Human Activity and the Environment 2021

Accounting for ecosystem change in Canada[▲]

Statistics Statistique Canada Canada

Canadä

How to obtain more information

For information about this product or the wide range of services and data available from Statistics Canada, visit our website, <u>www.statcan.gc.ca</u>.

You can also contact us by

email at infostats@statcan.gc.ca

telephone, from Monday to Friday, 8:30 a.m. to 4:30 p.m., at the following toll-free numbers:

Statistical Information Service	1-800-263-1136
 National telecommunications device for the hearing impaired 	1-800-363-7629
Fax line	1-514-283-9350

Standards of service to the public

"Standards of service to the public."

Statistics Canada is committed to serving its clients in a prompt, reliable and courteous manner. To this end, Statistics Canada has developed standards of service that its employees observe. To obtain a copy of these service standards, please contact Statistics Canada toll-free at 1-800-263-1136. The service standards are also published on <u>www.statcan.gc.ca</u> under "Contact us" >

Note of appreciation

Canada owes the success of its statistical system to a long-standing partnership between Statistics Canada, the citizens of Canada, its businesses, governments and other institutions. Accurate and timely statistical information could not be produced without their continued co-operation and goodwill.

Correction Notice

The coral and sponge area was not correctly displayed on Map 2.3 Marine and coastal ecosystem extent: ecosystems and substrate, southern British Columbia coast. This map has been replaced.

Published by authority of the Minister responsible for Statistics Canada

© Her Majesty the Queen in Right of Canada as represented by the Minister of Industry, 2022

All rights reserved. Use of this publication is governed by the Statistics Canada Open Licence Agreement.

An <u>HTML version</u> is also available.

Cette publication est aussi disponible en français.

Contents

Highlights	4
Ecosystem extent and drivers of change	6
Ecosystem condition	6
Supply and use of ecosystem services	7
1.0 Introduction	8
Textbox: What you need to know about this report	9
2.0 Ecosystem extent and drivers of change	
2.1 Terrestrial and freshwater ecosystems	
2.2 Marine and coastal ecosystems	
Textbox: Impact of a changing climate on ecosystems and on ecosystem conditions	21
3.0 Ecosystem condition	
3.1 Terrestrial and freshwater ecosystem condition	51
Freshwater resources	51
Ambient air quality	56
Forest condition	58
Urban greenness	60
Landscape condition characteristics	62
Textbox: Invasive species	68
3.2 Marine and coastal ecosystem condition	69
Sea surface temperature	69
Sea surface salinity	75
Other abiotic condition characteristics	77
Fish and marine mammal stocks	77
Sea ice extent	78
Human modifications	81
Textbox: Biodiversity conservation	83
4.0 Supply and use of ecosystem services	
4.1 Provisioning services	
4.2 Regulating services	104
4.3 Cultural services	
5.0 Appendices	
A. Methodology and data limitations	
Extent and drivers of change	
Condition characteristics	
Ecosystem services supply and use	125
B. Glossary	
C. Acknowledgements	

Highlights

Human Activity and the Environment 2021: Accounting for ecosystem change in Canada provides some of the latest statistics on the extent and condition of Canada's ecosystems, as well as estimates of the supply and use of selected ecosystem services.

The increasing severity of global environmental issues are making it increasingly clear that economic and social health are dependent on maintaining ecosystems and the flows of services that they provide. But while today's decision-making can count on a wealth of robust socio-economic data, getting a complete picture of the state of Canada's ecosystems is difficult at the current time.

This report is the result of Statistics Canada's work to make comprehensive information on Canada's ecosystems more readily available. It is doing so by developing and implementing ecosystem accounts according to the new integrated and comprehensive statistical framework for ecosystem accounting adopted by the United Nations Statistical Commission. The System of Environmental-Economic Accounting – Ecosystem Accounting (SEEA – EA) takes a spatial approach to accounting, by organizing existing data on the location and size of ecosystem assets, tracking changes in their condition, measuring ecosystem services and linking this information to economic and human activity.

This work is an initial effort to provide as much information as possible about Canada's ecosystems. However, further work is needed to assess change on a long-term basis and develop quantitative measures and valuations to provide a more complete picture of the relationship between the economy, society and the environment and how we measure well-being and social progress. These issues will be the focus of further efforts as we embark on the development of a new Census of Environment program, which will provide access to a complete set of integrated environmental accounts and a wide range of regional-based information on issues stemming from rapid environmental change.

Selected highlights of the report are presented below. Further details on the results, analysis, sources, methodology, limitations and data gaps are available from the report.

Infographic Accounting for ecosystem change in Canada

5 / Human Activity and the Environment

16-201-X — Statistics Canada

Ecosystem extent and drivers of change

- Canada has some of the largest forest, tundra, prairie, wetland and freshwater ecosystems in the world, extending across 9.98 million km². Overall, approximately 36% of the country is covered by forest, 25% by arctic tundra, 4% by grassland including natural pasture or rangeland, 2% by permanent snow and ice cover and 28% by other natural and semi-natural areas such as woodland, shrubland, alpine tundra, barrenland, wetland and water. In 2016, 4% of the country was used for growing crops and tame or seeded pastures. Overall, 62,600 km² or about 0.6% of Canada's landscape consisted of settlement and human infrastructure in 2015, up 11% from 56,400 km² in 2000.
- Jurisdiction over the ocean includes 5.75 million km² within the limit of Canada's exclusive economic zone (EEZ). Close to half of this area is made up of areas with a maximum water depth of 200 m, supporting a diversity of marine life including fish and invertebrates that are important for major fisheries, as well as marine plants, such as phytoplankton, seagrasses and kelp, which play a key role in carbon storage.
- All areas of Canada's landmass have experienced increases in average annual and seasonal air temperatures from 1948 to 2016, but with important regional variations. The strongest temperature increases occurred across a vast region stretching across over 1.6 million km² of boreal and tundra ecosystems from Yellowknife to the Yukon–Alaska border. In this region, winter temperatures have increased by more than 5°C, with over 300,000 km² experiencing winter temperatures increases between 6°C and 7°C and almost 17,500 km², an area three times the size of Prince Edward Island, experiencing winter temperature increases greater than 7°C.
- In the Prairies, agricultural areas covering over 400,000 km² have experienced a 1.9°C increase in annual temperature and a 3.8°C increase in winter temperature from 1948 to 2016. These types of changes are driving a range of impacts on ecosystem conditions, including changes in snow and ice cover, glacier melt, permafrost thaw, freshwater flows, evapotranspiration, forest disturbance regimes, species migration, sea surface temperature, salinity and many other characteristics.

Ecosystem condition

- Total water storage change, estimated using gravity-based measurements from satellites, indicates that water storage decreased in many areas from 2002 to 2016, with the largest decreases in northern ecozones such as the Arctic Cordillera and Boreal Cordillera where large quantities of freshwater are stored in permafrost, glaciers and ice caps.
- Changes in precipitation and evapotranspiration will affect the availability of renewable water flows. Canada's average annual water yield was 3,514 km³ or 0.35 m³/m² from 1971 to 2014, equivalent to a depth of 350 mm across the extent of the country. Renewable freshwater production varies spatially across the country's diverse landscape and also varies temporally—monthly, seasonally and yearly. The lowest water yields occur in ecoprovinces across the Prairies.
- A new assessment of urban ecosystem condition used satellite imagery to assess the relative greenness of population centres in summer for three years. In 2019, 76% of the area of population centres in southern Canada had enough healthy vegetation to be classed as predominantly 'green' while the remaining urban areas had less vegetation and were classed as 'grey'. This percentage varied based on city size and region. In large urban population centres, an average of 70% of the total land area was classed as green, compared to 78% in medium population centres and 87% in small population centres.
- Ecosystem modification from human activity including changes in land cover and land use result in changes in ecosystem characteristics, functions and supply of ecosystem services. In 2016, 9% of Canada's terrestrial and freshwater area had been directly modified for agriculture, recent forest harvest or built-up area.
- Average annual sea surface temperatures from 2005 to 2017 have warmed compared with the 1981 to 2010 climate
 normal average for most areas of the Canadian EEZ. However, sea surface cooling is seen in parts of the Pacific and
 Hudson Bay over the same period. Average annual surface salinity from 2005 to 2017 has decreased against the
 climate normal salinity for many regions. These changes affect stratification of marine waters with further effects on
 nutrient availability and dissolved oxygen concentrations. These conditions also have cascading impacts on marine
 life, from the phytoplankton and zooplankton—microscopic aquatic plants and animals—at the bottom of the

marine food web, to fish and marine mammals. Species abundance data include stocks of fish and marine mammals managed by Fisheries and Oceans Canada and deemed economically, culturally or environmentally important. In 2019, 52 of these 176 stocks were deemed healthy, while the status of 29 stocks was assessed as cautious, 25 as critical and 70 as uncertain since there was insufficient data to classify the status.

- Sea ice is a defining characteristic of marine and coastal ecosystems across the Canadian Arctic and parts of the Atlantic Ocean. Total sea ice extent varies by season and over time; however, over the last fifty years, sea ice has decreased. The record minimum ice extent for Canada and the Arctic Ocean as a whole was set in the summer of 2012, followed in Canadian waters by 2011 and 1998 with the second and third lowest areas.
- Direct impacts and modifications to ocean ecosystems from human activity can include bottom trawling, species introduction, marine pollution and noise from shipping, as well as others that are not all easily quantified. Aquaculture and offshore oil production are regulated industries with activities occurring at specific sites allowing the area affected to be more easily tracked. Marine aquaculture sites for finfish and shellfish production cover an estimated 400 km² of coastal area. Licenses allowing for marine oil exploration within the EEZ cover 37,500 km², with an additional 21,000 km² covered by significant discovery licenses that indicate where production could in future be permitted. Oil production sites covering approximately 1,000 km² are located on the East Coast of Canada.
- In 2020, Canada had conserved 12.5% of its terrestrial and inland water areas and 13.8% of the EEZ through protected areas and other effective area-based conservation measures.

