3 The problem with skewed populations

Pierre Lavallée and Sébastien Labelle-Blanchet

Previous | Next

As mentioned in the introduction, the application of the GWSM to business surveys can produce estimates with large variances. This lack of precision is due to the skewness of the population. We propose to illustrate the problem with a small example given in Figure 3.1.

We want to study the revenue y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyEaa aa@3A96@  of the population U B MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyvam aaCaaaleqabaGaamOqaaaaaaa@3B66@  of Figure 3.1 containing N B = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOtam aaCaaaleqabaGaamOqaaaakiabg2da9aaa@3C6F@  3 enterprises, where enterprise 1 contains M 1 B = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamytam aaDaaaleaacaaIXaaabaGaamOqaaaakiabg2da9aaa@3D29@  4 establishments, enterprise 2 contains M 2 B = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamytam aaDaaaleaacaaIYaaabaGaamOqaaaakiabg2da9aaa@3D2A@  4 establishments, and enterprise 3 contains M 3 B = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamytam aaDaaaleaacaaIZaaabaGaamOqaaaakiabg2da9aaa@3D2B@  3 establishments. As it can be observed from Figure 3.1, the revenue y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyEaa aa@3A96@  of the M B = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamytam aaCaaaleqabaGaamOqaaaakiabg2da9aaa@3C6E@  11 establishments can be considered as a skewed population.

For the survey, we build a frame U A MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyvam aaCaaaleqabaGaamyqaaaaaaa@3B65@  containing the M A = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamytam aaCaaaleqabaGaamyqaaaakiabg2da9aaa@3C6D@  11 establishments, and we decide to stratify the establishments according to three size strata: stratum h= MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiAai abg2da9aaa@3B8B@  1 contains the establishments with y750; MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyEai abgwMiZkaaiEdacaaI1aGaaGimaiaacUdaaaa@3F55@   h= MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiAai abg2da9aaa@3B8B@  2 contains those with 100y<750; MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaGymai aaicdacaaIWaGaeyizImQaamyEaiabgYda8iaaiEdacaaI1aGaaGim aiaacUdaaaa@4277@  and h= MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiAai abg2da9aaa@3B8B@  3 those with y<100 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyEai abgYda8iaaigdacaaIWaGaaGimaaaa@3DC9@  (in practice, such a stratification is not possible since the stratification variable y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyEaa aa@3A96@  is the same as the variable of interest, and instead, we would use some size variable x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiEaa aa@3A95@  highly correlated with the variable of interest y). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyEai aacMcacaGGUaaaaa@3BF5@  In stratum h= MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiAai abg2da9aaa@3B8B@  1, we use a sampling fraction of 1 (i.e., f 1 = m 1 A / M 1 A =1); MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOzam aaBaaaleaacaaIXaaabeaakiabg2da9maalyaabaGaamyBamaaDaaa leaacaaIXaaabaGaamyqaaaaaOqaaiaad2eadaqhaaWcbaGaaGymaa qaaiaadgeaaaaaaOGaeyypa0JaaGymaiaacMcacaGG7aaaaa@44F1@  for h= MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiAai abg2da9aaa@3B8B@  2, the sample size is 1 (i.e., f 2 = m 2 A / M 2 A =1/3); MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOzam aaBaaaleaacaaIYaaabeaakiabg2da9maalyaabaGaamyBamaaDaaa leaacaaIYaaabaGaamyqaaaaaOqaaiaad2eadaqhaaWcbaGaaGOmaa qaaiaadgeaaaaaaOGaeyypa0JaaGymaiaac+cacaaIZaGaaiykaiaa cUdaaaa@4664@  and for h= MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiAai abg2da9aaa@3B8B@  3, the sample size is 2 (i.e., f 3 = m 3 A / M 3 A =2/6=1/3). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOzam aaBaaaleaacaaIZaaabeaakiabg2da9maalyaabaGaamyBamaaDaaa leaacaaIZaaabaGaamyqaaaaaOqaaiaad2eadaqhaaWcbaGaaG4maa qaaiaadgeaaaaaaOGaeyypa0JaaGOmaiaac+cacaaI2aGaeyypa0Ja aGymaiaac+cacaaIZaGaaiykaiaac6caaaa@498F@

There are 1×3×15=45 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaGymai abgEna0kaaiodacqGHxdaTcaaIXaGaaGynaiabg2da9iaaisdacaaI 1aaaaa@433B@  possible samples s A MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4Cam aaCaaaleqabaGaamyqaaaaaaa@3B83@  that can be selected from U A , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyvam aaCaaaleqabaGaamyqaaaakiaacYcaaaa@3C1F@  for estimating the true total Y= MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamywai abg2da9aaa@3B7C@  3,800. For each of these 45 samples, we computed Y ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmyway aajaaaaa@3A86@  using (2.1). The estimates are presented in the left box plot of Figure 3.2.

