La table de mortalité permet le calcul de l’espérance de vie à la naissance et à différents âges, mais aussi de plusieurs autres indicateurs : probabilités de décès, probabilités de survie entre deux âges, nombre d’années vécues ainsi que le nombre de survivants à différents âges. Son élaboration permet de synthétiser la mortalité soit au sein d’une population à un moment donné (table du moment), soit au sein d’une génération (table de génération). Dans ce contexte, la table de mortalité répond à plusieurs besoins statistiques, notamment dans les domaines de la santé, de l’épidémiologie et de l’actuariat, et permet d’établir des comparaisons entre les régions ou les générations.
Depuis 1939, Statistique Canada publie des tables complètes (par années d’âge) et abrégées (par groupes d’âge de cinq ans) de mortalité pour le Canada, les provinces et les territoires. La méthodologie sur laquelle repose la construction de ces tables du moment a été revue à quelques reprises, souvent afin d’exploiter des avancées dans le domaine des études de la mortalité. La méthodologie décrite dans ce document a fait l’objet d’une révision majeure en 2013 afin de tenir compte des méthodes les plus récentes dans la construction de tables de mortalité. Cette révision a également été l’occasion de tenir compte des travaux entrepris dans le cadre de la mise sur pied de la Human Mortality Database (HMD)Note , une base de données qui vise notamment à faciliter la comparaison de données sur la mortalité pour un grand nombre de pays et de régions, dont le CanadaNote . Bien que des différences subsistent entre les deux méthodes, une cohérence accrue entre la méthodologie utilisée par Statistique Canada et celle de la HMD présente de nombreux avantages, en particulier dans le domaine de l’analyse et des projections démographiques.
En 2022, Statistique Canada a publié pour la première fois des tables de mortalité sur un an pour les régions ayant une population suffisamment élevée (toutes les provinces sauf l'Île-du-Prince-Édouard), en plus de celles basées sur des estimations sur trois ans publiées traditionnellement. Ces tables peuvent être utiles pour l'analyse granulaire des variations temporelles et pour mettre en évidence les tendances les plus récentes. Toutefois, pour les comparaisons entre régions ou pour l'analyse des tendances de la mortalité à long terme, il est recommandé d'utiliser des tables de mortalité sur trois ans, surtout pour les provinces relativement peu peuplées. Par rapport aux tables de mortalité sur un an, les tables de mortalité sur trois ans fournissent des estimations plus robustes et plus stables des indicateurs de mortalité et leur production requiert moins d'imputation (en particulier aux jeunes âges où le nombre de décès est souvent faible).
Le présent document méthodologique est divisé en trois parties : dans la première, une présentation des sources de données et des étapes de la construction des tables complètes de mortalité est proposée. Des tables complètes sont calculées pour le Canada et toutes les provinces, à l’exception de l’Île-du-Prince-Édouard. Les tables complètes de mortalité présentent l’avantage d’être plus détaillées que les tables abrégées, notamment aux âges avancés où, depuis plusieurs années déjà, la baisse de la mortalité se concentre.
On retrouve, en deuxième partie, les sources de données et les étapes de la construction des tables abrégées de mortalité utilisées pour l’Île-du-Prince-Édouard, le Yukon, les Territoires du Nord-Ouest ainsi que le Nunavut. Le recours à des tables abrégées est nécessaire lorsque l’effectif de population ou le nombre de décès est trop faible pour permettre le calcul de tables complètes avec une précision satisfaisante.
Enfin, notons que, par souci de simplicité, ce document décrit la méthode de production des tables de mortalité sur trois ans, où les estimations sont effectuées pour une période de trois années de calendrier (α-1, α, α+1). La conversion à des tables de mortalité sur un an, où la période de référence ne comprend que l'année de calendrier α, est cependant fort simple.