Supply and use of ecosystem services

- In 2019, Canada's forest and agricultural ecosystems supported the production of an estimated 141 million tonnes
 of timber and 149 million tonnes of agricultural goods, while freshwater, coastal and marine ecosystems produced
 808 thousand tonnes of fish, shellfish and marine plants. Provisioning services also include the smaller quantities of
 flora and fauna that were foraged, hunted and harvested for recreational, commercial and subsistence use and the
 36.8 billion m³ of water extracted in 2017 by industries and households from rivers, lakes and groundwater. This
 total excludes use for hydro-electric generation.
- Regulating services include a large number of vital services provided by ecosystems. For example, they include the global climate regulation services provided through carbon sequestration and retention in ecosystems. Organic wetlands store large quantities of carbon—it is estimated that Canada's peatlands hold more than half the stocks of soil organic carbon in the country. Canada's managed forests store on average 205 tonnes of carbon per hectare in forest soils, trees, leaf litter and deadwood. While trees take up large amounts of carbon each year, managed forests were a net emitter of carbon in 2018 after accounting for emissions associated with harvesting and natural disturbances. In 2018, an estimated 3,500 kilotonnes of carbon were sequestered by trees in urban and agricultural areas. Ongoing research is occurring to estimate sequestration and storage of blue carbon—the carbon in marine plants and coastal sediment—in Canada's salt marshes, seagrass meadows and kelp forests.
- The average air pollutant removal per square metre of tree cover in 86 Canadian cities in 2010 was estimated to be 3.72 g/m²/year for five common air pollutants, resulting in a small improvement in air quality. The total pollution removal value for these cities was estimated at \$511 per hectare of urban tree cover.
- Cultural services can involve appreciation of and interactions with nature, as well as the contributions of ecosystems
 and biodiversity to well-being. For example, activities in nature including in public parks and green spaces provide
 valuable recreation services and may have positive effects on mental health. In 2019, 90% of households reported
 that they lived close to a park or public green space and many people engaged in recreational activities outdoors
 and in nature.

1.0 Introduction

Human Activity and the Environment 2021: Accounting for ecosystem change in Canada provides some of the latest statistics on the extent and condition of Canada's ecosystems, as well as estimates of the supply and use of selected ecosystem services.

The increasing severity of global environmental issues are making it increasingly clear that economic and social health are dependent on maintaining ecosystems and the flows of services that they provide. But while today's decision-making can count on very robust socio-economic data, getting a complete picture of the state of Canada's ecosystems is difficult at the current time.

This report is the result of Statistics Canada's work to start to make comprehensive information on Canada's ecosystems more readily available. It is doing so by developing and implementing ecosystem accounts according to the new integrated and comprehensive statistical framework for ecosystem accounting adopted by the United Nations Statistical Commission. The System of Environmental-Economic Accounting – Ecosystem Accounting (SEEA – EA) framework takes a spatial approach to accounting, by organizing existing data on the location and size of ecosystem assets, tracking changes in their condition, measuring ecosystem services and linking this information to economic and human activity.

According to the SEEA - EA:

Ongoing ecosystem accounts will allow insight into important, overarching questions on the relationship between the economy, society, and the environment and how we measure well-being and social progress. For example:

- What is the contribution of ecosystems and their services to the economy, social wellbeing, jobs and livelihoods?
- How is the condition, health and integrity of ecosystems and biodiversity changing over time and where are the main areas of degradation and enhancement?
- How can natural resources and ecosystems be best managed to ensure continued services and benefits such as energy, food supply, water supply, flood control, carbon storage and recreational opportunities?
- How should conservation efforts be targeted?
- What opportunities exist for the development of innovative incentive-based programs to conserve nature such as payment for ecosystem services?
- What do estimates of a nation's wealth and economic potential look like once the state of its environment is considered?¹

Ecosystem accounting takes a spatial approach to accounting, organizing data on the location and size of ecosystem assets, tracking changes in their condition, measuring ecosystem services and linking this information to economic and human activity. It is designed to answer important questions on the relationship between the economy, society and the environment and how we measure well-being and social progress.² Understanding, measuring and analyzing changes in the extent and condition of ecosystems and the impacts of these changes on ecosystem services allows for informed decision making that reflects a more comprehensive assessment of tradeoffs and impacts on human well-being.

This first effort to compile ecosystem accounts has uncovered data gaps and limitations in several areas. Data have been derived to present comprehensive and comparable statistics on ecosystems, with additional context from the literature. Further work and collaboration in identifying data priorities, data gathering and modeling are required to more fully report on Canada's ecosystems and ecosystem services. The Census of Environment has begun to address these issues, and will work to develop a trusted knowledge base on ecosystems. This will include ongoing data on how the extent and conditions of Canada's ecosystems are evolving over time.

¹ United Nations, 2021, System of Environmental-Economic Accounting — Ecosystem Accounting, https://seea.un.org/ecosystem-accounting (accessed March 15, 2021).

² United Nations, 2021.

The Human Activity and the Environment publications bring together data from many sources to present a statistical portrait of Canada's environment, with special emphasis on human activity and its relationship to natural elements—air, water soil, plants and animals. Each issue provides accessible and relevant information on an environmental issue of concern to Canadians.

The report is organized as follows:

Section I – Introduction

Section 2 – Ecosystem extent and drivers of change describes the extent of Canada's main terrestrial, freshwater, marine and coastal ecosystems, their defining characteristics, and changes in land use and climate that drive changes in these ecosystems and their condition.

Section 3 – **Ecosystem condition** presents data on selected abiotic, biotic and landscape and seascape ecosystem condition characteristics, including water storage and yield, ambient air quality, forest disturbance, urban greenness, landscape fragmentation and modification, sea surface temperature, salinity, species stock status, sea ice and seascape modification. Covering the whole range of condition characteristics for Canada's many ecosystems is beyond the scope of this report—selected measures were included based on data availability. Some measures of condition relate to geographic areas, while others are specific to individual ecosystem types.

Section 4 – **Supply and use of ecosystem services** presents data on selected provisioning, regulating and cultural ecosystem services provided by Canada's many ecosystems. Estimates are provided for the physical supply of provisioning services (e.g., crop production, fodder production, aquaculture production, wood production, wild animal harvests and water supply), regulating services (e.g., carbon sequestration and storage and air filtration) and use of recreation-related services.

Section 5 – Appendices

Methodology and data limitations

Glossary

Acknowledgements

Textbox: What you need to know about this report

This report brings together many different sources is to provide the most complete picture possible of Canada's ecosystems and changes in ecosystem condition and ecosystem services that will affect the health of the economy, society and human well-being. This has been accomplished through the use of ecosystem accounting, which involves the structured compilation of information on ecosystems such as forests, agro-ecosystems, wetlands, and marine and coastal areas, their condition or quality and the ecosystem services they provide, following the requirements of a coherent statistical framework.

The report is the result of Statistics Canada's ongoing work to develop and implement ecosystem accounts according to the new integrated and comprehensive statistical framework for ecosystem accounting described in the System of Environmental-Economic Accounting–Ecosystem Accounting (SEEA – EA) that has been adopted by the United Nations Statistical Commission.³ While there are multiple components of these accounts, this report focuses on available data that align with the following core ecosystem accounts:

• Ecosystem extent accounts organize data on the size and location of different types of ecosystems. They provide information on the composition of ecosystems within a country and their change over time. Ecosystems are defined by the interaction of their biotic and abiotic components including climate, topography, soils, vegetation, soil moisture, hydrology and species. However, the use of data on land cover and land use provide an operational way to delineate ecosystems and assess change.

³ United Nations, 2021.

- Ecosystem condition accounts organize biophysical data on the quality of ecosystems and provide information on how ecosystem condition is changing over time. These accounts use a number of different variables or indicators to report on selected abiotic and biotic ecosystem condition characteristics (e.g., species, vegetation, landscape pattern, soil and water characteristics), organized into six classes: physical, chemical, compositional, structural and functional state or landscape and seascape characteristics. Ecosystem condition accounts cover the ecosystem types included in the extent accounts.
- Ecosystem services supply and use accounts report flows of ecosystem services supplied by ecosystems and used by economic units (e.g., households, industry). They provide insights on the ecosystem benefits used and enjoyed by people and which contribute to individual and societal well-being. These accounts can be compiled in physical or monetary terms.

For more information, see: <u>Canadian System of Environmental-Economic Accounting – Ecosystem Accounts</u> (5331)

This report provides a number of new assessment approaches to help measure progress against United Nations Sustainable Development Goals. It complements reporting for <u>SDG 13 - Climate Action</u>, <u>14 - Life Below Water</u> and <u>15 - Life on Land</u>.

Geographic units:

Much of the analysis on the extent and condition of terrestrial ecosystems is reported here at the ecoprovince level of the <u>Ecological Land Classification, 2017</u> (Map 1.1). Canada's 53 ecoprovinces are characterized by major assemblages of structural or surface forms, faunal realms, vegetation, hydrology, soil and macro climate and are a subdivision of larger ecozones.

