Article

Blood pressure in Canadian children and adolescents

by Gilles Paradis, Mark S. Tremblay, Ian Janssen, Arnaud Chiolero and Tracey Bushnik

May 2010

Blood pressure in Canadian children and adolescents

by Gilles Paradis, Mark S. Tremblay, Ian Janssen, Arnaud Chiolero and Tracey Bushnik

Abstract

\section*{Background}

Because blood pressure (BP) tracks from childhood to adulthood, assessing levels in youth is relevant. There are no recent BP data for Canadian children and adolescents, and past studies have used a variety of design and measurement devices.

\section*{Data and methods}

With a clinically validated oscillometric device, resting BP was measured in 2,079 respondents aged 6 to 19 years from the Canadian Health Measures Survey. The average of the last five of six BP measures taken one minute apart at a single visit was used in this report. Borderline or elevated BP was defined as greater than or equal to the 90th percentile of US reference values for participants aged 6 to 17 years. Borderline or elevated BP for 18- to 19-year-olds was defined as equal to or greater than 120 systolic BP or equal to or greater than 80 diastolic BP. Participants of any age who reported taking antihypertensive medication in the past month were also defined as having elevated BP .

Results

At ages 6 to 11 years, mean (standard error) systolic/ diastolic blood pressure was $93(0) / 61(1)$ in boys and $93(0) / 60(0) \mathrm{mmHg}$ in girls, and at ages 12 to 19 years, $101(1) / 63(1)$ and $98(1) / 63(1) \mathrm{mmHg}$, respectively. An estimated 2.1\% (95\% confidence interval 1.3\% to 3.0%) of Canadian children and youth had borderline levels; 0.8% (0.4% to 1.4%) had elevated BP.

Interpretation

Despite the prevalence of obesity among young people, BP levels were lower than reported in provincial samples, which may, in part, reflect differences in methodologies and measurement instruments.

Keywords

diastolic pressure, hypertension, obesity, overweight, survey, systolic pressure

Authors

Gilles Paradis (1-514-398-1418; gilles.paradis@ mcgill.ca) is with the Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Health Centre Research Institute and the Institut national de santé publique du Québec; Mark S. Tremblay is with the Children's Hospital of Eastern Ontario Research Institute; Ian Janssen is with Queen's University; Arnaud Chiolero is with McGill University; and Tracey Bushnik is with Statistics Canada.

> No nationally representative blood pressure (BP) data for Canadian children and adolescents have been collected since the 1978 Canada Health Survey. ${ }^{1}$ With the results of the 2007-2009 Canadian Health Measures Survey (CHMS), launched by Statistics Canada in partnership with Health Canada and the Public Health Agency of Canada, it is possible to address this data gap. ${ }^{2-5}$ The CHMS is the most comprehensive direct health measures survey ever conducted in Canada. In addition to a detailed health interview, the survey involves direct measurement of indicators and of risk factors for chronic diseases, infectious diseases, environmental exposures, nutritional status, physical activity and physical fitness. ${ }^{2-5}$

Elevated BP is one of the most important causes of death and disability worldwide, ${ }^{6}$ accounting for 7.6 million premature deaths and 92 million disability-adjusted life years annually. In adolescence, hypertension is associated with increased left ventricular mass, diastolic dysfunction, ${ }^{7}$ fatty streaks and fibrous plaques in the coronary arteries and the aorta, ${ }^{8}$ and arterial wall thickening. ${ }^{9}$ BP levels track from childhood to adulthood, ${ }^{10,11}$ indicating that elevated BP at young ages is a risk factor for the development of hypertension in
adulthood. The strength of BP tracking increases with body mass index (BMI), such that tracking is strongest in overweight and obese youth. ${ }^{12,13}$

Population information about BP levels in children and adolescents can be useful from a public health and clinical perspective to guide prevention planning, help establish norms, and monitor trends over time. However, Quebec is the only Canadian province to have relatively recent measures for youth: in 1999, 12% to 23% of youth aged 9,13 and 16 years had high-normal or elevated

BP. ${ }^{9}$ A 2004 study of BP levels among American youth found that from 19881994 to 1999-2000, mean systolic blood pressure (SBP) increased 1.4 mmHg , and mean diastolic blood pressure (DBP) increased $3.3 \mathrm{mmHg} .{ }^{15}$ A longer-term review of trends in American youth from 1963 to 2002 also demonstrated a slight upturn in the prevalence of elevated BP in the last decade. ${ }^{16}$ But such findings have not been consistent. For example, a study of 15-year-old Russian adolescents between 1995 and 2004 found a significant decrease in DBP among boys, and a significant decrease in SBP among both sexes. ${ }^{17}$ As well, comparisons of results from past studies are complicated by different survey methods, including different measurement devices.

Based on data from the 20072009 CHMS, this study presents BP distributions and estimates of elevated BP for a representative sample of Canadian children and adolescents aged 6 to 19 years.

