Filtrer les résultats par

Aide à la recherche
Currently selected filters that can be removed

Mot(s)-clé(s)

Année de publication

1 facets displayed. 0 facets selected.
Aide à l'ordre
entrées

Résultats

Tout (1)

Tout (1) ((1 résultat))

  • Articles et rapports : 12-001-X201700254871
    Description :

    L’article aborde la question de savoir comment utiliser des sources de données de rechange, telles que les données administratives et les données des médias sociaux, pour produire les statistiques officielles. Puisque la plupart des enquêtes réalisées par les instituts nationaux de statistique sont répétées au cours du temps, nous proposons une approche de modélisation de séries chronologiques structurelle multivariée en vue de modéliser les séries observées au moyen d’une enquête répétée avec les séries correspondantes obtenues à partir de ces sources de données de rechange. En général, cette approche améliore la précision des estimations directes issues de l’enquête grâce à l’utilisation de données d’enquête observées aux périodes précédentes et de données provenant de séries auxiliaires connexes. Ce modèle permet aussi de profiter de la plus grande fréquence des données des médias sociaux pour produire des estimations plus précises en temps réel pour l’enquête par sondage, au moment où les statistiques pour les médias sociaux deviennent disponibles alors que les données d’enquête ne le sont pas encore. Le recours au concept de cointégration permet d’examiner dans quelle mesure la série de rechange représente les mêmes phénomènes que la série observée au moyen de l’enquête répétée. La méthodologie est appliquée à l’Enquête sur la confiance des consommateurs des Pays-Bas et à un indice de sentiments dérivé des médias sociaux.

    Date de diffusion : 2017-12-21
Stats en bref (0)

Stats en bref (0) (0 résultat)

Aucun contenu disponible actuellement

Articles et rapports (1)

Articles et rapports (1) ((1 résultat))

  • Articles et rapports : 12-001-X201700254871
    Description :

    L’article aborde la question de savoir comment utiliser des sources de données de rechange, telles que les données administratives et les données des médias sociaux, pour produire les statistiques officielles. Puisque la plupart des enquêtes réalisées par les instituts nationaux de statistique sont répétées au cours du temps, nous proposons une approche de modélisation de séries chronologiques structurelle multivariée en vue de modéliser les séries observées au moyen d’une enquête répétée avec les séries correspondantes obtenues à partir de ces sources de données de rechange. En général, cette approche améliore la précision des estimations directes issues de l’enquête grâce à l’utilisation de données d’enquête observées aux périodes précédentes et de données provenant de séries auxiliaires connexes. Ce modèle permet aussi de profiter de la plus grande fréquence des données des médias sociaux pour produire des estimations plus précises en temps réel pour l’enquête par sondage, au moment où les statistiques pour les médias sociaux deviennent disponibles alors que les données d’enquête ne le sont pas encore. Le recours au concept de cointégration permet d’examiner dans quelle mesure la série de rechange représente les mêmes phénomènes que la série observée au moyen de l’enquête répétée. La méthodologie est appliquée à l’Enquête sur la confiance des consommateurs des Pays-Bas et à un indice de sentiments dérivé des médias sociaux.

    Date de diffusion : 2017-12-21
Revues et périodiques (0)

Revues et périodiques (0) (0 résultat)

Aucun contenu disponible actuellement

Date de modification :