Data on marine and coastal ecosystem are reported by marine ecoregion, which are ecologically defined regions of Canada's oceans.⁴

Data on freshwater ecosystems are reported at the drainage region level of the <u>Standard Drainage Area</u> <u>Classification</u>, 2003, which aggregates sub-sub-drainage areas into 25 regions flowing into five ocean drainage areas.

Urban-related data may be aggregated for population centres and for selected census metropolitan areas or census agglomerations.⁵

Data on ecosystem services are reported at the national level and by province, ecozone or population centre, where available.

Fisheries and Oceans Canada, 2016, Federal Marine Bioregions, https://open.canada.ca/data/en/dataset/23eb8b56-dac8-4efc-be7c-b8fa11ba62e9 (accessed January 29, 2019).

⁵ Statistics Canada, 2017, Dictionary, Census of Population, 2016, https://www12.statcan.gc.ca/census-recensement/2016/ref/dict/index-eng.cfm (accessed January 29, 2019).

Map 1.1

Arctic Cordillera

1.1 Northern Arctic Cordillera 1.2 Southern Arctic Cordillera

Northern Arctic

- 2.1 Sverdrup Islands
- 2.2 Ellesmere Basin 2.3 Victoria Lowlands
- 2.4 Parry Channel Plateau
- 2.5 Boothia–Foxe Shield
- 2.6 Baffin Uplands
- 2.7 Foxe-Boothia Lowlands

Southern Arctic

- 3.1 Amundsen Lowlands 3.2 Keewatin Lowlands
- 3.3 Ungava-Belcher

Taiga Plains

- 4.1 Mackenzie Foothills 4.2 Great Bear Lowlands
- 4.3 Hay-Slave Lowlands

Taiga Shield

- 5.1 Western Taiga Shield 5.2 Eastern Taiga 5.3 Labrador Uplands
- 5.4 Whale River Lowland

Boreal Shield

- 6.1 Western Boreal Shield
- 6.2 Mid-Boreal Shield
- 6.3 Eastern Boreal Shield
- 6.4 Newfoundland
- 6.5 Lake of the Woods

6.6 Southern Boreal Shield

Atlantic Maritime

- 7.1 Appalachian-Acadian
- Highlands

7.2 Northumberland Lowlands 7.3 Fundy Uplands

Mixedwood Plains 8.1 Great Lakes-St. Lawrence Lowlands

8.2 Huron-Erie Plains

Boreal Plains

9.1 Boreal Foothills 9.2 Central Boreal Plains 9.3 Eastern Boreal Plains

Prairies 10.1 Eastern Prairies 10.2 Parkland Prairies 10.3 Central Grassland

Taiga Cordillera

- 11.1 Northern Yukon Mountains
- 11.2 Old Crow-Eagle Plains
- 11.3 Ogilvie Mountains
- 11.4 Mackenzie-Selwyn Mountains

Boreal Cordillera

- 12.1 Wrangel Mountains 12.2 Northern Boreal Cordillera
- 12.3 Southern Boreal Cordillera
- 12.4 Western Boreal Cordillera

Pacific Maritime

13.1 Georgia Depression

Montane Cordillera

- 14.3 Southern Montane Cordillera
- 14.4 Columbia Montane Cordillera

15.2 Hudson-James Lowlands

Marine ecoregion Strait of Georgia 1

- 2 Southern Shelf
- Offshore Pacific 3
- 4 Northern Shelf 5 Arctic Basin
- 6
- Western Arctic 7 Arctic Archipelago
- Eastern Arctic
- 9 Hudson Bay Complex
- 10 Newfoundland-Labrador Shelves
- 11 Scotian Shelf
- 12 Gulf of St. Lawrence

- 8

13.2 Southern Coastal Mountains 13.3 Northern Coastal Mountains

- 14.1 Northern Montane Cordillera
- 14.2 Central Montane Cordillera

Hudson Plains

15.1 Hudson Bay Coastal Plains

Data quality and fitness for use

Data for this report were gathered from a variety of sources. There were data gaps and differences in definitions, spatial and temporal coverage and resolution and methods, all of which can increase uncertainty in the estimates and limit comparability across space and time.

This report provides a high-level overview of these issues by applying concepts from the newly adopted System of Environmental-Economic Accounting – Ecosystem Accounting framework. While this report presents some of the latest statistics available on many subjects, new data and improved methodologies will continue to be integrated to improve the quality of the ecosystem accounts.

Further details on the sources, methodology, limitations and data gaps are available in Appendix A.

2.0 Ecosystem extent and drivers of change

Canada is a vast country, the second largest in the world. Canada's terrestrial and freshwater area extends across 9.98 million km² while its jurisdiction over the ocean includes 5.75 million km² within the limit of its exclusive economic zone (EEZ), and a total of 7.1 million km² including jurisdiction over the seabed and subsoil of the extended continental shelf of the Arctic and Atlantic oceans.⁶

Many different ecosystems occupy Canada's land, freshwater and seascapes. Temperate and boreal forests, peatlands, tundra, alpine meadows, temperate grasslands, coastal wetlands and coral reefs can be delineated based on the interaction of biological communities of organisms and their environment. Characteristics such as climate, topography, soils, vegetation, wildlife and human activity interact and can be used to define the extent of terrestrial ecosystems at different scales. For marine and coastal ecosystems, climate, biota, currents, seafloor substrate, and horizontal and vertical zonation—the distance from the coast and depth in the water column—can be important components that help define ecosystem areas. Some of these characteristics are relatively fixed and change only slowly, but others can change rapidly, reflecting changes in land use and other pressures.

Human activity and land use change have greatly altered many of Canada's natural ecosystems. Major changes in Canada's landscapes occurred following European colonization including draining wetlands and clearing woodlands for agriculture and the establishment of settlements along waterways and rail lines, near harbours and on fertile lands. The loss of free-roaming plains bison to hunting and the opening of the Prairies to agriculture in the late 1800s altered the native grasslands and plains.⁷ Natural forests have increasingly been converted to managed forests over the past century, with impacts on biodiversity and the loss of many old growth forests.⁸

Land use changes occur as a result of changes in patterns of human activity. Some examples include urban expansion into nearby agricultural, forest or wetland areas at the periphery of cities and the conversion of forests to agricultural land. Industrial activities such as forestry, mining and oil exploration can cause deforestation and ecosystem fragmentation in more remote areas of the country.⁹ Human consumption and production activities also drive local and global ecosystem change.¹⁰ For example, emissions released from human activities can affect the quality of air, water and land and influence the global climate system. Climate change is increasingly impacting ecosystem functions and the health and distribution of many plant and animal species across the country.¹¹

This report brings together consistent statistics from many sources to map and describe the extent of Canada's ecosystems and changes in ecosystem condition and services that will affect the health of the economy, society and human well-being.

⁶ Fisheries and Oceans Canada, 2018, Oceans Collaboration, https://www.dfo-mpo.gc.ca/oceans/collaboration/international-eng.html (accessed August 10, 2020); Fisheries and Oceans Canada, 2011, Defining Canada's Maritime Zones, Catalogue no. Fs23-571/2011E, http://publications.gc.ca/collections/collection_2012/mpo-dfo/Fs23-571-2011-eng.pdf (accessed August 10, 2020).

⁷ Wiken, E., et al., 1996, *A Perspective on Canada's Ecosystems*, Canadian Council on Ecological Areas, No. 14, Ottawa.

⁸ Waldron K., et al., 2020, "Ecological issues related to second-growth boreal forest management in eastern Quebec, Canada: Expert perspectives from a Delphi process," Forest Ecology and Management, Vol. 470-471, no. 118214, <u>https://doi.org/10.1016/j.foreco.2020.118214</u> (accessed July 5, 2020); Didion, M., et al., 2007, "Forest age structure as indicator of boreal forest sustainability under alternative management and fire regimes: A landscape level sensitivity analysis," Ecological Modelling, Vol. 200, no. 1-2, <u>https://doi.org/10.1016/j.ecolmodel.2006.07.011</u> (accessed July 5, 2020).

⁹ Statistics Canada, 2016, "The changing landscape of Canadian metropolitan areas," *Human Activity and the Environment*, Catalogue no. 16-201-X, <u>https://www150.statcan.gc.ca/n1/pub/16-201-x/16-201-x2016000-eng.htm</u>; Statistics Canada, 2018, "Forests in Canada," *Human Activity and the Environment*, Catalogue no. 16-201-X, <u>https://www150.statcan.gc.ca/n1/pub/16-201-x/16-201</u>

¹⁰ IPBES, 2019, Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, S. Díaz, et al., (eds.), Bonn, Germany, https://doi.org/10.5281/zenodo.3553579 (accessed December 10, 2020); McGranahan, G., et al., 2005, "Chapter 27 Urban systems," Ecosystems and Human Well-being: Current State and Trends, Vol. 1, R. Hassan, R. Scholes and N. Ash, (eds.) Millennium Ecosystem Assessment, https://www.millenniumassessment.org/en/Condition.html (accessed December 10, 2020); McGranahan, G., et al., 2005, "Chapter 27 Urban systems," Ecosystems and Human Well-being: Current State and Trends, Vol. 1, R. Hassan, R. Scholes and N. Ash, (eds.) Millennium Ecosystem Assessment, https://www.millenniumassessment.org/en/Condition.html (accessed December 15, 2018).