Methods

Data source

Data are from cycle 1 of the Canadian Health Measures Survey (CHMS), which collected information at 15 sites from March 2007 through February 2009. The CHMS covered the population aged 6 to 79 years living in private households. Residents of Indian Reserves or Crown lands, institutions and certain remote regions and full-time members of the regular Canadian Forces were excluded. Approximately 96.3% of Canadians were represented. ${ }^{18}$

Health Canada's Research Ethics Board gave ethics approval to conduct the survey. Informed written consent was obtained from respondents aged 14 years or older. For younger children, a parent or legal guardian provided written consent, in addition to written assent from the child. Participation was voluntary; respondents could opt out of any part of the survey at any time.

The response rate for households selected for inclusion in the CHMS was 69.6%-meaning that in 69.6% of
selected households, the sex and date of birth of all household members were provided by a household resident. In each responding household, one or two members were chosen to participate; 88.5% of selected 6- to 19 -year-olds completed the household questionnaire, and 86.9% of those who completed the questionnaire participated in the subsequent examination centre component. The final response rate for 6 - to 19 -year-olds, after adjusting for the sampling strategy, was 53.5%. This article is based on 2,079 examination centre respondents aged 6 to 19 years (after removing 8 with missing BP data) (Appendix Table A).

Measures

At the respondent's home, an interviewer administered a questionnaire covering socio-demographic characteristics, medical history, current health status and lifestyle behaviours (Table 1). In the chronic conditions component of the questionnaire, respondents aged 12 years or older were asked if they had high BP (diagnosed by a health professional and expected to last or had already lasted six months or more) and if they had taken "medicine for high blood pressure" in the past month.

One day to six weeks after the home interview, the respondent visited a mobile examination centre for a battery of physical measurements, including anthropometry, BP, heart rate, spirometry, physical fitness, oral health and biospecimen collection. ${ }^{4}$ BMI was calculated as weight in kilograms divided by height in meters squared $(\mathrm{kg} /$ m^{2}), and respondents were classified as overweight, obese, or neither. ${ }^{19,20} \mathrm{BP}$ was measured after urine collection, but before blood collection and fitness testing. ${ }^{4}$

BP and heart rate were measured with the BpTRUTM BP-300 (BpTRU Medical Devices Ltd., Coquitlam, British Columbia). The BpTRUTM ${ }^{\text {TM }}$, an automated electronic monitor, automatically inflates and deflates the upper-arm cuff and uses an oscillometric technique to calculate

SBP and DBP. It has passed international validation protocols for accuracy. ${ }^{21,22}$

An advantage of an automated device is that it enables BP to be measured in the absence of another person, thereby eliminating observer errors such as digit bias, zero preference and incorrect deflation rates, and reducing "white-coat hypertension" (a rise in BP associated with the presence of the health care professional and the measurement procedures). ${ }^{23}$ For more detailed information on the procedures and protocol, including staff training, equipment calibration, and quality assurance and control, see Resting blood pressure and heart rate measurement in the Canadian Health Measures Survey cycle 1. ${ }^{24}$

Definitions

Measures of SBP and DBP were calculated as the average of the first set (last five of six measures taken one minute apart) of valid BP measurements. ${ }^{24}$ For those aged 6 to 17 years, based on age and sex, each respondent's height and average SBP and DBP were converted to z -scores, which were used to calculate individual BP percentiles as per the equations in Appendix B of the fourth report of the National High Blood Pressure Education Program Working Group on High Blood Pressure in Children and Adolescents (NHBPEP4). ${ }^{25}$ With these calculated percentiles, children and youth in this age group were classified into BP categories. As well, respondents who reported taking medicine for high BP in the past month were classified as having "elevated" BP , regardless of their BP percentile value (fewer than 10 respondents). The seventh report of the Joint National Committee on Prevention, Detection, Evaluation and Treatment of High Blood Pressure (JNC7) was used to classify youth aged 18 or 19 years. ${ }^{26}$ The NHBPEP4 classification parallels that of the JNC7.

Normal $B P$ for respondents aged 6 to 17 years was defined as a calculated SBP percentile and DBP percentile less than the $90^{\text {th }}$ percentile. For respondents
aged 18 or 19 years, it was defined as a measured mean SBP less than 120 mmHg and a measured mean DBP less than 80 mmHg . This corresponds to the "normal" category proposed by the NHBPEP4 and JNC7.

Borderline BP for respondents aged 6 to 17 years was defined as a calculated SBP percentile or DBP percentile greater than or equal to the $90^{\text {th }}$ percentile, but less than the $95^{\text {th }}$ percentile, or a measured SBP/DBP greater than $120 / 80 \mathrm{mmHg}$, even if less than the $90^{\text {th }}$ percentile. For respondents aged 18 or 19 years, it was defined as a measured mean SBP of 120 to 139 mmHg and a measured mean DBP of 80 to 89 mmHg ; or SBP of 120 to 139 mmHg and DBP lower than 80 mmHg ; or SBP lower than 120 mmHg and DBP 80 to 89 mmHg . This corresponds to the "prehypertension" category proposed by the NHBPEP4 and JNC7.