Méthodologie des tables complètes de mortalité
Selon la méthodologie révisée des tables complètes de mortalité de Statistique Canada, la construction de ces tables se fait en sept étapes :
Étape 1 : calcul des taux de mortalité observés de 5 à 109 ans et pour le groupe d’âge ouvert de 110 ans et plus; Étape 2 : modélisation des taux de mortalité de 95 à 109 ans et pour le groupe d’âge ouvert de 110 ans et plus; Étape 3 : calcul des quotients de mortalité de 5 ans jusqu'au groupe d'âge ouvert de 110 ans et plus; Étape 4 : calcul des quotients de mortalité de 0 à 4 ans; Étape 5 : lissage des quotients de mortalité de 1 à 94 ans; Étape 6 : calcul des éléments de la table de mortalité; Étape 7 : calcul des marges d’erreur des quotients de mortalité et de l’espérance de vie.
Données de base
Deux sources de données sont utilisées dans la construction des tables complètes de mortalité : l’État civil et le Programme des estimations démographiques de Statistique Canada.
Plus précisément, pour un sexe et une région donnée, les quatre jeux de données de base suivants sont requis pour le calcul d’une table complète de mortalité pour une période allant de l’année de calendrier α-1 à l’année α+1 :
Le nombre de décès observés selon l’année d’âge (de 5 à 109 ans et pour le groupe d’âge ouvert de 110 ans et plus) pour les années de calendrier (du 1er janvier au 31 décembre) α-1, α et α+1 (source : État civil);
Le nombre de décès observés selon l’année d’âge (de 0 à 4 ans) et selon l’année de naissance pour les années de calendrier α-1, α et α+1 (source : État civil);
La population estimée au 1er juillet selon l’âge (de 5 à 110 ans) pour les années de calendrier α-1, α et α+1 (source : Programme des estimations démographiques);Note
La population estimée au 1er janvier selon l’âge (de 0 à 4 ans) pour les années de calendrier α-1, α, α+1 et α+2
(source : Programme des estimations démographiques).
En général, la qualité des données de base sur les décès par âge et sexe de l’État civil canadien est jugée très bonne (Bourbeau et Lebel, 2000), même entre 80 et 100 ans (Beaudry-Godin, 2010). On compte chaque année très peu de décès dont l’âge ou le sexe est inconnu; le cas échéant, ces derniers sont redistribués selon la structure connue des décès observés par âge et sexe. On compte également peu d’enregistrements tardifs de décès au Canada.
De même, les estimations de la population de Statistique Canada sont de très bonne qualité. Ces estimations, utilisées notamment dans le cadre de la Loi sur les arrangements fiscaux entre le gouvernement fédéral et les provinces, reposent sur le dernier recensement disponible, et sont ajustées pour tenir compte du sous-dénombrement net du recensement et tiennent compte des événements démographiques, selon l’âge et le sexe, depuis ce dernier recensement. Habituellement, les estimations postcensitaires de la population sont utilisées pour élaborer les tables de mortalité en temps opportun.
L’estimation de la mortalité à partir de 100 ans présente un certain défi, les effectifs de la population et le nombre de décès observés étant plus faibles et les enregistrements davantage soumis à des erreurs de déclaration. Le recours à un modèle logistique permet cependant d’obtenir une série cohérente de taux de mortalité aux grands âges puisque cette série est modélisée.
Étape 1 : calcul des taux de mortalité observés de 5 à 109 ans et pour le groupe d’âge ouvert de 110 ans et plus
Pour chaque année d’âge x comprise entre 5 ans et le groupe d'âge ouvert de 110 ans et plus, le taux de mortalité observé est obtenu en rapportant la somme des décès ayant eu lieu au cours de la période de trois ans à la somme des populations estimées au milieu de chacune des années de la période. Cette procédure permet une meilleure estimation de la population moyenne à risque de décéder au cours de la période (au dénominateur) comparativement à ne considérer que la population en milieu de la période de trois ans.
Plus précisément :
où
est le taux de mortalité observé entre les âges x et x+n (dans le cas des tables complètes, n = 1);
est la somme des décès entre les âges x et x+n pour les années de calendrier α-1, α et α+1 de la période de référence, et;
est la somme des effectifs de population estimés au 1er juillet entre les âges x et x+n pour les années de calendrier α-1, α et α+1 de la période de référence.
Dans le cas où, pour un âge donné, aucun décès n’est observé au cours de la période de référence, un taux de mortalité est imputé sur la base d’une approche géographique selon le tableau 1.