¹¹ McKenney, D., et al., 2014, "Change and evolution in the plant hardiness zones of Canada," *BioScience*, Vol. 64, no. 4, pp. 341-350, https://doi.org/10.1093/biosci/biu016 (accessed April 20, 2020); Pitman, K., et al., 2020, "Glacier retreat and Pacific salmon," *BioScience*, Vol. 70, no. 3, pp. 220-236, https://doi.org/10.1093/biosci/bia015 (accessed January 29, 2021); Rowland, E. L., et al., 2016, "Examining climate-biome ("cliome") shifts for Yukon and its protected areas," *Global Ecology and Conservation*, Vol. 8, pp. 1-17, https://doi.org/10.1016/j. gecco.2016.07.006 (accessed January 29, 2021); Beaubien, E. and A. Hamann, 2011, "Spring flowering response to climate change between 1936 and 2006 in Alberta, Canada," *BioScience*, Vol. 61, no. 7, pp. 514-524, https://doi.org/10.1525/bio.2011.61.7.6 (accessed February 10, 2021).

2.1 Terrestrial and freshwater ecosystems

Canada has some of the largest forest, tundra, prairie, wetland and freshwater ecosystems in the world (Map 2.1). Overall, approximately 36% of the country is covered by forest, 25% by arctic tundra, 4% by grassland including natural pasture or rangeland, 2% by permanent snow and ice cover and 28% by other natural and semi-natural areas such as woodland, shrubland, alpine tundra, barrenland, wetland and water (Table 2.1). In 2016, 4% of the country was used for growing crops and tame or seeded pastures and in 2015, 0.6% was covered by built-up and artificial surfaces used for settlements, transportation and other infrastructure.

Notes: Ecosystem data here represent the latest comprehensive and comparable estimates for the country for the time period the data were developed. Data for built-up areas are from 2010. Peatlands are shown on the map where more than 50% of the soil landscape polygon is classified as peatland. Sources: Beaudoin, A., et al., 2017, Species composition, forest properties and land cover types across Canada's forests at 250 m resolution for 2001 and 2011, Natural Resources Canada (NRCan), Canadian Forest Service, Laurentian Forestry Centre; Agriculture and Agri-Food Canada (AAFC), 2020, Annual Crop Inventory, 2014-2016; NRCan, Canada Centre for Mapping and Earth Observation, 2020, 2010 and 2015 Land Cover of North America at 30 metres, Ed. 2.0, Commission for Environmental Cooperation (CEC), North American Land Change Monitoring System; Baldwin, K., et al., 2018, Vegetation Zones of Canada: a Biogeoclimatic Perspective [Map], Scale 1:5,000,000, NRCan, CFS; Tarnocai, C., I.M. Kettles, B. Lacelle, 2011, Peatlands of Canada, Geological Survey of Canada; AAFC, 2015, Land Use, 1990, 2000 & 2010.

Freshwater covers an estimated 1.3 million km²—13% of the country's landscape including the Great Lakes. The area of these water courses and water bodies fluctuates depending on the season and weather conditions. For example, in summer, snowmelt contributes to the formation of shallow lakes in tundra areas, while in the Prairies, pothole wetlands that fill with water in the spring may disappear later in summer. Seasonal and inter-annual fluctuations can make it difficult to discern shifts in the extent of freshwater areas. The Great Lakes—the largest freshwater lake system in the world—straddle the Canada–United States border and cover an area of approximately 90,000 km² in Canada.¹²

Canada's boreal zone is a vast expanse of sub-arctic forest, woodland, heathland, grassland, wetland and water stretching across 5.5 million km² from Newfoundland and Labrador to the Yukon. The vegetation is shaped by the cold climate conditions, with winter temperatures that can consistently reach -40°C and below, and fire—the chief natural disturbance.¹³ From north to south, boreal forests transition from forest-tundra zones, to open forests, to closed forest and cover close to 2.8 million km². Spruce (picea) are the dominant genus of trees in the boreal zone, with open spruce-lichen forests providing important habitat for caribou.¹⁴ Other trees include cold-hardy varieties of poplar, birch, fir and pine.¹⁵ Extensive organic wetland areas, known as peatlands, with sporadic and patchy permafrost areas, ¹⁶ have formed in lowland areas of the boreal zone, particularly surrounding Hudson Bay and Great Slave Lake. These bogs and fens, covered in sphagnum moss, lichens, shrubs and spruce trees, extend across approximately 1.1 million km² or about 11% of the total area of the country.

A greater diversity of vegetation is found in the cool temperate forests south of the boreal zone that collectively cover approximately 8% of the country. These include the largely coniferous rainforest, dry, montane and subboreal forests in coastal British Columbia and cordilleran British Columbia and Alberta; the Eastern mixed Great--Lakes and St. Lawrence forests and deciduous Carolinian forests of Central Canada and southwestern Ontario; and the mixed Acadian forest in the Maritimes.¹⁷

Forests are affected by natural disturbances such as insect infestation, disease, fire and windthrow, as well as by timber harvesting, forest management practices and land use decisions. Much of Canada's temperate forest and the southern parts of the boreal forest are managed for timber production, with harvesting and regeneration timed to produce a sustainable forest yield as forests mature.¹⁸ Overall, Canada's forest area is relatively stable—from 1990 to 2018, 0.4% of forests were deforested and converted to other uses, including agriculture, roads, hydro-electric reservoirs and urban areas.¹⁹

Tundra ecosystems are treeless areas of dwarf shrub and other low-lying sedges, mosses and lichen that have developed north of the boreal zone and in alpine regions at higher elevation. Arctic tundra experiences extremely low winter temperatures and low precipitation and has extensive permafrost soils that store vast amounts of organic carbon. In summer, the active or top layer of this soil thaws, developing into lakes and marshy areas and releasing methane and carbon from decomposing plant material. Arctic tundra, including rocky barrenland, covers an estimated 2.5 million

¹² International Boundary Commission, 2018, Canada / United States of America Boundary Dataset, http://www.internationalboundarycommission.org/en/maps-coordinates/coordinates.php (accessed February 2, 2021); Great Lakes Commission, 2012, Great Lakes Boundaries, https://www.glc.org/greatlakesgis (accessed February 2, 2021).

¹³ Brandt, J.P., 2009, "The extent of the North American boreal zone," *Environmental Reviews*, Vol. 17, <u>https://doi.org/10.1139/A09-004</u> (accessed October 10, 2017); Brandt, J.P., et al., 2013, "An introduction to Canada's boreal zone: ecosystem processes, health, sustainability, and environmental issues," *Environmental Reviews*, Vol. 21, no. 4, <u>https://doi.org/10.1139/er-2013-0040</u> (accessed October 10, 2017).

¹⁴ Federal, Provincial and Territorial Governments of Canada, 2010, Canadian Biodiversity: Ecosystem Status and Trends 2010, Canadian Councils of Resource Ministers, https://biodivcanada.chm-cbd.net/ecosystem-status-trends-2010/forests (accessed October 10, 2017).

¹⁵ Brandt, J.P., 2009; Canada's National Forest Inventory, 2013, Table 14.2. Area (1000 ha) of forest land by species group, age class and boreal zone in Canada, 2006 revised baseline, Version 3, December 2013, https://nfi.nfis.org/resources/general/summaries/en/html/BOR3_T14_LSAGE20_AREA_en.html (accessed June 18, 2020).

¹⁶ Tarnocai, C., 2009, "The impact of climate change on Canadian peatlands," Canadian Water Resources Journal, Vol. 34, no. 4, <u>https://doi.org/10.4296/cwrj3404453</u> (accessed October 10, 2017); Statistics Canada, 2013, "Measuring ecosystem goods and services," Human Activity and the Environment, Catalogue no. 16-201-X; Smith, S., 2010, "Trends in permafrost conditions and ecology in northern Canada," Canadian Biodiversity: Ecosystem Status and Trends 2010, Technical Thematic Report No. 9, Canadian Councils of Resource Ministers, https://biodivcanada.chm-cbd.net/ecosystem-status-trends-2010/technical-report-9 (accessed June 18, 2020).

¹⁷ Natural Resources Canada, 2017, Forest Classification, https://www.nrcan.gc.ca/our-natural-resources/forests-forestry/sustainable-forest-management/measuring-reporting/forestclassification/13179#regions (accessed October 10, 2017); Rowe, J.S., 1972, Forest Regions of Canada, Department of the Environment, Canadian Forestry Service, Catalogue Fo47-1300, https://cfs.nrcan.gc.ca/pubwarehouse/pdfs/24040.pdf (accessed June 1, 2020); Baldwin, K., et al, 2018, Vegetation Zones of Canada: A Biogeoclimatic Perspective, Natural Resources Canada, Canadian Forest Service, http://cnvc-cnvc.ca/page.cfm?page=2306 (accessed June 1, 2020).

¹⁸ Natural Resources Canada, 2019, "Canada's forests: Managing for the future," The State of Canada's Forests 2019, <u>https://www.nrcan.gc.ca/sites/www.nrcan.gc.ca/files/forest/sof2019/map/Map_EN_w1140px.jpg</u> (accessed June 9, 2020).