Figure 3.1 Small example

Data table for Figure 3.1

We also computed estimates of Y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamywaa aa@3A76@  assuming the use of stratified SRSWoR without Indirect Sampling. That is, in each stratum h, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamiAai aacYcaaaa@3B35@  we select a sample s h A MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4Cam aaDaaaleaacaWGObaabaGaamyqaaaaaaa@3C70@  of m h A MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyBam aaDaaaleaacaWGObaabaGaamyqaaaaaaa@3C6A@  establishments using SRSWoR and we measure only the variable of interest y ik MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyEam aaBaaaleaacaWGPbGaam4Aaaqabaaaaa@3CA0@  for the establishments ik MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyAai aadUgaaaa@3B76@  of U B MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyvam aaCaaaleqabaGaamOqaaaaaaa@3B66@  directly linked to the sampled establishments j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOAaa aa@3A87@  of U A . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyvam aaCaaaleqabaGaamyqaaaakiaac6caaaa@3C21@  Thus, we measure the variable of interest y j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyEam aaBaaaleaacaWGQbaabeaaaaa@3BB1@  for the sampled establishments j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOAaa aa@3A87@  of U A . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyvam aaCaaaleqabaGaamyqaaaakiaac6caaaa@3C21@  Unlike Indirect Sampling, we do not measure the variables of interest of the other establishments of the enterprises containing the initially sampled establishments. This corresponds to the classical sampling theory. Thus, we estimated Y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamywaa aa@3A76@  using

Y ^ classic = h=1 H M h A m h A j=1 m h A y hj . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaqaaeaace WGzbGbaKaaaeaadaWgaaWcbaGaae4yaiaabYgacaqGHbGaae4Caiaa bohacaqGPbGaae4yaaqabaGccaWG9aaabaGaamiiaaaadaaeWbqaam aalaaabaGaamytamaaDaaaleaacaWGObaabaGaamyqaaaaaOqaaiaa d2gadaqhaaWcbaGaamiAaaqaaiaadgeaaaaaaOWaaabCaeaacaWG5b WaaSbaaSqaaiaadIgacaWGQbaabeaaaeaacaWGQbGaeyypa0JaaGym aaqaaiaad2gadaqhaaadbaGaamiAaaqaaiaadgeaaaaaniabggHiLd aaleaacaWGObGaeyypa0JaaGymaaqaaiaadIeaa0GaeyyeIuoakiaa c6caaaa@597E@ (3.1)

It can be proved that estimator (3.1) is unbiased, and its variance is given by

Var( Y ^ classic )= h=1 H M h A ( M h A m h A m h A ) S y,h 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaaeOvai aabggacaqGYbGaaiikaiqadMfagaqcamaaBaaaleaacaqGJbGaaeiB aiaabggacaqGZbGaae4CaiaabMgacaqGJbaabeaakiaacMcacqGH9a qpdaaeWbqaaiaad2eadaqhaaWcbaGaamiAaaqaaiaadgeaaaGcdaqa daqaamaalaaabaGaamytamaaDaaaleaacaWGObaabaGaamyqaaaaki abgkHiTiaad2gadaqhaaWcbaGaamiAaaqaaiaadgeaaaaakeaacaWG TbWaa0baaSqaaiaadIgaaeaacaWGbbaaaaaaaOGaayjkaiaawMcaai aadofadaqhaaWcbaGaamyEaiaacYcacaWGObaabaGaaGOmaaaaaeaa caWGObGaeyypa0JaaGymaaqaaiaadIeaa0GaeyyeIuoaaaa@5E07@ (3.2)

where S y,h 2 = j=1 M h A ( y hj Y ¯ h ) 2 / ( M h A 1) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaam4uam aaDaaaleaacaWG5bGaaiilaiaadIgaaeaacaaIYaaaaOGaeyypa0Za aSGbaeaadaaeWbqaamaabmaabaGaamyEamaaBaaaleaacaWGObGaam OAaaqabaGccqGHsislceWGzbGbaebadaWgaaWcbaGaamiAaaqabaaa kiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaaabaGaamOAaiabg2 da9iaaigdaaeaacaWGnbWaa0baaWqaaiaadIgaaeaacaWGbbaaaaqd cqGHris5aaGcbaGaaiikaiaad2eadaqhaaWcbaGaamiAaaqaaiaadg eaaaGccqGHsislcaaIXaGaaiykaaaaaaa@5503@  and Y ¯ h = j=1 M h A y hj / M h A . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmyway aaraWaaSbaaSqaaiaadIgaaeqaaOGaeyypa0ZaaSGbaeaadaaeWbqa aiaadMhadaWgaaWcbaGaamiAaiaadQgaaeqaaaqaaiaadQgacqGH9a qpcaaIXaaabaGaamytamaaDaaameaacaWGObaabaGaamyqaaaaa0Ga eyyeIuoaaOqaaiaad2eadaqhaaWcbaGaamiAaaqaaiaadgeaaaaaaO GaaiOlaaaa@4AE4@  The estimates are presented in the right box plot of Figure 3.2.

Figure 3.2 Summary of the 45 possible estimates

Data table for Figure 3.2

As we can see from Figure 3.2, the estimates obtained from Indirect Sampling (and the GWSM) are quite variable from one sample to the next. If we do not use Indirect Sampling (i.e., we use the classical approach), the variability is much less. This result can be seen directly from the variances of Y ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmyway aajaaaaa@3A86@  and Y ^ classic . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGabmyway aajaWaaSbaaSqaaiaabogacaqGSbGaaeyyaiaabohacaqGZbGaaeyA aiaabogaaeqaaOGaaiOlaaaa@41E5@  Using formulas (2.7) and (3.2), we obtain the variance V( Y ^ classic )= MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOvai aacIcaceWGzbGbaKaadaWgaaWcbaGaae4yaiaabYgacaqGHbGaae4C aiaabohacaqGPbGaae4yaaqabaGccaGGPaGaeyypa0daaa@446D@  80,480, while V( Y ^ )= MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9LqFf0x e9q8qqvqFr0dXdHiVc=bYP0xb9sq=fFfeu0RXxb9qr0dd9q8qi0lf9 Fve9Fve9vapdbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOvai aacIcaceWGzbGbaKaacaGGPaGaeyypa0daaa@3DC0@  1,115,111!

The next section presents methods designed to reduce the variability of the estimates produced using Indirect Sampling.

Previous | Next

Date modified: