Filtrer les résultats par

Aide à la recherche
Currently selected filters that can be removed

Mot(s)-clé(s)

Année de publication

1 facets displayed. 0 facets selected.

Contenu

1 facets displayed. 0 facets selected.
Aide à l'ordre
entrées

Résultats

Tout (1)

Tout (1) ((1 résultat))

  • Articles et rapports : 12-001-X202200200009
    Description :

    L’imputation multiple est une approche populaire pour traiter les données manquantes découlant de la non-réponse dans les enquêtes-échantillons. L’imputation multiple au moyen d’équations en séries (MICE) est l’un des algorithmes d’imputation multiple les plus utilisés pour les données multivariées, mais son fondement théorique est insuffisant et elle exige beaucoup de calculs. Récemment, des méthodes d’imputation des données manquantes fondées sur des modèles d’apprentissage profond ont été élaborées, ce qui a donné des résultats encourageants dans de petites études. Cependant, peu de recherches ont été menées sur l’évaluation de leur rendement dans des contextes réalistes par rapport à la MICE, en particulier dans le cadre de grandes enquêtes. Nous menons de vastes études de simulation fondées sur un sous-échantillon de l’American Community Survey afin de comparer les propriétés d’échantillonnage répété de quatre méthodes d’apprentissage automatique fondées sur l’imputation multiple : MICE avec arbres de classification; MICE avec forêts aléatoires; réseaux antagonistes génératifs pour l’imputation; et imputation multiple à l’aide d’autoencodeurs débruiteurs. Nous constatons que les méthodes d’imputation fondées sur des modèles d’apprentissage profond sont plus efficaces que la MICE en ce qui a trait au temps de calcul. Cependant, étant donné le choix par défaut des hyperparamètres dans les progiciels communs, la MICE avec arbres de classification dépasse constamment, souvent de loin, les méthodes d’imputation fondées sur l’apprentissage profond quant au biais, à l’erreur quadratique moyenne et à la couverture dans une gamme de paramètres réalistes.

    Date de diffusion : 2022-12-15
Stats en bref (0)

Stats en bref (0) (0 résultat)

Aucun contenu disponible actuellement

Articles et rapports (1)

Articles et rapports (1) ((1 résultat))

  • Articles et rapports : 12-001-X202200200009
    Description :

    L’imputation multiple est une approche populaire pour traiter les données manquantes découlant de la non-réponse dans les enquêtes-échantillons. L’imputation multiple au moyen d’équations en séries (MICE) est l’un des algorithmes d’imputation multiple les plus utilisés pour les données multivariées, mais son fondement théorique est insuffisant et elle exige beaucoup de calculs. Récemment, des méthodes d’imputation des données manquantes fondées sur des modèles d’apprentissage profond ont été élaborées, ce qui a donné des résultats encourageants dans de petites études. Cependant, peu de recherches ont été menées sur l’évaluation de leur rendement dans des contextes réalistes par rapport à la MICE, en particulier dans le cadre de grandes enquêtes. Nous menons de vastes études de simulation fondées sur un sous-échantillon de l’American Community Survey afin de comparer les propriétés d’échantillonnage répété de quatre méthodes d’apprentissage automatique fondées sur l’imputation multiple : MICE avec arbres de classification; MICE avec forêts aléatoires; réseaux antagonistes génératifs pour l’imputation; et imputation multiple à l’aide d’autoencodeurs débruiteurs. Nous constatons que les méthodes d’imputation fondées sur des modèles d’apprentissage profond sont plus efficaces que la MICE en ce qui a trait au temps de calcul. Cependant, étant donné le choix par défaut des hyperparamètres dans les progiciels communs, la MICE avec arbres de classification dépasse constamment, souvent de loin, les méthodes d’imputation fondées sur l’apprentissage profond quant au biais, à l’erreur quadratique moyenne et à la couverture dans une gamme de paramètres réalistes.

    Date de diffusion : 2022-12-15
Revues et périodiques (0)

Revues et périodiques (0) (0 résultat)

Aucun contenu disponible actuellement

Date de modification :