¹⁹ Natural Resources Canada, 2020, *The State of Canada's Forests 2020*, https://www.nrcan.gc.ca/our-natural-resources/forests-forestry/state-canadas-forests-report/16496 (accessed December 8, 2020).

km² of Canada's North and additional areas of alpine tundra occur at elevation in the Rocky and Coast Mountains ranges. Areas of permanent snow and ice also occur in the Arctic Cordillera and at high elevation in Canadian mountain ranges, covering over 200,000 km² or about 2% of Canada's total area.²⁰

Grassland ecosystems developed south of the boreal zone, in the Canadian Prairie provinces, east of the Rockies and in the dry valleys of southern interior British Columbia. The Prairies also include hundreds of thousands of small wetlands known as Prairie potholes that are important for local hydrology and provide habitat for waterfowl,²¹ as well as wooded parkland areas that are a transition area between the grasslands and the boreal forest. The dominant grass and forb vegetation of these grasslands developed under cold and dry climate conditions and was maintained by fire and grazing. These ecosystems are among the most altered in North America, with little of the original grassland remaining.²² Prairie grasslands developed fertile and humus-rich soils from the extensive plant root systems, though a significant proportion of this soil organic matter was lost during the conversion of grassland to agriculture,²³ now the dominant land use. Much of the wetland area has also been drained and converted to agricultural use. In 2016, 65% of the Parkland Prairies ecoprovince was used for arable agriculture,²⁴ followed by 60% in the Central Grassland and 54% in the Eastern Prairies, though additional grassland areas were used as natural pasture and rangeland.

Agriculture is also a major land use outside the Prairies, particularly in the Huron–Erie plains and Great Lakes–St. Lawrence Lowlands ecoprovinces, where arable land accounted for 58% and 39%, respectively, of the total area in 2016. It also contributed a significant but smaller share of the Central Boreal Plains ecoprovince (15%) and Eastern Boreal Plains (5%), the Northumberland Lowlands (7%) and Appalachian–Acadian Highlands (5%) in the Maritimes and Georgia Depression (5%) in British Columbia.

Humans are a part of Earth's ecosystems, exerting substantial pressures and influencing ecosystem processes and functions.²⁵ Urban development and industrial activity can dramatically alter the surrounding landscape. For example, land use change around cities is a direct driver of change causing permanent shifts from forest or agro-ecosystems to urban areas. Most settlement and human infrastructure is located in the south of the country, where the majority of people live (Table 2.2). Only seven ecoprovinces had a population of over one million people in 2016 and much of the country remains sparsely populated. Other built-up area is associated with resource extraction and industry use, including mines and oil and gas infrastructure.

In 2015, 62,600 km² of Canada's landscape was built-up and artificial surface associated with settlements and infrastructure, up 11% from 56,400 km² in 2000.²⁶

Ecoprovinces with the highest percentage of built-up and artificial surfaces are the Huron-Erie Plains at 19%, Georgia Depression at 11% and the Great Lakes–St. Lawrence Lowlands at 10% in 2010. These three ecoprovinces include Montréal, Ottawa, Vancouver, Toronto and other large urban population centres and are home to over 62% of the

²⁰ Natural Resources Canada, Canada Centre for Remote Sensing, U.S. Geological Survey and Comisión National para el Conocimiento y Uso de la Biodiversidad, Comisión National Forestal and Instituto National de Estadística y Geografía, 2020, 2010 and 2015 Land Cover of North America at 30 metres, Ed. 2., North American Land Change Monitoring System, Commission for Environmental Cooperation (CEC), North American Land Change Monitoring System, <u>http://www.cec.org/north-american-environmental-atlas/land-cover-30m-2015-landsat-and-rapideye/</u> (accessed December 9, 2020); Natural Resources Canada, 2019, Glaciers, <u>https://www.nrcan.gc.ca/environment/science/indicators-change/glaciers/11005</u> (accessed October 13, 2020).

²¹ Statistics Canada, 2013, "Measuring ecosystem goods and services," *Human Activity and the Environment*, Catalogue no. 16-201-X, Millett, B., et al., 2009, "Climatic trends of the North American Prairie Pothole Region, 1906-2000," *Climatic Change*, Vol. 93, pp. 243-267, <u>https://doi.org/10.1007/s10584-008-9543-5</u> (accessed June 19, 2020); Fang, X., et al., 2007, *A Review of Canadian Prairie Hydrology: Principles, Modelling and Response to Land Use and Drainage Change*," Centre for Hydrology Report #2, University of Saskatchewan, https://research-groups.usask.ca/hydrology/documents/reports/chrpt02 prairie-hydrology-review oct07.pdf (accessed December 3, 2020).

²² Federal, Provincial and Territorial Governments, 2010, Canadian Biodiversity: Ecosystem Status and Trends, 2010, Canadian Councils of Resource Ministers, Ottawa; Bailey, A.W., D. McCartney and M.P. Schellenberg, 2010, Management of Canadian Prairie Rangeland, Agriculture and Agri-Food Canada, Catalogue no. 10144, http://www.publications.gc.ca/site/eng/377157/ publication.html (accessed December 10, 2020).

²³ Canadian Society of Soil Science, 2020, "Chernozemic," Soils of Canada, https://soilsofcanada.ca/orders/chernozemic-soils.php (accessed June 8, 2020); Ogle, S.M., et al., 2018, "Delineating managed land for reporting national greenhouse gas emissions and removals to the United Nations framework convention on climate change," Carbon Balance and Management, Vol. 13, no. 9, https://doi.org/10.1186/s13021-018-0095-3 (accessed April 9, 2021); Wiken, E., et al., 1996.

²⁴ Excludes natural land for pasture, wetlands and woodlands and other land (e.g., idle land, land occupied by farm buildings) on farms.

²⁵ IPBES, 2019; Millennium Ecosystem Assessment, 2005, *Ecosystem and Human Well-being: Synthesis*, Island Press, Washington, DC. <u>https://www.millenniumassessment.org/en/Synthesis.html</u> (accessed December 15, 2018).

²⁶ The 2015 ecoprovince estimates are not available for built-up and artificial surfaces.

population of Canada. Populations in urban areas rely heavily on ecosystem services generated elsewhere, as cities themselves occupy relatively little area while housing the majority of the population. In 2016, 81% of the population lived in population centres, the majority in large urban centres with a population greater than 100,000.²⁷

The largest increases in built-up and artificial surfaces at the ecoprovince-level from 2000 to 2010 occurred in the Southern Boreal Shield, Central Boreal Plains and Great Lakes–St. Lawrence ecoprovinces. These three ecoprovinces accounted for more than half of the increase in built-up area over this period.

2.2 Marine and coastal ecosystems

Defining the extent of ecosystems in the ocean can be complicated. In all but the shallowest waters, surveying the ocean bottom in detail requires either diving or sending camera probes, though technologies such as sonar are increasingly being explored. Parts of the ocean are less well known than the surface of the moon because of the high pressures and almost freezing temperatures experienced at depth.²⁸ Canada's EEZ is approximately 5 km deep at its deepest, presenting a major challenge in mapping our ocean territory. Our knowledge about marine and coastal ecosystems—their locations, size and condition—is incomplete, particularly in arctic regions.

Measuring the depth of water above the seafloor—known as bathymetry—indicates the potential location of different types of ocean ecosystems. Sunlight, which plays a large role in determining where animals, plants and other biota live, will not penetrate much further than 200 m,²⁹ though small amounts may reach as deep as 1,000 m. Other bottom characteristics such as terrain ruggedness, slope and substrate can indicate favourable locations for different ocean habitats³⁰ and vegetation covers, as well as susceptibility to harm from changing ocean conditions, large storm events or human activities and modifications.

Areas with water depths down to 200 m, in particular shallower coastal areas, are the main regions of the ocean capable of supporting photosynthesizing plants. Many important ecosystems, such as saltmarshes, seagrass meadows and kelp forests are mainly found in coastal areas with water depths of 50 m or less (Map 2.2 and Table 2.3). While not all coastal ecosystems are fully mapped, estimates of saltmarsh extent indicate that at least 1,114 km² of these intertidal ecosystems exist, while seagrass meadows and kelp forests respectively cover an estimated 1,429 km² and 634 km² of seabed (Map 2.3 and Table 2.4). These ecosystems are biodiversity hot spots and important carbon sinks.³¹

²⁷ Population centres have a population of at least 1,000 and a population density of 400 persons or more per square kilometre. All areas outside population centres are classified as rural areas. In 2016, large urban population centres with 100,000 persons or more accounted for 73% of the population centre total. Statistics Canada, 2017, Population and Dwelling Count Highlight Tables, 2016 Census, Catalogue no. 98-402-X2016001, https://www12.statcan.gc.ca/census-recensement/2016/dp-pd/hlt-fst/pd-pl/index-eng.cfm (accessed September 18, 2020).

²⁸ Copley, J., 2014, "Just How Little Do We Know about the Ocean Floor," The Conversation UK, October 9, 2014, <u>https://theconversation.com/just-how-little-do-we-know-about-the-ocean-floor-32751</u> (accessed March 30, 2020).

²⁹ National Oceanic and Atmospheric Administration, 2020, "How far does light travel in the ocean?," *Ocean Facts*, <u>https://oceanservice.noaa.gov/facts/light_travel.html</u> (accessed March 30, 2020).

³⁰ Wölfl, A., et al., 2019, "Seafloor mapping – The challenge of a truly global ocean bathymetry," *Frontiers in Marine Science*, <u>https://doi.org/10.3389/fmars.2019.00283</u> (accessed March 30 2020).

