcacaWH4oaacaGLOaGaayzkaaaaaa@3D5B@ par u ˜ 2 ( y i j , y i k , θ ) = ( y i j μ ) ( y i k μ ) σ v 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFysPYR0xH8viFfea0dXdHaVhbvd9G8Grpq0xc9vqpq 0xbba9q8WqFfeaY=biNkVc=He9pgeu0dXdar=Jir=JbbG8Fq0xfr=x frVcFf0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWG1bGbaG aadaWgaaWcbaGaaGOmaaqabaGcdaqadaqaaiaadMhadaWgaaWcbaGa amyAaiaadQgaaeqaaOGaaiilaiaadMhadaWgaaWcbaGaamyAaiaadU gaaeqaaOGaaiilaiaahI7aaiaawIcacaGLPaaacqGH9aqpdaqadaqa aiaadMhadaWgaaWcbaGaamyAaiaadQgaaeqaaOGaeyOeI0IaeqiVd0 gacaGLOaGaayzkaaWaaeWaaeaacaWG5bWaaSbaaSqaaiaadMgacaWG RbaabeaakiabgkHiTiabeY7aTbGaayjkaiaawMcaaiabgkHiTiabeo 8aZnaaDaaaleaacaWG2baabaGaaGOmaaaaaaa@5541@ dans (3.7) et garder (3.6) et (3.8). L'estimateur EEP résultant est également convergent sous le plan et sous le modèle pour θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFysPYR0xH8viFfea0dXdHaVhbvd9G8Grpq0xc9vqpq 0xbba9q8WqFfeaY=biNkVc=He9pgeu0dXdar=Jir=JbbG8Fq0xfr=x frVcFf0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWH4oaaaa@3626@ à mesure que le nombre d'unités de niveau 2 augmente. L'approche de la vraisemblance composite par paire pondérée décrite à la section 4 offre une méthode unifiée de génération des fonctions d'estimation.

Korn et Graubard (2003) ont utilisé pour le modèle de la moyenne une autre approche qui présente certaines similarités avec l'approche proposée. Sous leur approche, les « paramètres de recensement », S e 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFysPYR0xH8viFfea0dXdHaVhbvd9G8Grpq0xc9vqpq 0xbba9q8WqFfeaY=biNkVc=He9pgeu0dXdar=Jir=JbbG8Fq0xfr=x frVcFf0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGtbWaa0 baaSqaaiaadwgaaeaacaaIYaaaaaaa@378C@ et S v 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFysPYR0xH8viFfea0dXdHaVhbvd9G8Grpq0xc9vqpq 0xbba9q8WqFfeaY=biNkVc=He9pgeu0dXdar=Jir=JbbG8Fq0xfr=x frVcFf0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGtbWaa0 baaSqaaiaadAhaaeaacaaIYaaaaaaa@379D@ , sont d'abord obtenus en supposant que le modèle est vérifié pour la population finie. Les estimateurs pondérés par les poids de sondage S ^ e w 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFysPYR0xH8viFfea0dXdHaVhbvd9G8Grpq0xc9vqpq 0xbba9q8WqFfeaY=biNkVc=He9pgeu0dXdar=Jir=JbbG8Fq0xfr=x frVcFf0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWGtbGbaK aadaqhaaWcbaGaamyzaiaadEhaaeaacaaIYaaaaaaa@3898@ et S ^ v w 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFysPYR0xH8viFfea0dXdHaVhbvd9G8Grpq0xc9vqpq 0xbba9q8WqFfeaY=biNkVc=He9pgeu0dXdar=Jir=JbbG8Fq0xfr=x frVcFf0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWGtbGbaK aadaqhaaWcbaGaamODaiaadEhaaeaacaaIYaaaaaaa@38A9@ des paramètres de recensement sont ensuite obtenus en supposant que M i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFysPYR0xH8viFfea0dXdHaVhbvd9G8Grpq0xc9vqpq 0xbba9q8WqFfeaY=biNkVc=He9pgeu0dXdar=Jir=JbbG8Fq0xfr=x frVcFf0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGnbWaaS baaSqaaiaadMgaaeqaaaaa@36CD@ est connu pour les grappes échantillonnées. L'estimateur S ^ e w 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFysPYR0xH8viFfea0dXdHaVhbvd9G8Grpq0xc9vqpq 0xbba9q8WqFfeaY=biNkVc=He9pgeu0dXdar=Jir=JbbG8Fq0xfr=x frVcFf0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWGtbGbaK aadaqhaaWcbaGaamyzaiaadEhaaeaacaaIYaaaaaaa@3898@ est donné par

S ^ e w 2 = { 1 2 i s ( M i 1 ) w i [ j < k s ( i ) w j k | i ( y i j y i k ) 2 / j < k s ( i ) w j k | i ] } [ i s ( M i 1 ) w i ] 1 ,        ( 3.12 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFysPYR0xH8viFfea0dXdHaVhbvd9G8Grpq0xc9vqpq 0xbba9q8WqFfeaY=biNkVc=He9pgeu0dXdar=Jir=JbbG8Fq0xfr=x frVcFf0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWGtbGbaK aadaqhaaWcbaGaamyzaiaadEhaaeaacaaIYaaaaOGaeyypa0ZaaiWa aeaadaWcaaqaaiaaigdaaeaacaaIYaaaamaaqafabaWaaeWaaeaaca WGnbWaaSbaaSqaaiaadMgaaeqaaOGaeyOeI0IaaGymaaGaayjkaiaa wMcaaiaadEhadaWgaaWcbaGaamyAaaqabaaabaGaamyAaiabgIGiol aadohaaeqaniabggHiLdGcdaWadaqaamaalyaabaWaaabuaeaacaWG 3bWaaSbaaSqaaiaadQgacaWGRbGaaiiFaiaadMgaaeqaaOWaaeWaae aacaWG5bWaaSbaaSqaaiaadMgacaWGQbaabeaakiabgkHiTiaadMha daWgaaWcbaGaamyAaiaadUgaaeqaaaGccaGLOaGaayzkaaWaaWbaaS qabeaacaaIYaaaaaqaaiaadQgacqGH8aapcaWGRbGaeyicI4Saam4C aiaacIcacaWGPbGaaiykaaqab0GaeyyeIuoaaOqaaiaaykW7daaeqb qaaiaadEhadaWgaaWcbaGaamOAaiaadUgacaGG8bGaamyAaaqabaaa baGaamOAaiabgYda8iaadUgacqGHiiIZcaWGZbGaaiikaiaadMgaca GGPaaabeqdcqGHris5aaaaaOGaay5waiaaw2faaaGaay5Eaiaaw2ha aiaaykW7daWadaqaamaaqafabaWaaeWaaeaacaWGnbWaaSbaaSqaai aadMgaaeqaaOGaeyOeI0IaaGymaaGaayjkaiaawMcaaiaaykW7caWG 3bWaaSbaaSqaaiaadMgaaeqaaaqaaiaadMgacqGHiiIZcaWGZbaabe qdcqGHris5aaGccaGLBbGaayzxaaWaaWbaaSqabeaacqGHsislcaaI XaaaaOGaaiilaiaaxMaacaWLjaWaaeWaaeaaqaaaaaaaaaWdbiaaio dacaGGUaGaaGymaiaaikdaa8aacaGLOaGaayzkaaaaaa@8F04@

en supposant que m i > 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFysPYR0xH8viFfea0dXdHaVhbvd9G8Grpq0xc9vqpq 0xbba9q8WqFfeaY=biNkVc=He9pgeu0dXdar=Jir=JbbG8Fq0xfr=x frVcFf0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGTbWaaS baaSqaaiaadMgaaeqaaOGaeyOpa4JaaGymaaaa@38BB@ pour toutes les grappes échantillonnées. Notons que (3.12) nécessite les probabilités d'inclusion conjointe π j k | i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFysPYR0xH8viFfea0dXdHaVhbvd9G8Grpq0xc9vqpq 0xbba9q8WqFfeaY=biNkVc=He9pgeu0dXdar=Jir=JbbG8Fq0xfr=x frVcFf0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaHapaCda WgaaWcbaGaamOAaiaadUgacaGG8bGaamyAaaqabaaaaa@3A97@ comme la méthode proposée, mais qu'il induit un biais de ratio intra-grappe lorsque les tailles d'échantillon dans les grappes sont faibles, contrairement à notre méthode. L'expression pour S ^ v w 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFysPYR0xH8viFfea0dXdHaVhbvd9G8Grpq0xc9vqpq 0xbba9q8WqFfeaY=biNkVc=He9pgeu0dXdar=Jir=JbbG8Fq0xfr=x frVcFf0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWGtbGbaK aadaqhaaWcbaGaamODaiaadEhaaeaacaaIYaaaaaaa@38A9@ est plus compliquée et nous invitons le lecteur à consulter Korn et Graubard (2003) pour la formule pertinente.