Tableau 1
Régions associées aux différentes provinces, pour imputation Sommaire du tableau
Le tableau montre les résultats de Régions associées aux différentes provinces. Les données sont présentées selon Province (titres de rangée) et Région associée pour imputation(figurant comme en-tête de colonne).
Si, pour les provinces de l’Atlantique et des Prairies, aucun décès n’est observé (une situation rare, surtout dans les tables sur trois années), le taux de l’ensemble du Canada est imputé.
Source : Statistique Canada, Centre de démographie.
Étape 2 : modélisation des taux de mortalité de 95 à 109 ans et pour le groupe d’âge ouvert de 110 ans et plus
De 95 ans jusqu’au groupe d’âge ouvert de 110 ans et plus, les taux de mortalité calculés à l’étape 1 peuvent présenter des fluctuations importantes en raison du petit nombre de décès et de personnes soumises au risque de décéder. À certains âges très avancés, souvent au-delà de 105 ans, le calcul du taux est parfois même impossible en raison d’une absence de décès et/ou de personnes soumises au risque de décéder, une situation fréquente pour des populations de faible taille.
Dans ce contexte, il est préférable de recourir à un modèle d’estimation des taux de mortalité aux grands âges, qui mène à la fois à une meilleure représentation des conditions de mortalité et à la construction d’une série complète de taux jusqu’au groupe d’âge ouvert de 110 ans et plus. Un modèle logistique simplifié issu des travaux de Kannisto (1992) est utiliséNote . Ce modèle est ajusté par la méthode du maximum de vraisemblance et présente une asymptote supérieure égale à un.
Le modèle prend la forme suivante :
où
est la force de mortalité (le taux de mortalité instantané) à l’âge x, et;
et
sont des paramètres à estimer.
Le paramètre
correspond approximativement au niveau de base de la mortalité à 0 an et
représente le rythme d’accroissement (logistique) de la mortalité d’un âge à l’autre. Les paramètres
et
sont supposés positifs, c’est-à-dire que cette contrainte est imposée lors de l’estimation du modèle. Le modèle est estimé à l’aide de la procédure NLIN du logiciel statistique SAS et la méthode d’optimisation retenue est celle de Newton (SAS Institute Inc., 2008A). Le taux de mortalité modélisé entre l’âge x et x+n correspond à :
Afin de s’assurer que le modèle logistique s’ajuste bien aux données observées aux grands âges, au moins 15 taux de mortalité observés entre 80 ans et le groupe d’âge ouvert de 110 ans et plus, obtenus à l’étape 1 doivent être calculables (et non imputés) pour l’estimation du modèle.
Étape 3 : calcul des quotients de mortalité de 5 ans jusqu'au groupe d'âge ouvert de 110 ans et plus
Les étapes 1 et 2 permettent d’obtenir une série de taux de mortalité de 5 à 110 ans. Ces taux de mortalité sont ensuite convertis en quotients de mortalité par la méthode dite actuarielle :
où
est le quotient de mortalité entre les âges x et x+n, soit la probabilité qu’un individu d’âge x décède avant d’avoir atteint l’âge x+n;
n
est l’intervalle d’âge (dans le cas des tables complètes de mortalité, n=1), et;
est le taux observé (
) de mortalité entre les âges x et x+n pour x compris entre 5 et 94 ans ou modélisé (
) pour x compris entre 95 et 110 ans.
Pour le groupe d’âge ouvert de 110 ans et plus, le quotient de mortalité prend la valeur d'un.
Étape 4 : calcul des quotients de mortalité entre 0 et 4 ans
Entre 0 et 4 ans, les quotients de mortalité sont directement estimés puisque la mortalité à ces âges présente un profil particulier. Par exemple, entre 0 et 1 an, les décès ne se répartissent pas de façon uniforme sur l’année mais sont plutôt concentrés autour des premiers jours de la vie.
Schématiquement, et pour une année donnée
, le calcul du quotient de mortalité à 0 an (
), aussi appelé taux de mortalité infantile, repose sur le complément à l’unité d’un produit de deux rapports, le premier représentant la probabilité qu’une personne d’âge x exact survive jusqu’à la fin de l’année civile au cours de laquelle elle a atteint l’âge x, et le deuxième représentant la probabilité qu’une personne vivante à la fin de l’année civile au cours de laquelle elle a atteint l’âge x survive jusqu’à l’âge exact de x+1.