³¹ Commission for Environmental Cooperation (CEC), 2016, North America's Blue Carbon: Assessing Seagrass, Salt Marsh and Mangrove Distribution and Carbon Sinks, Montréal, Canada, 54pp, http://www3.cec.org/islandora/en/item/11664-north-america-s-blue-carbon-assessing-seagrass-salt-marsh-and-mangrove-en.pdf (accessed July 24, 2020); Krause-Jensen, D. and C.M. Duarte, 2016, "Substantial role of macroalgae in marine carbon sequestration," *Nature geosci*, Vol. 9, pp. 737-742, https://doi.org/10.1038/ngeo2790 (accessed July 26, 2020); Hyman, A. C., et al., 2019, "Long-term persistence of structured habitats; seagrass meadows as enduring hotspots of biodiversity and faunal stability," *Royal Society*, Vol. 286, no. 1912, https://doi.org/10.1098/rspb.2019.1861 (accessed July 26, 2020); National Oceanic and Atmospheric Administration, 2019, *What is Kelp Forest?*, https://ceanservice.noaa.gov/facts/kelp.html (accessed July 26, 2020); National Oceanic and Atmospheric Administration, 2019, *What is Kelp Forest?*, https://ceanservice.noaa.gov/facts/kelp.html (accessed July 26, 2020); National Oceanic and Atmospheric Administration, 2019, *What is Kelp Forest?*, https://ceanservice.noaa.gov/facts/kelp.html (accessed July 26, 2020); National Oceanic and Atmospheric Administration, 2019, *What is Kelp Forest?*, https://ceanservice.noaa.gov/facts/kelp.html (accessed July 26, 2020)

Map 2.2

Marine and coastal extent, by depth class, elevation features and marine ecoregion

Notes: This map classifies areas of Canada's exclusive economic zone (EEZ) by their maximum water depth. Areas classed as coastal have a maximum depth of 50 m, the epipelagic class has depths from 50 m to 200 m, the mesopelagic class has depths from 200 m to 1,000 m, the bathypelagic class has depths of 1 km to 4 km and the abyssalpelagic class includes all areas with depths of more than 4 km. Sources: GEBCO Compilation Group, 2015, GEBCO 2014 Grid, version 20150318; Yesson, C., et al., 2011 "The global distribution of seamounts based on 30-second bathymetry data." Deep Sea Research Part1: Oceanoraphic Research Papers. Vol 58, pp. 442-453.

19 / Human Activity and the Environment

16-201-X — Statistics Canada

Marine and coastal ecosystem extent: ecosystems and substrate, southern British Columbia coast

Sources: McOwen, C., et. al., 2017, "A global map of saltmarshes," *Biodiversity Data Journal*, Vol. 5: e11764; B.C. Ministry of Forests, Lands, Natural Resources Operations and Rural Development, 2019, *Kelp Beds - Coastal Resource Information Management System (CRIMS), GeoBC;* Freiwald, A., et. al., 2017, "Global distribution of cold-water corals (version 5.0)," Fifth update to the dataset in Freiwald, et. al., 2004, by UNEP-WCMC, in collaboration with A Freiwald and J. Guinotte, Cambridge (UK): UN Environment World Conservation Monitoring Centre; Fisheries and Oceans Canada, 2016, *Oceans Act Marine Protected Areas;* Fisheries and Oceans Canada, 2017, *Other Effective Area-Based Conservation Measures;* B.C. Ministry of Forests, Lands, Natural Resource Operations and Rural Development, 2019, *Eelgrasses - Coastal Resource Information Management System (CRIMS), GeoBC;* Personal communication with Brett Painter, Environment and Climate Change Canada, June 21, 2019; Personal communication with Heike Lotz, Dalhousie University, June 21, 2019; Personal communication with John Cristiani and Mary O'Connor, University of British Columbia, June 14, 2019; UNEP-WCMC and F.T. Short, 2018, *Global Distribution of Seagrasses (version 6.0),* Sixth update to the data layer used in Green and Short, 2003, Cambridge, (UK): UN Environment World Conservation Monitoring Centre; Gregr, E. J., J. Lessard and J. Harper, 2013, "Pacific data from a spatial framework for representing nearshore ecosystems," *Progress in Oceanography,* Vol. 1153, p. 189-201; Ministry of Forest, Lands, Natural Resource Operations and Rural Development, System (*CRIMS), GeoBC*.

Map 2.3

Most of the world's major fisheries, such as herring, anchovy, sardine and cod, also occur in waters in the most shallow (epipelagic) depth range of 0 to 200 m. Almost 47% of the extent of Canada's EEZ has seafloor depths in this range, while another 25% can be classed as mesopelagic, with depths from 200 m to 1000 m. Waters at this depth have diminishing levels of light as depth increases and host a diverse range of species adapted to a low-light environment.

Areas with deeper (bathylpelagic) waters have depths between I km and 4 km. The seafloor in these areas receives no sunlight and experiences higher pressures and colder temperatures. Some cold-water corals grow at depths up to 2.5 km on the East Coast of Canada and can be hundreds of years old, though they can also be found in shallower waters on both the east and west coasts.³² Coral reefs are important ecosystems for biodiversity, providing a home for a diverse population of fish and bottom dwellers. These reefs are fragile and susceptible to damage from human activities, such as fishing and oil extraction, as well as climate change due to the temperature requirements of some species.³³ Squid, large whales and octopuses can also be found at these depths. Slightly more than a quarter of Canada's EEZ has depths in this zone, in particular the Offshore Pacific and Arctic Basin marine ecoregions.

On the East Coast there are small areas of very deep (abyssalpelagic) waters with depths greater than 4 km in the offshore areas of the Scotian Shelf and Newfoundland Shelf marine ecoregions. These regions cover 2% of Canada's total EEZ. These deeper areas sometimes also have shallower regions known as sea knolls or seamounts that can occur in areas of high ruggedness and slope. Sea knolls and seamounts can be rich in biodiversity since the mixing of water and nutrients that occurs at these locations provides food for many species and are therefore a potential focus for conservation efforts.³⁴ The Pacific waters in Canada's EEZ have the highest proportion of rugged territory and thus a higher density of seamounts and sea knolls (Table 2.5).

Textbox: Impact of a changing climate on ecosystems and on ecosystem conditions

Climate is a key characteristic affecting the development of different ecosystems (Table 2.6 and 2.7). In Canada, warming temperatures and changing precipitation patterns have led to changes in the condition and functioning of ecosystems. Arctic tundra and boreal ecosystems are experiencing changing conditions including permafrost thaw and the development of thermokarst topography.³⁵ These changes affect the stability of roads and infrastructure in the North,³⁶ freshwater flows,³⁷ and greenhouse gas releases from thawing peatlands.³⁸ Forest ecosystems are experiencing changes in disturbance regimes and species ranges, including shrub densification in the transition between boreal and tundra ecosystems.³⁹

³² Fisheries and Oceans Canada, 2019, Oasis of the deep: Cold Water Corals of Canada, http://www.science.gc.ca/eic/site/063.nsf/eng/h_EE39B64D.html (accessed February 21, 2020).

³³ Fisheries and Oceans Canada, 2019; Smithsonian, 2018, Deep Sea Corals, https://ocean.si.edu/ecosystems/coral-reefs/deep-sea-corals (accessed May 28, 2020).

³⁴ National Oceanic and Atmospheric Administration, n.d., "Why are seamounts 'hotspots' for biodiversity?," *Ocean Exploration Facts*, <u>https://oceanexplorer.noaa.gov/facts/seamounts-biodiv.</u> <u>html</u> (accessed March 30, 2020).

³⁵ Derksen, C., et al., 2019, "Changes in snow, ice, and permafrost across Canada," Canada's Changing Climate Report, Bush, E. and D.S. Lemmen (eds.), Government of Canada, Ottawa, Ontario, pp. 194-260, https://changingclimate.ca/CCCR2019/chapter/5-0/ (accessed June 26, 2020); Turetsky, M.R., et al., 2020, "Carbon release through abrupt permafrost thaw," Nature Geoscience, Vol. 13, pp. 138-143, https://doi.org/10.1038/s41561-019-0526-0 (accessed February 10, 2021).

³⁶ Derksen, C., et al., 2019.

³⁷ Chesnokova, A., et al., 2020, "Linking mountain glacier retreat and hydrological changes in southwestern Yukon," Water Resources Research, Vol. 56, no.1, <u>https://doi.org/10.1029/2019WR025706</u> (accessed February 10, 2021); Shugar, D., et al., 2017, "River piracy and drainage basin reorganization led by climate-driven glacier retreat," Nature Geoscience, Vol. 10, pp. 370-375, <u>https://doi.org/10.1038/ngeo2932</u>, (accessed February 10, 2021).

³⁸ Tarnocai, C., 2009, "The impact of climate change on Canadian peatlands," *Canadian Water Resources Journal*, Vol. 34, no 4, pp. 453-466, <u>https://doi.org/10.4296/cwrj3404453</u> (accessed October 10, 2017); Turetsky, M.R., et al., 2020, "Carbon release through abrupt permafrost thaw," *Nature Geoscience*, Vol. 13, pp. 138-143, <u>https://doi.org/10.1038/s41561-019-0526-0</u> (accessed February 10, 2021).

³⁹ Scholes, J. R., et al., 2014, "Terrestrial and inland water systems," Climate Change 2014: Impacts, Adaptation, and vulnerability: Part A: Global and Sectoral Aspects, Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Field, C. B., et al. (eds.), <u>https://www.ipcc.ch/site/assets/uploads/2018/02/WGIIAR5-Chap4_FINAL.pdf</u> (accessed December 1, 2020); Natural Resources Canada, 2020, Distribution of tree species, <u>https://www.nrcan.gc.ca/climate-change/impacts-adaptations/climate-change-impactsforests/forest-change-indicators/distribution-tree-species/17778</u> (accessed July 27, 2020).