La méthode EEP peut être étendue facilement au modèle de régression linéaire à erreurs emboîtées

y i j = x i j T β + v i + e i j ; e i j ~ i i d N ( 0 , σ e 2 ) , v i ~ i i d N ( 0 , σ v 2 ) .        ( 3.13 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFysPYR0xH8viFfea0dXdHaVhbvd9G8Grpq0xc9vqpq 0xbba9q8WqFfeaY=biNkVc=He9pgeu0dXdar=Jir=JbbG8Fq0xfr=x frVcFf0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG5bWaaS baaSqaaiaadMgacaWGQbaabeaakiabg2da9iaahIhadaqhaaWcbaGa amyAaiaadQgaaeaacaWGubaaaOGaaCOSdiabgUcaRiaadAhadaWgaa WcbaGaamyAaaqabaGccqGHRaWkcaWGLbWaaSbaaSqaaiaadMgacaWG QbaabeaakiaacUdacaaMe8UaaGPaVlaadwgadaWgaaWcbaGaamyAai aadQgaaeqaaOGaaGjbVlaac6hadaWgaaWcbaGaamyAaiaadMgacaWG KbaabeaakiaaysW7caaMe8UaamOtamaabmaabaGaaGimaiaacYcaca aMe8Uaeq4Wdm3aa0baaSqaaiaadwgaaeaacaaIYaaaaaGccaGLOaGa ayzkaaGaaiilaiaaysW7caWG2bWaaSbaaSqaaiaadMgaaeqaaOGaaG PaVlaac6hadaWgaaWcbaGaamyAaiaadMgacaWGKbaabeaakiaaykW7 caaMc8UaamOtaiaaysW7daqadaqaaiaaicdacaGGSaGaeq4Wdm3aa0 baaSqaaiaadAhaaeaacaaIYaaaaaGccaGLOaGaayzkaaGaaiOlaiaa xMaacaWLjaWaaeWaaeaaqaaaaaaaaaWdbiaaiodacaGGUaGaaGymai aaiodaa8aacaGLOaGaayzkaaaaaa@7A02@

Dans ce cas, la fonction d'estimation (3.1) devient

u 1 ( y i j , θ ) = x i j ( y i j x i j T β ) ,        ( 3.14 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFysPYR0xH8viFfea0dXdHaVhbvd9G8Grpq0xc9vqpq 0xbba9q8WqFfeaY=biNkVc=He9pgeu0dXdar=Jir=JbbG8Fq0xfr=x frVcFf0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG1bWaaS baaSqaaiaaigdaaeqaaOWaaeWaaeaacaWG5bWaaSbaaSqaaiaadMga caWGQbaabeaakiaacYcacaaMe8UaaCiUdaGaayjkaiaawMcaaiaayk W7caaMc8Uaeyypa0JaaGPaVlaaykW7caWH4bWaaSbaaSqaaiaadMga caWGQbaabeaakmaabmaabaGaamyEamaaBaaaleaacaWGPbGaamOAaa qabaGccqGHsislcaWH4bWaa0baaSqaaiaadMgacaWGQbaabaGaamiv aaaakiaahk7aaiaawIcacaGLPaaacaGGSaGaaCzcaiaaxMaadaqada qaaabaaaaaaaaapeGaaG4maiaac6cacaaIXaGaaGinaaWdaiaawIca caGLPaaaaaa@5A75@