Ainsi, selon le diagramme de Lexis (figure 1) :
Figure 1
Diagramme de Lexis
Description de la figure 1
Ce diagramme de Lexis présente l'âge sur l'axe vertical et les années de calendrier sur l'axe horizontal. On y distingue les décès durant l'année x, pour les personnes nées durant l'année x, ainsi que les décès durant l'année x, pour les personnes nées durant l'année x-1. On y montre également la population d'âge 0 au 1er janvier de l'année x, et au 1er janvier de l'année x+1. On y montre enfin la population d'âge exact 0 et 1 an.
La valeur
est obtenue en additionnant à la population d’âge 0 au 1er janvier de l’année
(valeur
à la figure 1) le nombre de décès survenus à 0 an durant l’année
, parmi les enfants nés durant l’année
(
). La valeur
est obtenue en soustrayant à la population d’âge 0 au 1er janvier de l’année
(
) le nombre de décès survenus à 0 an durant l’année
, parmi les enfants nés durant l’année précédente (
).
Par transposition et en utilisant trois années pour les calculs :
où
est le quotient de mortalité à 0 an;
est la somme des effectifs de population d’âge 0 estimés au 1er janvier des années
,
et
, soit les deux dernières années de la période de référence et l’année suivant celle-ci;
est la somme des décès d’âge 0 au cours de la période de référence, pour les enfants nés la même année que celle de leur décès;
est la somme des effectifs de population d’âge 0 estimés au 1er janvier au cours de la période de référence, et;
est la somme des décès d’âge 0 au cours de la période de référence, pour les enfants nés l’année précédant celle de leur décès.
De 1 à 4 ans, une équation suivant le même principe est utilisée :
Dans le cas où, pour un âge donné compris entre 1 et 4 ans, aucun décès n’est observé au cours de la période de référence, un quotient de mortalité sera interpolé à cet âge lors du lissage des quotients de mortalité à l’étape 5.
Étape 5 : lissage des quotients de mortalité de 1 à 94 ans
Les étapes 3 et 4 ont permis la constitution d’une série complète de quotients de mortalité de 0 à 110 ans. Entre 1 et 94 ans, ces quotients peuvent toutefois présenter une évolution irrégulière, particulièrement pour les régions dont les effectifs de population sont faibles. Afin d’assurer une évolution cohérente des quotients de mortalité d’un âge à l’autre et d’estimer, le cas échéant, les quotients manquants entre 1 et 4 ans, un lissage est appliqué au moyen de B-splines. Ce lissage est appliqué aux quotients de mortalité de 0 à 109 ans, ceci afin d’assurer une liaison harmonieuse entre le lissage par les B-splines et le modèle d’estimation de la mortalité aux grands âges (étape 2)Note .
La technique de lissage des B-splines présente l’avantage d’être souple, c'est-à-dire d’offrir à l’utilisateur plusieurs options lui permettant d’ajuster au mieux les données observées. En effet, les B-splines, tout comme les splines en général, étant construits à partir de morceaux de polynômes joints les uns aux autres, il convient de choisir les divers points d’abscisse – ou nœuds – où se produisent ces jonctions. Plus le nombre de nœuds est élevé, plus la courbe lissée épouse précisément la courbe d’origine des quotients de mortalité par âge; à l’inverse, un faible nombre de nœuds donne plus d’importance au lissage. Dans ce cas, les fluctuations d'un âge à l'autre sont effacées au profit d’une courbe à l’allure plus régulière.
Il existe des algorithmes permettant de déterminer à la fois le nombre optimal de nœuds à utiliser et leur position sur l’échelle des âges dans le cadre de la construction de tables de mortalité (Kaishev et al., 2009). De tels algorithmes sont toutefois complexes à utiliser. Pour ces tables complètes, le nombre et la position des nœuds ont plutôt été déterminés de façon empirique, au terme d’une série de tests ayant permis d’évaluer à la fois la neutralité et l’ajustement du lissage retenuNote . En effet, la méthode de lissage employée doit avoir le plus faible effet possible sur l’espérance de vie à différents âges générée. De plus, chaque série de quotients lissés est comparée aux séries de quotients non lissés afin de vérifier la qualité de l’ajustement.