Changing snowfall patterns and glacier melt, as well as shorter snow and ice cover seasons, affect the timing and peak of streamflow, leading to reduced summer streamflows in some areas.⁴⁰ Temperature and precipitation changes can impact water availability for agriculture and household water use, and affect the frequency or severity of events such as drought, flood and fires. Increases in extreme events could have more localized impacts such as landslides, stormwater runoff in urban areas and sanitary sewer overflows into water bodies and the environment.⁴¹ Changes in climate are also driving changes in Canada's oceans, with observed changes in physical and chemical characteristics such as sea surface temperature, salinity, density stratification, acidification, dissolved oxygen and sea level.⁴² Over time, these types of changing conditions may be reflected in changes in the extent and location of different ecosystems.

From 1948 to 2016, all areas of Canada's landmass experienced increases in average annual and seasonal air temperatures (Map 2.4 and Table 2.8), but with important regional variations. Increasing temperatures are observed across ecosystems including forest, freshwater and peatland, as well as agricultural and urban ecosystems (Table 2.9).

The largest temperature increases in Canada occurred across a vast region of the northwest stretching from Yellowknife to the Yukon–Alaska border, an area that straddles the boreal and tundra zones and includes mountainous alpine terrain (Map 2.5). Within this region, almost 17,500 km²—an area three times the size of Prince Edward Island—has been subjected to winter temperature increases greater than 7°C, while over 300,00 km² has experienced increases between 6°C and 7°C. In total, an area covering over 1.6 million km² has experienced winter temperature increases of greater than 5°C, which will affect approximately 732,000 km² of forest and 235,000 km² of peatland.⁴³

Statistics Canada — 16-201-X

⁴⁰ Bonsal, B.R., et al., 2019, "Changes in freshwater availability across Canada," *Canada's Changing Climate Report*, Bush, E. and D.S. Lemmen (eds.), Government of Canada, Ottawa, Ontario, pp. 261-342, https://changingclimate.ca/CCCR2019/chapter/6-0/ (accessed June 26, 2020).

⁴¹ Cloutier, C. et al., 2016, "Chapter 3: Potential impacts of climate change on landslides occurrence in Canada," *Slope Safety Preparedness for Impact of Climate Change*, Ho, K., S. Lacasse and L. Picarelli (eds.), 590 p., <u>https://doi.org/10.1201/9781315387789</u> (accessed May 20, 2021); Fraser, R.H., et al., 2018, "Climate sensitivity of high Arctic permafrost terrain demonstrated by widespread ice-wedge thermokarst on Banks Island," *Remote Sensing*, Vol. 954, <u>https://doi.org/10.3390/rs10060954</u> (accessed May 20, 2021); United States Environmental Protection Agency, 2016, *Climate Adaptation and Stormwater Runoff*, <u>https://www.epa.gov/arc-x/climate-adaptation-and-stormwater-runoff</u> (accessed May 20, 2021); Wetro Vancouver, 2018, *Study of the Impacts of Climate Change on Precipitation and Stormwater Management*, <u>http://www.metrovancouver.org/services/liquid-waste/LiquidWastePublications/Climatechangeimpactsp recipitationstormwater2050-2100%E2%80%93Technical-brief-2018, <u>pdf</u> (accessed May 20, 2021).</u>

⁴² Greenan, B.J.W., et al., 2019, "Changes in oceans surrounding Canada," Canada's Changing Climate Report, Bush, E. and D.S. Lemmen (eds.), Government of Canada, Ottawa, Ontario, https://changingclimate.ca/CCCR2019/chapter/7-0/ (accessed June 26, 2020).

⁴³ Statistics Canada, Environment and Energy Statistics Division, 2021, special tabulation.

6-201-X — Statistics Canada

Notes: Temperature change (1948 to 2016) refers to the linear trend of temperature departures from the 1961 to 1990 climate normal. Caution should be exercised when analyzing change results in the North because of lower climate station densities. Significance levels are not available. Winter data are from December to February. Sources: Environment and Climate Change Canada (ECCC), Canadian Gridded Temperature and Precipitation Anomalies (CANGRD); ECCC, Climate Trends and Variations Bulletin.

In the Prairies, agricultural areas accounting for over 400,000 km² have experienced a 1.9°C increase in average annual temperature and a 3.8°C increase in winter temperature from 1948 to 2016, presenting new challenges and opportunities for food production.⁴⁴ Freshwater ecosystems are also influenced—in half of Canada's ecoprovinces, freshwater ecosystems have been exposed to annual temperature increases of 2°C or greater, with even larger winter temperature increases. These changes impact flow regimes and habitat for fish and other aquatic life.

Precipitation patterns—including rainfall and snowfall—are highly variable across Canada, with differences in the type, amount and timing of precipitation received in different areas. From 1979 to 2016, trends show average annual precipitation increased in eleven ecoprovinces, particularly those located in the Boreal Shield and the Prairies, and decreased in six (Map 2.6 and Table 2.8).⁴⁵ Much of Ontario and southern Quebec showed an increase in winter precipitation of between 18 mm and 62 mm between 1979 and 2016, including the Mid-Boreal Shield, Southern Boreal Shield, Great Lakes–St. Lawrence Lowlands, Huron–Erie Plains and Hudson–James Lowlands ecoprovinces. Over the same time period, much of the southern Yukon and northern British Columbia, including the Mackenzie–Selwyn Mountains, Northern Boreal Cordillera and Southern Boreal Cordillera ecoprovinces, showed an increase in summer precipitation of between 26 mm and 36 mm.

⁴⁴ This area represents the total area of farms in the Prairies ecozone, from the Interpolated Census of Agriculture, 2011. Agriculture and Agri-Food Canada, 2016, Interpolated Census of Agriculture, <u>https://open.canada.ca/data/en/dataset/1dee8513-5c73-43b6-9446-25f7b985cd00</u> (accessed December 3, 2020).

⁴⁵ Statistical significance is assessed at the 90% and the 95% confidence levels.

Evapotranspiration (ET) is the combination of evaporation from land and water surfaces and transpiration from plants and is one of the key processes of the water cycle. ET is governed by land cover, water supply, net solar radiation, air temperature, humidity and wind speed. Along with information on precipitation, ET provides an indicator of water availability.⁴⁶ Potential evapotranspiration (PET) represents the evapotranspiration that would occur without limitations on water supply, that is, if more water were available. When interpreted alone or with other measures of the water cycle like precipitation or ET, it can contribute to an understanding of aridity and drought, water stress and deficits, and stress on vegetation.⁴⁷ Persistent changes can signal changes in the water cycle, energy budget and ecosystems.⁴⁸ These variables are estimated by applying models to climate data or by using a combination of models and satellite data. ET and PET are typically higher during the summer and lower during the winter.

Most ecoprovinces have experienced an upward trend in ET and PET between 1979 and 2016, but rates vary from one ecoprovince to another (Table 2.10). Large increases in ET are observed between 1979 and 2016 in the Appalachian–Acadian Highlands and in the south-central British Columbian ecoprovinces of the Northern Montane Cordillera and Central Montane Cordillera, but also in the Eastern Prairies.⁴⁹ The largest increases in PET for the same time period occurred near the East Coast and in southern British Columbia, in particular the Eastern Boreal Shield, Appalachian–Acadian Highlands, Columbia Montane Cordillera, Southern Montane Cordillera and Georgia Depression ecoprovinces.

27 / Human Activity and the Environment

⁴⁶ Wang, S., et al., 2013, "Spatial and seasonal variations in evapotranspiration over Canada's landmass," *Hydrology and Earth System Sciences*, Vol. 17, pp. 2561-3575, <u>https://doi.org/10.5194/</u> <u>hess-17-3561-2013</u> (accessed December 1, 2020).

⁴⁷ Fisher, J. B., et al., 2017, "The future of evapotranspiration: Global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources," Water Resources Research, Vol. 53, pp. 2618–2626, <u>https://doi.org/10.1002/2016WR020175</u> (accessed May 12, 2021); Lemordant, L., et al., 2018, "Critical impact of vegetation physiology on the continental hydrologic cycle in response to increasing CO₂," Proceedings of the National Academy of Sciences, Vol. 115, pp. 4093-4098; <u>https://doi.org/10.1073/pnas.1720712115</u> (accessed May 12, 2021).

⁴⁸ Hember, R.A., N.C. Coops and D. L Spittlehouse, 2017, "Spatial and temporal variability of potential evaporation across North American Forests," *Hydrology*, <u>https://cfs.nrcan.gc.ca/publications?id=38902</u> (accessed May 12, 2021).

⁴⁹ Statistical significance is assessed at the 90% and the 95% confidence levels.