La fonction d'estimation (3.2) devient

u 2 ( y i j , θ ) = ( y i j x i j T β ) 2 ( σ v 2 + σ e 2 )        ( 3.15 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFysPYR0xH8viFfea0dXdHaVhbvd9G8Grpq0xc9vqpq 0xbba9q8WqFfeaY=biNkVc=He9pgeu0dXdar=Jir=JbbG8Fq0xfr=x frVcFf0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG1bWaaS baaSqaaiaaikdaaeqaaOWaaeWaaeaacaWG5bWaaSbaaSqaaiaadMga caWGQbaabeaakiaacYcacaaMe8UaaCiUdaGaayjkaiaawMcaaiaayk W7caaMc8Uaeyypa0JaaGPaVlaaykW7daqadaqaaiaadMhadaWgaaWc baGaamyAaiaadQgaaeqaaOGaeyOeI0IaaCiEamaaDaaaleaacaWGPb GaamOAaaqaaiaadsfaaaGccaWHYoaacaGLOaGaayzkaaWaaWbaaSqa beaacaaIYaaaaOGaeyOeI0YaaeWaaeaacqaHdpWCdaqhaaWcbaGaam ODaaqaaiaaikdaaaGccqGHRaWkcqaHdpWCdaqhaaWcbaGaamyzaaqa aiaaikdaaaaakiaawIcacaGLPaaacaWLjaGaaCzcamaabmaabaaeaa aaaaaaa8qacaaIZaGaaiOlaiaaigdacaaI1aaapaGaayjkaiaawMca aaaa@624F@

et la fonction d'estimation (3.3) devient

u 3 ( y i j , y i k , θ ) = [ z i j k ( x i j x i k ) T β ] 2 2 σ e 2 , j k ,        ( 3.16 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFysPYR0xH8viFfea0dXdHaVhbvd9G8Grpq0xc9vqpq 0xbba9q8WqFfeaY=biNkVc=He9pgeu0dXdar=Jir=JbbG8Fq0xfr=x frVcFf0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG1bWaaS baaSqaaiaaiodaaeqaaOWaaeWaaeaacaWG5bWaaSbaaSqaaiaadMga caWGQbaabeaakiaacYcacaWG5bWaaSbaaSqaaiaadMgacaWGRbaabe aakiaacYcacaaMe8UaaCiUdaGaayjkaiaawMcaaiaaykW7caaMc8Ua eyypa0JaaGPaVlaaykW7daWadaqaaiaadQhadaWgaaWcbaGaamyAai aadQgacaWGRbaabeaakiabgkHiTmaabmaabaGaaCiEamaaBaaaleaa caWGPbGaamOAaaqabaGccqGHsislcaWH4bWaaSbaaSqaaiaadMgaca WGRbaabeaaaOGaayjkaiaawMcaamaaCaaaleqabaGaamivaaaakiaa hk7aaiaawUfacaGLDbaadaahaaWcbeqaaiaaikdaaaGccqGHsislca aIYaGaeq4Wdm3aa0baaSqaaiaadwgaaeaacaaIYaaaaOGaaiilaiaa ysW7caaMc8UaamOAaiabgcMi5kaadUgacaGGSaGaaCzcaiaaxMaada qadaqaaabaaaaaaaaapeGaaG4maiaac6cacaaIXaGaaGOnaaWdaiaa wIcacaGLPaaaaaa@6FEC@

θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFysPYR0xH8viFfea0dXdHaVhbvd9G8Grpq0xc9vqpq 0xbba9q8WqFfeaY=biNkVc=He9pgeu0dXdar=Jir=JbbG8Fq0xfr=x frVcFf0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWH4oaaaa@3626@ est le vecteur des éléments β , σ v 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFysPYR0xH8viFfea0dXdHaVhbvd9G8Grpq0xc9vqpq 0xbba9q8WqFfeaY=biNkVc=He9pgeu0dXdar=Jir=JbbG8Fq0xfr=x frVcFf0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWHYoGaai ilaiaaysW7caaMc8Uaeq4Wdm3aa0baaSqaaiaadAhaaeaacaaIYaaa aaaa@3D8F@ et σ e 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFysPYR0xH8viFfea0dXdHaVhbvd9G8Grpq0xc9vqpq 0xbba9q8WqFfeaY=biNkVc=He9pgeu0dXdar=Jir=JbbG8Fq0xfr=x frVcFf0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaHdpWCda qhaaWcbaGaamyzaaqaaiaaikdaaaaaaa@3878@ et z i j k = y i j y i k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFysPYR0xH8viFfea0dXdHaVhbvd9G8Grpq0xc9vqpq 0xbba9q8WqFfeaY=biNkVc=He9pgeu0dXdar=Jir=JbbG8Fq0xfr=x frVcFf0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG6bWaaS baaSqaaiaadMgacaWGQbGaam4AaaqabaGccqGH9aqpcaWG5bWaaSba aSqaaiaadMgacaWGQbaabeaakiabgkHiTiaadMhadaWgaaWcbaGaam yAaiaadUgaaeqaaaaa@40EF@ . Les solutions explicites de U ^ w t ( θ ) = 0 , t = 1 , 2 , 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFysPYR0xH8viFfea0dXdHaVhbvd9G8Grpq0xc9vqpq 0xbba9q8WqFfeaY=biNkVc=He9pgeu0dXdar=Jir=JbbG8Fq0xfr=x frVcFf0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWGvbGbaK aadaWgaaWcbaGaam4DaiaadshaaeqaaOGaaiikaiaahI7acaGGPaGa eyypa0JaaGimaiaacYcacaaMc8UaaGPaVlaadshacqGH9aqpcaaIXa GaaiilaiaaikdacaGGSaGaaG4maaaa@45AD@ correspondant aux équations (3.14) à (3.16) sont obtenues sous la forme

β ^ w = ( i s j s ( i ) w i j x i j x i j T ) 1 ( i s j s ( i ) w i j x i j y i j ) ,        ( 3.17 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFysPYR0xH8viFfea0dXdHaVhbvd9G8Grpq0xc9vqpq 0xbba9q8WqFfeaY=biNkVc=He9pgeu0dXdar=Jir=JbbG8Fq0xfr=x frVcFf0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWHYoGbaK aadaWgaaWcbaGaam4DaaqabaGccqGH9aqpdaqadaqaamaaqafabaWa aabuaeaacaWG3bWaaSbaaSqaaiaadMgacaWGQbaabeaakiaahIhada WgaaWcbaGaamyAaiaadQgaaeqaaOGaaCiEamaaDaaaleaacaWGPbGa amOAaaqaaiaadsfaaaaabaGaamOAaiabgIGiolaadohacaGGOaGaam yAaiaacMcaaeqaniabggHiLdaaleaacaWGPbGaeyicI4Saam4Caaqa b0GaeyyeIuoaaOGaayjkaiaawMcaamaaCaaaleqabaGaeyOeI0IaaG ymaaaakmaabmaabaWaaabuaeaadaaeqbqaaiaadEhadaWgaaWcbaGa amyAaiaadQgaaeqaaOGaaCiEamaaBaaaleaacaWGPbGaamOAaaqaba GccaWG5bWaaSbaaSqaaiaadMgacaWGQbaabeaaaeaacaWGQbGaeyic I4Saam4CaiaacIcacaWGPbGaaiykaaqab0GaeyyeIuoaaSqaaiaadM gacqGHiiIZcaWGZbaabeqdcqGHris5aaGccaGLOaGaayzkaaGaaiil aiaaxMaacaWLjaWaaeWaaeaaqaaaaaaaaaWdbiaaiodacaGGUaGaaG ymaiaaiEdaa8aacaGLOaGaayzkaaaaaa@71E2@

σ ^ v w 2 = i s j s ( i ) w i j ( y i j x i j T β ^ w ) 2 / i s j s ( i ) w i j σ ^ e w 2        ( 3.18 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFysPYR0xH8viFfea0dXdHaVhbvd9G8Grpq0xc9vqpq 0xbba9q8WqFfeaY=biNkVc=He9pgeu0dXdar=Jir=JbbG8Fq0xfr=x frVcFf0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacuaHdpWCga qcamaaDaaaleaacaWG2bGaam4DaaqaaiaaikdaaaGccqGH9aqpdaWc gaqaamaaqafabaWaaabuaeaacaWG3bWaaSbaaSqaaiaadMgacaWGQb aabeaakmaabmaabaGaamyEamaaBaaaleaacaWGPbGaamOAaaqabaGc cqGHsislcaWH4bWaa0baaSqaaiaadMgacaWGQbaabaGaamivaaaaki qahk7agaqcamaaBaaaleaacaWG3baabeaaaOGaayjkaiaawMcaamaa CaaaleqabaGaaGOmaaaaaeaacaWGQbGaeyicI4Saam4CaiaacIcaca WGPbGaaiykaaqab0GaeyyeIuoaaSqaaiaadMgacqGHiiIZcaWGZbaa beqdcqGHris5aaGcbaGaaGPaVpaaqafabaWaaabuaeaacaWG3bWaaS baaSqaaiaadMgacaWGQbaabeaakiabgkHiTiqbeo8aZzaajaWaa0ba aSqaaiaadwgacaWG3baabaGaaGOmaaaaaeaacaWGQbGaeyicI4Saam 4CaiaacIcacaWGPbGaaiykaaqab0GaeyyeIuoaaSqaaiaadMgacqGH iiIZcaWGZbaabeqdcqGHris5aaaakiaaxMaacaWLjaWaaeWaaeaaqa aaaaaaaaWdbiaaiodacaGGUaGaaGymaiaaiIdaa8aacaGLOaGaayzk aaaaaa@757A@

et

σ ^ e w 2 = i s w i j < k s ( i ) w j k | i [ z i j k ( x i j x i k ) T β ^ w ] 2 / ( 2 i s w i j < k s ( i ) w j k | i ) .        ( 3.19 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFysPYR0xH8viFfea0dXdHaVhbvd9G8Grpq0xc9vqpq 0xbba9q8WqFfeaY=biNkVc=He9pgeu0dXdar=Jir=JbbG8Fq0xfr=x frVcFf0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacuaHdpWCga qcamaaDaaaleaacaWGLbGaam4DaaqaaiaaikdaaaGccqGH9aqpdaWc gaqaamaaqafabaGaam4DamaaBaaaleaacaWGPbaabeaakmaaqafaba Gaam4DamaaBaaaleaacaWGQbGaam4AaiaacYhacaWGPbaabeaakiaa ykW7daWadaqaaiaadQhadaWgaaWcbaGaamyAaiaadQgacaWGRbaabe aakiabgkHiTmaabmaabaGaaCiEamaaBaaaleaacaWGPbGaamOAaaqa baGccqGHsislcaWH4bWaaSbaaSqaaiaadMgacaWGRbaabeaaaOGaay jkaiaawMcaamaaCaaaleqabaGaamivaaaakiqahk7agaqcamaaBaaa leaacaWG3baabeaaaOGaay5waiaaw2faamaaCaaaleqabaGaaGOmaa aaaeaacaWGQbGaeyipaWJaam4AaiabgIGiolaadohacaGGOaGaamyA aiaacMcaaeqaniabggHiLdaaleaacaWGPbGaeyicI4Saam4Caaqab0 GaeyyeIuoaaOqaaiaaykW7daqadaqaaiaaikdadaaeqbqaaiaadEha daWgaaWcbaGaamyAaaqabaGcdaaeqbqaaiaadEhadaWgaaWcbaGaam OAaiaadUgacaGG8bGaamyAaaqabaaabaGaamOAaiabgYda8iaadUga cqGHiiIZcaWGZbGaaiikaiaadMgacaGGPaaabeqdcqGHris5aaWcba GaamyAaiabgIGiolaadohaaeqaniabggHiLdaakiaawIcacaGLPaaa aaGaaiOlaiaaxMaacaWLjaWaaeWaaeaaqaaaaaaaaaWdbiaaiodaca GGUaGaaGymaiaaiMdaa8aacaGLOaGaayzkaaaaaa@8776@