Deux séries de nœuds sont utilisées, selon la taille de la population pour laquelle une table complète de mortalité est produite. La première série comporte 11 nœuds, placés aux âges suivants : 0, 1, 9, 15, 18, 24, 30, 35, 40, 50 et 90 ans,Note pour tenir compte de l’évolution récente de la mortalité entre 30 et 50 ans, avec deux âges pivots additionnels, soit à 35 et 40 ans. De 50 à 94 ans, le nombre et l’emplacement des nœuds sont de moindre importance qu’aux âges plus jeunes, la trajectoire de la mortalité étant pour l’essentiel linéaire. Avant l’âge de 50 ans, les nœuds choisis correspondent souvent à des points d’inflexion de la courbe classique des quotients de mortalité, assurant une trajectoire similaire des quotients d’une région à l’autre tout en gardant suffisamment de souplesse pour bien saisir les variations périodiques et régionales de la mortalité. La série de 11 nœuds est systématiquement utilisée pour le Canada, le Québec, l’Ontario, le Manitoba, la Saskatchewan, l’Alberta et la Colombie-Britannique.
La deuxième série comporte 7 nœuds, placés aux âges suivants : 0, 9, 18, 24, 30, 50 et 90 ans. Le lissage est donc plus « prononcé » que dans la première série de nœuds et est utilisé pour les provinces présentant des populations de plus petites tailles. Cette série est utilisée pour Terre-Neuve-et-Labrador, la Nouvelle-Écosse et le Nouveau-Brunswick.
Le lissage par les B-splines des quotients de mortalité entre 1 et 94 ans des présentes tables complètes de mortalité a été effectué à l’aide de la procédure TRANSREG du logiciel statistique SAS (SAS Institute Inc., 2008B).
Étape 6 : calcul des éléments de la table de mortalité
La constitution d’une série lissée de quotients de mortalité entre 0 et 110 ans permet de calculer tous les éléments de la table de mortalité à partir d’une cohorte fictive de 100 000 nouveau-nés, selon les équations suivantes :
Nombre de survivants à l’âge 0 exact, aussi appelé la racine de la table (
) :
= 100 000 nouveau-nés
Nombre de décès entre les âges x et x+n (
) :
Nombre de survivants à l’âge x exact (
) :
Probabilité de survie entre les âges x et x+n (
) :
Nombre d’années vécues entre les âges x et x+n (population stationnaire) (
) :
pour x allant de 0 à 109 ans
où, pour les tables complètes de mortalité :
(facteur de séparation) =
Si, dans le calcul du
pour x compris entre 0 et 4 ans, le numérateur ou le dénominateur est égal à zéro, une valeur de
est imputée sur la base d’une approche géographique comme celle utilisée à l’étape 1.
pour le groupe d’âge ouvert de 110 ans et plus où
Nombre total d’années vécues cumulées à partir de l’âge x (population stationnaire cumulée) (
) :
Espérance de vie entre 0 et 109 ans (
) :
Étape 7 : calcul des marges d’erreur des quotients de mortalité et de l’espérance de vie
Statistique Canada diffuse les coefficients de variation associés aux quotients de mortalité et aux espérances de vie de la table de mortalité. Cet indicateur de qualité donne au lecteur une idée de la variabilité de l’estimation, qui dépend en grande partie du nombre de décès sur lequel elle repose.
L’indicateur de qualité retenu ici est la marge d’erreur, qui permet de calculer directement les intervalles de confiance à 95 % autour d’une estimation. On calcule la marge d’erreur (m.e.) des quotients de mortalité à l’âge x de la façon suivante :
où l’écart-type (e.t.) de
est donné par :
et la variance de
est obtenue selon la formule de Chiang (1984) :
où
sont les décès entre l’âge x et x+n estimés dans la population à partir des taux de mortalité lissés, eux-mêmes obtenus des quotients de mortalité lissés.
