Figure 4
Coefficients significatifs de la régression linéaire et modélisation par équations structurelles entre l’indice de potentiel piétonnier, l’activité physique (APMV, APIL et nombre de pas) et l’indice de masse corporelle mesuré
Tableau de données de la figure 4
Coefficients significatifs de la régression linéaire et modélisation par équations structurelles entre l’indice de potentiel piétonnier, l’activité physique (APMV, APIL et nombre de pas) et l’indice de masse corporelle mesuré
Sommaire du tableau
Le tableau montre les résultats de Coefficients significatifs de la régression linéaire et modélisation par équations structurelles entre l’indice de potentiel piétonnier. Les données sont présentées selon Modèle (titres de rangée) et Groupe d’âge et Bêta (figurant comme en-tête de colonne).
Modèle
Groupe d’âge
Bêta
30 minutes d’APMV associées à l’indice de masse corporelle
5 à 11 ans
-0.53
40 à 59 ans
-1.64
60 à 79 ans
- 1.26
30 minutes d’APIL associées à l’indice de masse corporelle
40 à 59 ans
- 0.18
1 000 pas associés à l’indice de masse corporelle
40 à 59 ans
- 0.29
60 à 79 ans
- 0.22
Indice de potentiel piétonnier associé à l’indice de masse corporelle
18 à 39 ans
-0,29
40 à 59 ans
-0,28
Indice de potentiel piétonnier associé à l’APMV
12 à 17 ans
1,48
18 à 39 ans
1,62
40 à 59 ans
1,39
60 à 79 ans
0,94
Indice de potentiel piétonnier associé à l’APIL
12 à 17 ans
-3,50
18 à 39 ans
-1,86
Indice de potentiel piétonnier associé au nombre de pas
40 à 59 ans
110,00
Parcours entre le potentiel piétonnier, l’APMV et l’IMC
40 à 59 ans
- 0.06
60 à 79 ans
- 0.04
Parcours entre le potentiel piétonnier, le nombre de pas et l’IMC