Elevated BP for respondents aged 6 to 17 years was defined as a calculated SBP percentile or DBP percentile greater than or equal to the $95^{\text {th }}$ percentile, or the respondent's report of using BP medication in the past month. For respondents aged 18 or 19 years, elevated BP was defined as a measured mean

SBP/DBP of $140 / 90 \mathrm{~mm} \mathrm{Hg}$ or higher, or the respondent's report of BP medication use in the past month. This corresponds to the "Stage 1 or Stage 2 hypertension" category proposed by the NHBPEP4 and JNC7.

Analytical techniques

Weighted data were analyzed separately by sex and age. Estimates of proportions, means, standard errors, and percentiles were produced. Standard errors, coefficients of variation and 95% confidence intervals (CI) were estimated using bootstrap weights to account for the complex survey design of the CHMS. ${ }^{27,28}$ Gender differences in SBP and DBP were tested using t-tests. Analyses were conducted with SUDAAN.

Results

Mean SBP (standard error) rose with age from $91(1) \mathrm{mmHg}$ among boys aged 6 to 7 years to $104(1) \mathrm{mmHg}$ at 18 to 19 years; for girls, the increase was from 92(1) to 99(1) mmHg (Table 2). Mean SBP was similar in boys and girls from ages 6 to 7 through 10 to 11 years, and also at 14 to 15 years. However, at 12
to 13 years and 16 through 19 years, mean SBP was higher in boys ($\mathrm{p}<0.01$). Median SBP was very close to the mean in all age/sex categories.

The sample size was too small to obtain percentile values by single-year-of-age or $95^{\text {th }}$ percentile values for most two-year age groups. At ages 6 to 11 years, the $95^{\text {th }}$ percentile ($95 \% \mathrm{CI}$) for SBP was 105 (102 to 107) mmHg among boys and 106 (104 to 108) mmHg among girls; at ages 12 to 19 years, the $95^{\text {th }}$ percentile for SBP was 116 (113 to 119) mmHg among boys and 111 (108 to 114) mmHg among girls.

Mean DBP also rose with age, but not as much as SBP (Table 3). From ages 6 to 7 to 18 to 19 years, mean DBP increased from $59(1)$ to $65(1) \mathrm{mmHg}$ among boys and from 60(1) to 64(1) among girls. Mean DBP was similar in both sexes. Median DBP was very close to the mean in all age/sex groups.

In 2007-2009, few Canadian children and adolescents had borderline or elevated BP: $3.7 \% ~(2.3 \%$ to $6.0 \%)$ at ages 6 to 11 years and 2.2% (1.2% to 4.0%) at 12 to 19 years (Table 4).

Mean SBP was higher among children and adolescents who were overweight or

Table 1
Selected characteristics of sample (weighted), by age group and sex, household population aged 6 to 19 years, Canada, March 2007 to February 2009

	Age group (years)											
	6 to 11						12 to 19					
	Boys	$\begin{gathered} 95 \% \\ \text { confidence } \\ \text { interval } \end{gathered}$		Girls	95%confidenceinterval		Boys	$\begin{gathered} 95 \% \\ \text { confidence } \\ \text { interval } \end{gathered}$		Girls	$\begin{gathered} 95 \% \\ \text { confidence } \\ \text { interval } \\ \hline \end{gathered}$	
		from	to									
Mean age (years)	8.6	8.2	9.0	8.7	8.5	8.9	15.2	15.0	15.5	15.7	15.5	16.0
Measured body mass index (kg/m²)	17.9	17.5	18.2	17.7	17.2	18.1	22.6	21.6	23.6	22.4	21.7	23.0
Overweight ${ }^{\dagger}$ (\%)	17.3	13.5	21.9	16.3	11.6	22.4	18.0	14.6	21.9	17.6	13.5	22.7
Obese ${ }^{\dagger}$ (\%)	7.1	5.1	9.8	$5.8{ }^{\text {E }}$	3.2	10.1	$12.3{ }^{\text {E }}$	6.6	21.7	8.3	5.8	11.6
Smoke daily (\%)	\ldots	...	$8.0{ }^{\text {E }}$	4.0	15.2	$6.8{ }^{\text {E }}$	3.3	13.4
Physically active ${ }^{\text {t† }}$ (\%)	84.5	80.8	87.6	82.5	79.0	85.6	77.4	69.3	83.9	65.0	59.5	70.2
Immediate family history of high blood pressure (\%)	12.6	8.8	17.7	15.9	12.0	20.8	25.8	20.3	32.2	22.1	16.3	29.3
Household education more than secondary graduation (\%)	88.5	84.6	91.5	85.3	79.1	89.9	86.6	83.4	89.2	83.0	74.2	89.2
Household type - couple with children (\%)	82.6	77.1	87.1	79.4	72.9	84.6	72.5	65.7	78.4	76.3	68.5	82.7
Low household income ${ }^{\text {tt† (\%) }}$	$7.7{ }^{\text {E }}$	4.4	12.9	$6.5{ }^{\text {E }}$	3.8	11.1	$5.4{ }^{\text {E }}$	3.0	9.6	$11 .{ }^{\text {E }}$	7.1	17.2
Born in Canada(\%)	92.4	81.8	97.0	92.0	81.8	96.7	90.5	77.5	96.4	88.3	80.2	93.3