On calcule la marge d’erreur et l’écart-type des espérances de vie à l’âge x en utilisant les mêmes équations, à la différence près que, selon Chiang (1984), la variance est calculée dans ce cas-ci selon l’équation :
Par exemple, une marge d’erreur de 0,00020 sur un quotient de mortalité à 0 an dont la valeur est 0,00556 permet de construire un intervalle de confiance à 95 % ayant comme borne inférieure et supérieure 0,00536 et 0,00576. Cela signifie que le quotient de mortalité est précis à plus ou moins 0,00020 et ce, 19 fois sur 20. Dans de rares cas, soustraire la marge d'erreur au quotient de mortalité associé peut donner un résultat négatif. Dans ces cas, la valeur de la borne inférieure du quotient est exactement 0.
De la même manière, une marge d'erreur de 0,2 sur une espérance de vie à la naissance de 81,9 ans permet de construire un intervalle de confiance à 95 % ayant comme bornes inférieure et supérieure, 81,7 et 82,1 ans.
Méthodologie des tables abrégées de mortalité
Une table abrégée de mortalité est utilisée lorsque l’effectif de la population d’une région est trop faible pour établir de façon satisfaisante une table complète (par années d’âge), aucun décès n’étant souvent observé pour de nombreux âges, une situation fréquente entre 1 et 15 ans. Des tables abrégées sont produites pour l’Île-du-Prince-Édouard ainsi que pour le Yukon, les Territoires du Nord-Ouest et le Nunavut, séparément.
Ces tables abrégées sont construites selon la méthodologie décrite dans la présente section. Cette méthodologie reprend souvent celle utilisée dans les tables complètes, ceci afin d’assurer la plus grande cohérence possible entre les deux types de tables. Dans certains cas, comme pour le calcul du quotient de mortalité à l’âge 0, les deux méthodes sont identiques. Le recours au modèle d’estimation de la mortalité aux grands âges n’est cependant pas nécessaire, la table abrégée se terminant au groupe d’âge ouvert de 90 ans et plus. De plus, aucune méthode de lissage des quotients de mortalité n’est utilisée dans le cas des tables abrégées où on retrouve moins de fluctuations aléatoires. Par ailleurs, puisqu’il y a moins de fluctuations aléatoires, les quotients de mortalité des tables de mortalité abrégées ne sont pas lissés. Mais lorsque les effectifs de population ou de décès sont trop faibles, les taux de mortalité sont imputés de régions agrégées.
La construction des tables abrégées de mortalité se fait en 5 étapes :
Étape 1 : calcul des taux de mortalité observés pour les groupes d’âge de 1 à 4 ans, de 5 à 9 ans, de 10 à 14 ans, etc., jusqu’au groupe d’âge ouvert de 90 ans et plus; Étape 2 : calcul des quotients de mortalité pour les groupes d’âge de 1 à 4 ans, de 5 à 9 ans, de 10 à 14 ans, etc., jusqu’au groupe d’âge ouvert de 90 ans et plus; Étape 3 : calcul des quotients de mortalité à l’âge 0; Étape 4 : calcul des éléments de la table de mortalité; Étape 5 : calcul des marges d’erreur des quotients de mortalité et de l’espérance de vie.
Données de base
Les mêmes séries de données que celles des tables complètes de mortalité sont requises pour le calcul des tables abrégées.
Groupes d’âge
Les tables abrégées de mortalité sont produites en tenant compte de 20 groupes d’âge dont la notation est de forme x à x+n, tel qu’indiqué au tableau 2.
Tableau 2
Intervalles d’âge selon le groupe d’âge Sommaire du tableau
Le tableau montre les résultats de Intervalles d’âge selon le groupe d’âge. Les données sont présentées selon Groupe d’âge (titres de rangée) et Intervalle d’âge, calculées selon nombre unités de mesure (figurant comme en-tête de colonne).
Groupe d’âge
Intervalle d’âge
nombre
0 an
1
1 à 4 ans
4
5 à 9 ans jusqu’à 85 à 89 ans
5
90 ans et plus
Indéfini
Source : Statistique Canada, Centre de démographie.