3.2 Estimation de la variance

Un estimateur sandwich par linéarisation de Taylor de la variance de l'estimateur EEP θ ^ w MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFysPYR0xH8viFfea0dXdHaVhbvd9G8Grpq0xc9vqpq 0xbba9q8WqFfeaY=biNkVc=He9pgeu0dXdar=Jir=JbbG8Fq0xfr=x frVcFf0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWH4oGbaK aadaWgaaWcbaGaam4Daaqabaaaaa@375D@ peut être obtenu de manière analogue à l'estimateur de variance (2.10), à condition que la fraction d'échantillonnage de niveau 2 soit faible. Soit U ^ w ( θ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFysPYR0xH8viFfea0dXdHaVhbvd9G8Grpq0xc9vqpq 0xbba9q8WqFfeaY=biNkVc=He9pgeu0dXdar=Jir=JbbG8Fq0xfr=x frVcFf0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWHvbGbaK aadaWgaaWcbaGaam4DaaqabaGccaGGOaGaaCiUdiaacMcaaaa@399E@ le vecteur colonne dont les composantes sont U ^ w 1 ( θ ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFysPYR0xH8viFfea0dXdHaVhbvd9G8Grpq0xc9vqpq 0xbba9q8WqFfeaY=biNkVc=He9pgeu0dXdar=Jir=JbbG8Fq0xfr=x frVcFf0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWGvbGbaK aadaWgaaWcbaGaam4DaiaaigdaaeqaaOGaaiikaiaahI7acaGGPaGa aiilaiaaykW7aaa@3C90@ U ^ w 2 ( θ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFysPYR0xH8viFfea0dXdHaVhbvd9G8Grpq0xc9vqpq 0xbba9q8WqFfeaY=biNkVc=He9pgeu0dXdar=Jir=JbbG8Fq0xfr=x frVcFf0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWGvbGbaK aadaWgaaWcbaGaam4DaiaaikdaaeqaaOGaaiikaiaahI7acaGGPaaa aa@3A56@ et U ^ w 3 ( θ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFysPYR0xH8viFfea0dXdHaVhbvd9G8Grpq0xc9vqpq 0xbba9q8WqFfeaY=biNkVc=He9pgeu0dXdar=Jir=JbbG8Fq0xfr=x frVcFf0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWGvbGbaK aadaWgaaWcbaGaam4DaiaaiodaaeqaaOGaaiikaiaahI7acaGGPaaa aa@3A57@ , et similairement U ^ w i ( θ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFysPYR0xH8viFfea0dXdHaVhbvd9G8Grpq0xc9vqpq 0xbba9q8WqFfeaY=biNkVc=He9pgeu0dXdar=Jir=JbbG8Fq0xfr=x frVcFf0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWHvbGbaK aadaWgaaWcbaGaam4DaiaadMgaaeqaaOGaaiikaiaahI7acaGGPaaa aa@3A8C@ le vecteur colonne dont les composantes sont U ^ w 1 i ( θ ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFysPYR0xH8viFfea0dXdHaVhbvd9G8Grpq0xc9vqpq 0xbba9q8WqFfeaY=biNkVc=He9pgeu0dXdar=Jir=JbbG8Fq0xfr=x frVcFf0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWGvbGbaK aadaWgaaWcbaGaam4DaiaaigdacaWGPbaabeaakiaacIcacaWH4oGa aiykaiaacYcaaaa@3BF3@ U ^ w 2 i ( θ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFysPYR0xH8viFfea0dXdHaVhbvd9G8Grpq0xc9vqpq 0xbba9q8WqFfeaY=biNkVc=He9pgeu0dXdar=Jir=JbbG8Fq0xfr=x frVcFf0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWGvbGbaK aadaWgaaWcbaGaam4DaiaaikdacaWGPbaabeaakiaacIcacaWH4oGa aiykaaaa@3B44@ et U ^ w 3 i ( θ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFysPYR0xH8viFfea0dXdHaVhbvd9G8Grpq0xc9vqpq 0xbba9q8WqFfeaY=biNkVc=He9pgeu0dXdar=Jir=JbbG8Fq0xfr=x frVcFf0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWGvbGbaK aadaWgaaWcbaGaam4DaiaaiodacaWGPbaabeaakiaacIcacaWH4oGa aiykaaaa@3B45@ . Alors, l'estimateur de variance par linéarisation est donné par

v L ( θ ^ w ) = ( U ^ w ) 1 ( i s w i 2 U ^ w i U ^ w i T ) [ ( U ^ w ) 1 ] T ,        ( 3.20 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFysPYR0xH8viFfea0dXdHaVhbvd9G8Grpq0xc9vqpq 0xbba9q8WqFfeaY=biNkVc=He9pgeu0dXdar=Jir=JbbG8Fq0xfr=x frVcFf0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG2bWaaS baaSqaaiaadYeaaeqaaOWaaeWaaeaaceWH4oGbaKaadaWgaaWcbaGa am4DaaqabaaakiaawIcacaGLPaaacqGH9aqpdaqadaqaaiqahwfaga qcgaqbamaaBaaaleaacaWG3baabeaaaOGaayjkaiaawMcaamaaCaaa leqabaGaeyOeI0IaaGymaaaakmaabmaabaWaaabeaeaacaWG3bWaa0 baaSqaaiaadMgaaeaacaaIYaaaaaqaaiaadMgacqGHiiIZcaWGZbaa beqdcqGHris5aOGaaGPaVlqahwfagaqcamaaBaaaleaacaWG3bGaam yAaaqabaGcceWHvbGbaKaadaqhaaWcbaGaam4DaiaadMgaaeaacaWG ubaaaaGccaGLOaGaayzkaaGaaGPaVpaadmaabaWaaeWaaeaaceWHvb GbaKGbauaadaWgaaWcbaGaam4DaaqabaaakiaawIcacaGLPaaadaah aaWcbeqaaiabgkHiTiaaigdaaaaakiaawUfacaGLDbaadaahaaWcbe qaaiaadsfaaaGccaGGSaGaaCzcaiaaxMaadaqadaqaaabaaaaaaaaa peGaaG4maiaac6cacaaIYaGaaGimaaWdaiaawIcacaGLPaaaaaa@6465@

U ^ w i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFysPYR0xH8viFfea0dXdHaVhbvd9G8Grpq0xc9vqpq 0xbba9q8WqFfeaY=biNkVc=He9pgeu0dXdar=Jir=JbbG8Fq0xfr=x frVcFf0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWHvbGbaK aadaWgaaWcbaGaam4DaiaadMgaaeqaaaaa@37E5@ et U ^ w MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFysPYR0xH8viFfea0dXdHaVhbvd9G8Grpq0xc9vqpq 0xbba9q8WqFfeaY=biNkVc=He9pgeu0dXdar=Jir=JbbG8Fq0xfr=x frVcFf0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWHvbGbaK GbauaadaWgaaWcbaGaam4Daaqabaaaaa@3702@ désignent U ^ w i ( θ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFysPYR0xH8viFfea0dXdHaVhbvd9G8Grpq0xc9vqpq 0xbba9q8WqFfeaY=biNkVc=He9pgeu0dXdar=Jir=JbbG8Fq0xfr=x frVcFf0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWHvbGbaK aadaWgaaWcbaGaam4DaiaadMgaaeqaaOGaaiikaiaahI7acaGGPaaa aa@3A8C@ évalué à θ = θ ^ w MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFysPYR0xH8viFfea0dXdHaVhbvd9G8Grpq0xc9vqpq 0xbba9q8WqFfeaY=biNkVc=He9pgeu0dXdar=Jir=JbbG8Fq0xfr=x frVcFf0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWH4oGaey ypa0JabCiUdyaajaWaaSbaaSqaaiaadEhaaeqaaaaa@39A7@ , et la dérivée première U ^ w ( θ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFysPYR0xH8viFfea0dXdHaVhbvd9G8Grpq0xc9vqpq 0xbba9q8WqFfeaY=biNkVc=He9pgeu0dXdar=Jir=JbbG8Fq0xfr=x frVcFf0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaaceWHvbGbaK GbauaadaWgaaWcbaGaam4DaaqabaGccaGGOaGaaCiUdiaacMcaaaa@39A9@ évaluée à θ = θ ^ w MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFysPYR0xH8viFfea0dXdHaVhbvd9G8Grpq0xc9vqpq 0xbba9q8WqFfeaY=biNkVc=He9pgeu0dXdar=Jir=JbbG8Fq0xfr=x frVcFf0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWH4oGaey ypa0JabCiUdyaajaWaaSbaaSqaaiaadEhaaeqaaaaa@39A7@ , respectivement. Les propriétés de l'estimateur de variance (3.20) sont étudiées par simulation à la section 5.2.

Précédent | Suivant

Date de modification :