† 18- to 19-year-olds classified as overweight (BMI 25 to $29.9 \mathrm{~kg} / \mathrm{m}^{2}$) or obese (BMI $30 \mathrm{~kg} / \mathrm{m}^{2}$ or more)(Source: Health Canada. Canadian Guidelines for Body Weight Classification in Adults (Catalogue
H49-179) Ottawa: Health Canada, 2003); 6- to 17-year-olds classified as overweight or obese based on definitions proposed by International Obesity Task Force (Source: Cole TJ, Bellizzi MC, Flegal KM, et al. Establishing a standard definition for child overweight and obesity worldwide: international survey. British Medical Journal 2000; 320(7244): 1240-3).
\#t for ages 6 to 11, physically active for at least 60 minutes 4 or more days in typical week; for ages 12 to 19, categorized as "active"or "moderately active according to Physical Activity Index
\#\#t based on household size and income range; denominator is 1,920 respondents with valid household income value
E interpret with caution (coefficient of variation 16.6% to 33.3%)
.. not applicable
Source: 2007 to 2009 Canadian Health Measures Survey.

Table 2
Percentile distribution of measured systolic blood pressure (SBP) ($\mathbf{m m H g}$) values, by sex and two-year age group, household population aged 6 to 19 years, Canada, March 2007 to February 2009

Sex and two-year age group (years)	Sample size	Mean	Standard error	$25^{\text {th }}$ percentile			$50^{\text {th }}$ percentile			$75^{\text {th }}$ percentile			$90^{\text {th }}$ percentile			$95^{\text {th }}$ percentile		
				95\% confidence interval														
				Value	from	to												
Boys	1,051	98	1	91	90	92	96	95	98	103	101	106	110	107	113	114	112	116
$6 \text { to } 11$ 6-7	538 164	93 91	0 1	88 85	87 84	89 87	92 90	91 89	93 92	97 94	95 92	99 97	101 99	99 95	103 103	105	102	107
8-9	172	93	1	88	87	90	91	90	93	96	95	98	101	98	104	F
10-11	202	95	1	90	88	92	94	93	96	98	97	100	103	99	106	105	103	108
12 to 19	513	101	1	94	92	96	100	97	103	106	103	109	113	110	116	116	113	119
12-13	160	97	1	90	88	91	96	92	100	103	100	107	109	105	114	F
14-15	119	100	1	93	91	96	98	94	103	105	99	112	112	107	118	F	...	\ldots
16-17	139	104	2	97	94	100	102	99	106	107	102	111	116	109	123	F
18-19	95	104	1	97	95	100	103	99	107	109	105	114	F	F
Girls	1,028	96	0	90	89	91	95	94	96	100	99	101	106	104	108	109	108	111
6 to 11	529	93	0	87	86	88	92	91	94	98	97	99	103	102	104	106	104	108
6-7	159	92	1	86	84	88	90	87	93	96	92	100	102	98	106	F
8-9	157	94	1	88	85	91	93	91	95	98	97	100	104	100	108	F	\ldots	...
10-11	213	94	1	88	87	89	94	91	96	99	97	101	103	100	105	105	103	107
12 to 19	499	98	1	92	90	94	96	95	98	102	100	103	108	106	110	111	108	114
12-13	132	94	1	90	88	91	94	91	96	97	94	100	101	98	104	F
14-15	126	99	1	94	92	96	97	94	100	103	98	107	109	103	114	F
16-17	127	98	1	93	91	96	97	95	99	101	99	103	109	105	113	F
18-19	114	99	1	93	89	97	98	95	102	104	101	106	109	106	113	F

F too unreliable to be reported (coefficient of variation greater than 33% or small sample size)
... not applicable
Source: 2007 to 2009 Canadian Health Measures Survey.
Table 3
Percentile distribution of measured diastolic blood pressure (DBP) ($\mathbf{m m H g}$) values, by sex and two-year age group, household population aged 6 to 19 years, Canada, March 2007 to February 2009

				$25^{\text {th }} \mathrm{p}$	ercent		$50^{\text {th }} \mathrm{p}$	ercenti		$75^{\text {th }} \mathrm{p}$	ercent		$90^{\text {th }}$	ercen		$95^{\text {th }}$ p	ercent	
Sex and two-year age group			Standard		95\% confide interv			95\% confid interv									$\begin{array}{r}95 \\ \hline\end{array}$ inter	
(years)	size	Mean	error	Value	from	to												
Boys	1,051	62	1	57	55	58	61	60	63	66	65	68	71	69	72	74	72	76
6 to 11 6-7	538 164	61 59	1	56 53	55 48	57 58	60 58	58	61 60	64 63	62	65	68	66	71 74	72	68	75
8-9	172	61	1	57	55	58	60	58	62	63	61	66	69	65	73	F	...	\ldots
10-11	202	61	0	57	55	58	61	60	62	65	63	66	68	66	69	71	67	74
12 to 19	513	63	1	57	56	59	63	61	65	67	65	69	72	70	74	76	73	79
12-13	160	62	1	57	56	58	61	59	63	65	63	66	69	66	71	F	...	
14-15	119	62	1	55	51	58	62	59	66	68	64	71	73	69	78	F	...	
16-17	139	64	1	58	56	60	63	60	66	68	66	71	73	70	76	F	\ldots	\ldots
18-19	95	65	1	60	56	64	64	62	67	69	66	73	F	F
Girls	1,028	62	0	56	55	57	61	60	62	66	65	68	71	70	72	74	73	75
6 to 11	529	60	0	55	53	56	60	59	61	65	63	66	70	69	70	72	70	74
6-7	159	60	1	54	51	57	59	56	62	64	61	66	69	65	74	F
8-9	157	61	1	55	51	59	61	60	62	65	62	68	70	68	72	F	...	
10-11	213	60	1	55	52	57	60	58	62	65	63	66	68	67	70	70	68	72
12 to 19	499	63	1	57	55	58	62	60	64	67	65	69	72	70	73	74	73	75
12-13	132	60	1	54	53	56	59	57	62	65	63	67	67	66	68	F
14-15	126	63	1	57	56	59	62	60	64	68	64	72	74	70	79	F	\ldots	\ldots
16-17	127	64	1	59	57	61	63	59	66	69	66	71	71	70	73	F	\ldots	
18-19	114	64	1	57	53	60	64	61	67	68	67	70	73	72	75	F

F too unreliable to be reported (coefficient of variation greater than 33% or small sample size)
... not applicable
Source: 2007 to 2009 Canadian Health Measures Survey.

Table 4
Percentage distribution of measured blood pressure status, by sex and age group, household population aged 6 to 19 years, Canada, March 2007 to February 2009

	$\begin{array}{r} \text { Sample } \\ \text { size } \end{array}$	\%		
			from	to
Total				
Normal	2,019	97.2	96.1	98.0
Borderline	47	$2.1{ }^{\text {E }}$	1.3	3.1
Elevated	13	$0.8{ }^{\text {E }}$	0.4	1.4
Boys				
Normal	1,019	96.9	95.7	97.7
Borderline or elevated	32	3.1	2.3	4.3
Girls				
Normal	1,000	97.6	95.9	98.6
Borderline or elevated	28	$2.4{ }^{\text {E }}$	1.4	
6 to 11 years Normal	1,029	96.3	94.0	97.7
Borderline or elevated	38	$3.7{ }^{\text {E }}$	2.3	6.0
12 to 19 years Normal	990	97.8	96.0	98.8
Borderline or elevated	22	$2.2{ }^{\text {E }}$	1.2	4.0
${ }^{E}$ interpret with caution (coefficient of variation 16.6% to 33.3\%)				
Notes: For respondents aged 6 to 17 years, blood pressure status was derived using the methodology outlined in Appendix B of The Fourth Report on the Diagnosis, Evaluation, and Treatment of High Blood Pressure in Children and Adolescents, Pediatrics 2004; for respondents aged 18 to 19 , the classification in the seventh report of the Joint National Committee on Prevention, Detection, Evaluation and Treatment of High Blood Pressure was used.				
Source: 2007 to 2009 Canadian Health Measures Survey.				

obese (Table 5). The SBP differences between BMI categories reached statistical significance among boys aged 12 to 19 years, girls aged 6 to 11 years, and in both age groups when the genders were combined. Differences in DBP by BMI category were less apparent, reaching statistical significance only among obese boys aged 12 to 19 years.

Discussion

The main finding of this analysis is the remarkably low overall prevalence of borderline or elevated BP among Canadian children and adolescents.

However, echoing the results of other studies, ${ }^{14,15}$ mean SBP was significantly higher among boys aged 12 to 19 years and girls aged 6 to 11 years who were overweight or obese. Excess weight is believed to influence BP through increased sympathetic nervous system activation, which is associated with SBP. The association of weight with DBP was much less pronounced.

The generally low levels of BP obtained from the CHMS appear inconsistent with the rise of childhood and adolescent obesity in Canada. ${ }^{29,30}$ And despite a trend toward excess weight among youth in other countries, BP levels have not shown consistent increases. ${ }^{31}$

Hence, population-level increases in BP may not necessarily be a consequence of rising weight. More research is required to explain this apparent paradox.