Étape 1 : calcul des taux de mortalité observés pour le groupe d’âge de 1 à 4 ans jusqu’au groupe d’âge ouvert de 90 ans et plus
Pour le groupe d'âge de 1 à 4 ans, pour chaque groupe d'âge quinquennal x à x+(n-1) compris entre 5 et 89 ans ainsi que pour le groupe d’âge ouvert de 90 ans et plus, le taux observé de mortalité est obtenu en rapportant la somme des décès dans le groupe d’âge durant la période de trois ans (année de calendrier) à la somme des populations au 1er juillet dans le même groupe d’âge et pour la même période. La même formule que celle des tables complètes est utilisée, en l’adaptant pour tenir compte des groupes d’âge (voir étape 1 de la section portant sur les tables complètes de mortalité).
Dans le cas où, pour un groupe d’âge et un sexe donné, aucun décès n’est observé au cours de la période de référence, un taux observé de mortalité est imputé sur la base d’une approche géographique. Dans un premier temps, la région est considérée; pour l’Île-du-Prince-Édouard, le taux observé de mortalité imputé est celui de la région composée de l’ensemble des provinces de l’Atlantique. Pour le Yukon, les Territoires du Nord-Ouest et le Nunavut, la région de référence est l’ensemble des trois territoires. Cette procédure d’imputation est aussi appliquée aux taux de mortalité supérieurs à 49 ans lorsque, pour un groupe d’âge donné, l’effectif de population est inférieur à 50 ou le nombre de décès est inférieur à 10.
Si aucun décès n’est observé dans ces deux grandes régions, une situation très rare, le taux de mortalité observé pour l’ensemble du Canada est utilisé.
Étape 2 : calcul des quotients de mortalité pour le groupe d’âge de 1 à 4 ans jusqu’au groupe d’âge ouvert de 90 ans et plus
Les taux observés de mortalité obtenus à l’étape 1 sont convertis en quotients de mortalité par la méthode de Greville (1943). Cette méthode donne des résultats très similaires à la méthode actuarielle utilisée pour les tables complètes (Ng et Gentleman, 1995), tout en assurant que les quotients obtenus ne soient jamais supérieurs à l’unité.
Selon Greville,
où
est le quotient de mortalité entre les âges x et x+n;
est le taux observé de mortalité entre les âges x et x+n;
n
est l’étendue de l’intervalle du groupe d’âge, soit quatre ans dans le cas du groupe d'âge de 1 à 4 ans, et cinq ans pour tous les groupes d’âge suivants sauf pour le dernier groupe d'âge, et;
est obtenu par l’équation suivante :
Au sein du groupe d’âge ouvert de 90 ans et plus, le quotient de mortalité prend la valeur de 1.
Étape 3 : calcul des quotients de mortalité à l’âge 0
La méthode de calcul des quotients de mortalité à l'âge 0 est identique à celle utilisée pour les tables complètes.
Étape 4 : calcul des éléments de la table abrégée de mortalité
Les divers éléments de la table de mortalité sont obtenus de la même façon que pour les tables complètes, tout en ajustant les équations pour tenir compte des groupes d’âge (voir étape 6 de la section portant sur les tables complètes de mortalité).
Étape 5 : calcul des marges d’erreur des quotients de mortalité et de l’espérance de vie
Le calcul des marges d’erreur est effectué selon les mêmes équations que pour les tables complètes, tout en ajustant les équations pour tenir compte des groupes d’âge (voir étape 7 de la section portant sur les tables complètes de mortalité).
Renseignements supplémentaires
ISSN : 2818-3487
Note de reconnaissance
Le succès du système statistique du Canada repose sur un partenariat bien établi entre Statistique Canada et la population, les entreprises, les administrations canadiennes et les autres organismes. Sans cette collaboration et cette bonne volonté, il serait impossible de produire des statistiques précises et actuelles.
Normes de service à la clientèle
Statistique Canada s'engage à fournir à ses clients des services rapides, fiables et courtois. À cet égard, notre organisme s'est doté de normes de service à la clientèle qui doivent être observées par les employés lorsqu'ils offrent des services à la clientèle.
Droit d'auteur
Publication autorisée par le ministre responsable de Statistique Canada.