For each age and sex category, mean child and adolescent SBP in Canada was about 10 mmHg lower than the most recent United States National Health and Nutrition Examination Survey (NHANES) data. ${ }^{32}$ The only other recent BP data from a large, representative sample of youth in Canada were collected in 1999 by the Quebec Child and Adolescent Health and Social Survey (QCAHS) from respondents aged 9,13 and 16 years. ${ }^{14}$ Compared with the results of the QCAHS, mean SBP at these ages in the CHMS was 9,16 and 20 mmHg lower in boys, and 8,17 and 16 mmHg lower in girls.

CHMS values for DBP generally exceeded the NHANES results, with a mean difference of 5 mmHg higher in boys and 2 mmHg higher in girls. And compared with the QCAHS, the CHMS values were 8,7 and 7 mmHg higher in boys aged 9, 13 and 16 years, respectively, and 9,5 and 7 mmHg higher among girls of the same ages. ${ }^{14}$

Differences in measurement instruments and procedures may, in part, explain the disparities in BP levels in the three surveys. The CHMS used

Table 5
Mean measured value of systolic (SBP) ($\mathrm{mm} / \mathrm{Hg}$) and diastolic blood pressure (DBP) ($\mathrm{mm} / \mathrm{Hg}$), by age group, sex and body mass index (BMI) category, household population aged 6 to 19 years, Canada, March 2007 to February 2009

	Systolic blood pressure							Diastolic blood pressure								
	6 to 11 years			12 to 19 years				6 to 11 years				12 to 19 years				
	$\begin{array}{r} \text { Sample } \\ \text { size } \end{array}$	Mean	95%confidence intervalfrom to	Samplesize	Mean	95% confidence interval from to		$\begin{array}{r} \text { Sample } \\ \text { size } \end{array}$	Mean	$\begin{gathered} 95 \% \\ \text { confidence } \\ \text { interval } \end{gathered}$		Sample size	Mean	95\% confidence interval		
								from		to	from			to		
Total																
Neither overweight nor obese ${ }^{\dagger}$	836	92	9193	751	98	96	99		836	60	59	61	751	63	61	64
Overweight	159	97*	93100	180	101*	99	104	159	62	58	65	180	63	61	65	
Obese	71	97*	94101	77	106*	103	109	71	62	59	65	77	65	62	68	
Boys																
Neither overweight nor obese ${ }^{\dagger}$	413	92	9193	378	99	97	100	413	60	59	61	378	62	61	63	
Overweight	86	97	92102	94	104*	100	107	86	62	57	68	94	64	61	67	
Obese	38	97	91102	40	108*	104	112	38	63	58	68	40	66^{*}	63	70	
Girls																
Neither overweight nor obese ${ }^{\dagger}$	423	92	9193	373	97	95	98	423	60	59	61	373	63	61	65	
Overweight	73	97*	9499	86	99	96	102	73	61	58	63	86	63	60	65	
Obese	33	98*	95101	37	103	98	107	33	61	58	64	37	64	60	68	

[^0]the BpTRUTM device; QCAHS used the DINAMAP (Critikon Co, FL) device; and NHANES used mercury sphygmomanometers. The last has been the gold standard for BP assessment for many years, but its use in children is decreasing because mercury-containing instruments are being removed from pediatric environments, and because

What is already
 known on this subject?

- Elevated blood pressure (BP) is an important cause of disability and death worldwide.
- Elevated $B P$ at young ages is a risk factor for the development of hypertension in adulthood.
- The strength of BP tracking increases with body mass index.
- No nationally representative BP data for Canadian children and adolescents have been collected since the 1978 Canada Health Survey.

What does this study add?

- Based on data from the 2007-2009 Canadian Health Measures Survey, an estimated 0.8% of Canadians aged 6 to 19 had elevated BP, and 2.1\% had borderline levels.
- The differences in mean systolic BP between BMI categories reached statistical significance among boys aged 12 to 19 years, girls aged 6 to 11 years, and in both age groups when the genders were combined.
- Differences in mean diastolic BP by BMI category reached statistical significance only among obese boys aged 12 to 19 years.
auscultatory methods are subject to various biases (digit preference, rounding, white coat hypertension, etc.). The substantial differences between the CHMS and QCAHS may be due to opposing systematic differences between BP measured by mercury manometers and by the DINAMAP and the BpTRU. The DINAMAP has been reported to overestimate SBP by about 10 mmHg and slightly underestimate DBP, whereas the BpTRU may slightly underestimate DBP (by 2.1 mmHg), compared with the mercury manometer. ${ }^{33}$ Most cases of borderline or elevated BP among CHMS participants had diastolic rather than systolic elevation, whereas clinically, most reported cases of pediatric hypertension are the result of an increase in SBP, thought to reflect, at least in part, hyperactivity of the sympathetic nervous system. Counterintuitively, children aged 6 to 11 years were somewhat more likely to have borderline or elevated BP than were adolescents aged 12 to 19 years.

The CHMS procedures may also have contributed to lower mean SBP. Measurement in a quiet room and in the absence of staff may have been conducive to maximal subject relaxation, which could decrease sympathetic activation and lower SBP. By contrast, the QCAHS measurements took place in school settings, usually a room where other survey-related measures were going on and in the presence of a staff member recording BP readings. ${ }^{14,34}$

Limitations

The overall CHMS response rate was slightly above 50%. Although survey weights were adjusted to the sociodemographic characteristics of the Canadian population, it was not possible to adjust for many factors that could be associated with BP levels. Selection bias would be present if the BP levels of nonparticipants differed systematically from those of participants. In addition, the
logistical and cost constraints associated with the use of mobile examination centres restricted the number of collection sites to $15 .{ }^{18}$ Whether this sampling strategy affected the results is unknown.

Conclusion

A small percentage of Canadians aged 6 to 19 years have borderline or elevated BP. More research is required to improve our understanding of BP levels and their determinants in order to help maintain healthy levels over the life-course.

Funding

Gilles Paradis holds a Canadian Institutes of Health Research (CIHR) Applied Research Chair in Public Health. Arnaud Chiolero holds a Ph.D. fellowship from CIHR. Ian Janssen holds New Investigator Awards from the CIHR and Ontario Ministry of Research and Innovation.

Acknowledgements

We thank Liane Fransblow and Nathalie Theoret for their contributions.

References

1. Health and Welfare, Statistics Canada. The Health of Canadians: Report of the Canada Health Survey (Catalogue 82-538) Ottawa: Health and Welfare Canada/Statistics Canada, 1981.
2. Tremblay MS, Connor Gorber, S. Canadian Health Measures Survey: brief overview. Canadian Journal of Public Health 2007; 98: 453-6.
3. Tremblay MS, Wolfson M, Connor Gorber S. Canadian Health Measures Survey: Background, rationale and overview. Health Reports (Statistics Canada, Catalogue 82-003) 2007; 18(Suppl.): 7-20.
4. Bryan S, St-Denis M, Wojtas D. Canadian Health Measures Survey: Clinic operations and logistics. Health Reports (Statistics Canada, Catalogue 82-003) 2007; 18(Suppl): 53-70.
5. Day B, Langlois R, Tremblay M, et al. Canadian Health Measures Survey: Ethical, legal and social issues. Health Reports (Statistics Canada, Catalogue 82-003).2007; 18(Suppl): 37-52.
6. Lawes CM, Vander Hoorn S, Rodgers A. Global burden of blood-pressure-related disease, 2001. Lancet 2008; 371(9623): 1513-8.
7. Daniels S, Meyer R, Loggie J. Determinants of cardiac involvement in children and adolescents with essential hypertension. Circulation 1990; 82(4): 1243-8.
8. Berenson GS, Srinivasan SR, Bao W, et al. The Bogalusa Heart Study. Association between multiple cardiovascular risk factors and atherosclerosis in children and young adults. New England Journal of Medicine 1998; 338(23): 1650-6.
9. Ayer JG, Harmer JA, Nakhla S, et al. HDL-cholesterol, blood pressure, and asymmetric dimethylarginine are significantly associated with arterial wall thickness in children. Arteriosclerosis, Thrombosis, and Vascular Biology 2009; 29(6): 943-9.
10. Cruickshank JK, Mzayek F, Liu L, et al. Origins of the "black/white" difference in blood pressure: roles of birth weight, postnatal growth, early blood pressure, and adolescent body size: the Bogalusa heart study. Circulation 2005; 111(15): 1932-7.
11. Chen X, Wang Y. Tracking of blood pressure from childhood to adulthood: A systematic review and meta-regression analysis. Circulation 2008; 117(25): 3171-80.
12. Lauer RM, Mahoney LT, Clarke WR. Tracking of blood pressure during childhood: the Muscatine Study. Clinical and Experimental Hypertension 1986; 8(4-5): 515-37.
13. Burke V, Beilin LJ, Dunbar D, Kevan M. Associations between blood pressure and overweight defined by new standards for body mass index in childhood. Preventive Medicine 2004; 38(5): 558-64.
14. Paradis G, Lambert M, O'Loughlin J, et al. Blood pressure and adiposity in children and adolescents. Circulation 2004; 110(13): 1832-8.
15. Muntner P, He J, Cutler JA, et al. Trends in blood pressure among children and adolescents. Journal of the American Medical Association 2004; 291(17): 2107-13.
16. Din-Dzietham R, Liu Y, Bielo M-V, ShamsaF. High blood pressure trends in children and adolescents in national surveys, 1963 to 2002. Circulation 2007; 116(13): 1488-96.
17. Rogacheva A, Laatikainen T, Tossavainen K, et al. Changes in cardiovascular risk factors among adolescents from 1995 to 2004 in the Republic of Karelia, Russia. The European Journal of Public Health 2007; 17(3): 257.
18. Giroux S. Canadian Health Measures Survey. Sampling strategy overview. Health Reports (Statistics Canada, Catalogue 82-003) 2007; 18(Suppl): 31-6.
19. Health Canada. Canadian Guidelines for Body Weight Classification in Adults (Catalogue H49-179) Ottawa: Health Canada, 2003.
20. Cole TJ, Bellizzi MC, Flegal KM, et al. Establishing a standard definition for child overweight and obesity worldwide: international survey. British Medical Journal 2000; 320(7244): 1240-3.
21. Mattu GS, Perry TL, Wright JM. Comparison of the oscillometric blood pressure monitor (BPM-100) with the ausculatory mercury sphygmomanometer. Blood Pressure Monitor 2001; 6: 153-9.
22. Wright JM, Mattu GS, Perry TL, et al. Validation of a new algorithm for the BPM-100 electronic oscillometric office blood pressure monitor. Blood Pressure Monitor 2001; 6: 161-5.
23. Myers MG, Valdivieso MA. Use of an automated blood pressure recording device, the BpTRU, to reduce the "white coat effect" in routine practice. American Journal of Hypertension 2003; 16: 494-7.
24. Bryan S, St-Pierre Larose M, Campbell N, et al. Resting blood pressure and heart rate measurement in the Canadian Health Measures Survey, cycle 1. Health Reports (Statistics Canada, Catalogue 82-003) 2010; 21(1): 71-8.
25. National High Blood Pressure Education Program Working Group on High Blood Pressure in Children and Adolescents. The fourth report on the diagnosis, evaluation, and treatment of high blood pressure in children and adolescents. Pediatrics 2004; 114 (2 suppl 4th report): 555-76.
26. Chobanian AV, Bakris GL, Black HR, et al. Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Hypertension 2003; 42: 1206-52.
27. Rao JNK, Wu CFJ, Yue K. Some recent work on resampling methods for complex surveys. Survey Methodology (Statistics Canada, Catalogue 12-001) 1992; 18(2): 209-17.
28. Rust KF, Rao JNK. Variance estimation for complex surveys using replication techniques. Statistical Methods in Medical Research 1996; 5: 281-310.
29. Shields M. Overweight and obesity among children and youth. Health Reports (Statistics Canada, Catalogue 82-003) 2006; 17(3): 27-42.
30. Tremblay MS, Willms JS. Secular trends in body mass index of Canadian children. Canadian Medical Association Journal 2000; 163: 1429-33; 2001; 164(7): 970.
31. Chiolero A, Bovet P, Paradis G, Paccaud F. Has blood pressure increased in children in response to the obesity epidemic? Pediatrics 2007; 119(3): 544-53.
32. Ostchega Y, Carroll M, Prineas RJ, et al. Trends of elevated blood pressure among children and adolescents: data from the National Health and Nutrition Examination Survey 1988-2006. American Journal of Hypertension 2009; 22(1): 59-67.
33. Mattu GS, Heran BS, Wright JM. Overall accuracy of the BpTRU-an automated electronic blood pressure device. Blood Pressure Monitor 2004; 9(1): 47-52.
34. Paradis G, Lambert M, O’Loughlin J, et al. The Quebec Child and Adolescent Health and Social Survey: design and methods of a cardiovascular risk factor survey for youth. Canadian Journal of Cardiology 2003; 19(5): 523-31.

22 Health Reports, Vol. 21, no. 2, June 2010 - Statistics Canada, Catalogue no. 82-003-XPE

Appendix

Table A
Sample sizes for selected characteristics, by sex and age group, household population aged 6 to 19 years, Canada, March 2007 to February 2009

	Age group (years)			
	$\mathbf{6}$ to $\mathbf{1 1}$		12 to 19	
	Boys	Girls	Boys	Girls
Blood pressure status	538	529	513	499
Measured body mass index $\left(\mathrm{kg} / \mathrm{m}^{2}\right)$	537	529	512	496
Current smoking	\ldots	\ldots	507	497
Physical activity	538	528	507	497
Immediate family history of high blood pressure	530	518	481	470
Household education	524	518	498	483
Household type	538	529	513	499
Household income	524	513	457	426
Country of birth	538	529	513	499

... not applicable
Source: 2007-2009 Canadian Health Measures Survey.

[^0]: ${ }^{\dagger}$ reference category

 * significantly different from reference category p<. 025 (Bonferroni corrected)

 Notes: BMI categories for ages 6 to 17 are based on the Cole cut-points. BMI categories for ages 18 and 19 years are based on the World Health Organization cut-points.
 Source: 2007-2009 Canadian Health Measures Survey.