Table 2.1

Terrestrial and freshwater ecosystem extent, by type and ecoprovince (Part 1)

			Total a	area	
		Total area	Land	Freshwater	Peatland
Ecoprovince	Code			km ²	
Canada		9,978,923			1,135,608
Total, area outside Ecological Land Classification		99,176			, ,
Total, Ecological Land Classification		9,879,747	8,644,654	1,235,093	1,135,608
Northern Arctic Cordillera	1.1	113,667	112,625	1,041	0
Southern Arctic Cordillera	1.2	129,758	123,306	6,452	146
Sverdrup Islands	2.1	65,520	62,650	2,870	0
Ellesmere Basin	2.2	129,117	124,957	4,159	0
Victoria Lowlands	2.3	429,668	370,563	59,105	916
Parry Channel Plateau	2.4	134,422	129,945	4,477	2
Boothia–Foxe Shield	2.5	546,492	472,764	73,727	2,285
Baffin Uplands	2.6	131,350	119,793	11,558	0
Foxe–Boothia Lowlands	2.7	80,387	67,263	13,125	1,245
Amundsen Lowlands	3.1	308,466	254,569	53,897	12,180
Keewatin Lowlands	3.2	383,489	304,554	78,935	2,661
Ungava–Belcher	3.3	158,527	122,042	36,485	813
Mackenzie Foothills	4.1	86,572	83,262	3,311	5,872
Great Bear Lowlands	4.2	340,206	265,135	75,071	73,989
Hay–Slave Lowlands	4.3	235,507	214,896	20,612	88,301
Western Taiga Shield	5.1	635,379	470,061	165,319	63,869
Eastern Taiga	5.2	394,475	311,732	82,742	26,967
Labrador Uplands	5.3	250,152	202,643	47,508	37,027
Whale River Lowland	5.4	114,641	95,599	19,042	9,350
Western Boreal Shield	6.1	524,821	426,918	97,904	140,863
Mid-Boreal Shield	6.2	500,600	433,169	67,431	106,239
Eastern Boreal Shield	6.3	354,666	310,752	43,914	24,827
Newfoundland	6.4	111,239	98,981	12,258	22,674
Lake of the Woods	6.5	71,646	59,817	11,829	11,971
Southern Boreal Shield	6.6	319,993	282,250	37,743	13,360
Appalachian–Acadian Highlands	7.1	94,951	92,222	2,729	2,115
Northumberland Lowlands	7.2	35,629	34,390	1,239	2,704
Fundy Uplands	7.3	71,086	67,191	3,894	6,559
Great Lakes–St. Lawrence Lowlands	8.1	88,174	83,385	4,789	3,633
Huron–Erie Plains	8.2	24,724	24,139	585	308
Boreal Foothills	9.1	124,690	122,257	2,433	15,631
Central Boreal Plains	9.2	483,992	450,567	33,425	96,469
Eastern Boreal Plains	9.3	130,770	89,071	41,700	27,680
Eastern Prairies	10.1	32,872	28,955	3,916	128
Parkland Prairies	10.2	177,448	167,605	9,844	333
Central Grassland	10.3	254,376	242,144	12,232	0
Northern Yukon Mountains	11.1	26,893	26,442	450	71
Old Crow–Eagle Plains	11.2	20,760	18,925	1,835	1,713
Ogilvie Mountains	11.3	60,089	59,018	1,070	1,770
Mackenzie–Selwyn Mountains	11.4	159,487	156,172	3,314	383
Wrangel Mountains	12.1	24,471	23,830	641	0
Northern Boreal Cordillera	12.2	239,038	229,570	9,469	5,310
Southern Boreal Cordillera	12.3	168,162	159,889	8,273	1,105
Western Boreal Cordillera	12.4	38,797	37,597	1,200	160
Georgia Depression	13.1	19,470	18,429	1,040	465

Table 2.1

Terrestrial and freshwater ecosystem extent, by type and ecoprovince (Part 1)

			Total a	rea	
		Total area	Land	Freshwater	Peatland
Ecoprovince	Code			km ²	
Southern Coastal Mountains	13.2	158,751	151,029	7,722	6,142
Northern Coastal Mountains	13.3	31,881	30,944	937	488
Northern Montane Cordillera	14.1	141,283	133,129	8,154	5,225
Central Montane Cordillera	14.2	106,009	100,245	5,764	5,658
Southern Montane Cordillera	14.3	59,034	56,469	2,566	348
Columbia Montane Cordillera	14.4	180,331	172,464	7,867	698
Hudson Bay Coastal Plains	15.1	64,090	56,965	7,124	44,221
Hudson–James Lowlands	15.2	311,730	291,363	20,368	260,735

.. not available for a specific reference period

... not applicable

Notes: This table presents land cover and land use data at the ecoprovince level of the Ecological Land Classification (ELC) as a proxy for an ecosystem type classification. Ecosystem extent estimates are compiled using numerous sources based on satellite imagery, ground and photo plots and soil and respondent surveys. Source data are available at different resolutions, with varying levels of uncertainty. Data have been derived by rescaling and/or averaging across years to provide the best estimate for the time period. While these estimates provide information on the extent of Canadian ecosystems at a point in time, unless otherwise noted, they are not suitable for assessing change. Areas outside the ELC include the Canadian portion of the Great Lakes and other residual areas along shorelines. Other natural and semi-natural area is unclassified area calculated based on subtraction of all other ecosystem type classes from the total area of Canada. For more information about definitions, sources and methods, see Appendix A.

Sources: Agriculture and Agri-Food Canada (AAFC), 2013, Terrestrial Ecoprovinces of Canada, https://open.canada.ca/data/en/dataset/98fa7335-fbfe-4289-9a0e-d6bf3874b424 (accessed December 2, 2020); Natural Resources Canada (NRCan), 2014, Atlas of Canada National Scale Data 1:1,000,000 - Waterbodies, https://open.canada.ca/data/en/dataset/e9931fc7-034c-52ad-91c5-6c64d4ba0065 (accessed December 9, 2020); NRCan, Canada Centre for Mapping and Earth Observation (CCMEO), 2018, Lakes, Rivers and Glaciers in Canada – CanVec Series - Hydrographic Features, 50K, https://open.canada.ca/data/en/dataset/9d96e8c9-22fe-4ad2-b5e8-94a6991b744b (accessed December 2, 2020); Tarnocai, C., I.M. Kettles and B. Lacelle, 2011, Peatlands of Canada, Geological Survey of Canada, https://geoscan.nrcan.gc.ca/starweb/geoscan/servlet.starweb?path=geoscan/fulle.web&search1=R=288786 (accessed March 16, 2020); National Forest Inventory, 2021, First remeasurement standard reports, (2007-2017): Table 4.1. Area (1000 ha) of forest and non-forest land by terrestrial ecozone in Canada, https:// nfi.nfis.org/resources/general/summaries/t1/en/NFI/html/NFI_T4_F0R_AREA_en.html (accessed August 13, 2021); Beaudoin, A., et al., 2017, Species composition, forest properties and land cover types across Canada's forests at 250 m resolution for 2001 and 2011, NRCan, Canadian Forest Service (CFS), Laurentian Forestry Centre, https://doi.org/10.23687/ec9e2659-1c29-4ddb-87a2-6aced147a990 (accessed March 31, 2019); Brandt, J.P., 2009, "The extent of the North American boreal zone," Environmental Reviews, Vol. 27, no. 1, pp. 101-161, http:// cfs.nrcan.gc.ca/publications/?id=29569 (accessed June 15, 2017); AAFC, 2020, Annual Crop Inventory, 2014-2016, https://open.canada.ca/data/en/dataset/ba2645d5-4458-414d-b196-6303ac06c1c9 (accessed December 3, 2020); NRCan, CCMEO, 2020, 2010 and 2015 Land Cover of North America at 30 metres, Ed. 2.0, Commission for Environmental Cooperation (CEC), North American Land Change Monitoring System, http://www.cec.org/north-american-land-change-monitoring-system/ (accessed December 9, 2020); AAFC, 2016, Interpolated Census of Agriculture, https://open.canada.ca/data/en/dataset/1dee8513-5c73-43b6-9446-25f7b985cd00 (accessed December 3, 2020); Baldwin, K., et al., 2018, Vegetation Zones of Canada: a Biogeoclimatic Perspective [Map], Scale 1:5,000,000, NRCan, CFS, https://open.canada.ca/data/en/dataset/22b0166b-9db3-46b7-9baf-6584a3acc7b1 (accessed October 26, 2020); AAFC, 2015, Land Use, 1990, 2000 & 2010, https://open.canada.ca/data/en/dataset/18e3ef1a-497c-40c6-8326-aac1a34a0dec (accessed June 1, 2020); Environment and Climate Change Canada, 2020, CRF Tables, Canada's National Inventory Submissions 2018 to the UNFCCC, https://unfccc.int/process-and-meetings/transparency-and-reporting/reporting-and-review-under-the convention/greenhouse-gas-inventories-annex-i-parties/submissions/national-inventory-submissions-2018#fn1 (accessed April 30, 2020)

Table 2.1

Terrestrial and freshwater ecosystem extent, by type and ecoprovince (Part 2)

Forest, 2017 Grassland Instartal pasture, 2015 Forest, 2017 Grassland pasture, 2015 Permanet biter, 2015 Other natural and semi- tice, 2015 Other natural ice, 2015 Permanet ice, 2015 Other natural and semi- tice, 2015 Other natural and semi- tice, 2015 Permanet ice, 2015 Other natural and semi- tice, 2015 Other natural and semi- tice, 2015 Permanet ice, 2015 Other natural and semi- tice, 2015 Other natural and semi- tice, 2015 Permanet ice, 2015 Other natural and semi-				Ecos	ystem types	- Natural and	semi-natura	l area	
Total Boreal Non-boreal Arctic pasture, 2015 Perment toter, atoms 2015 Perment show and 2015 Other natural show and 2015 Arctic show and 2015 Perment show and 2015 Other natural show and 2015 Ecoprovince Code km² km² 2015 Sintar 2015 2,468,383 210,305 2,761,975 Total, are outside Ecological Land Classification 3,655,411 2,791,877 843,554 2,468,383 210,305 2,766,799 Northern Artic Cordillera 1.1 0 0 0 92,517 37,224 0 Southern Artic Cordillera 2.1 0 0 0 119,727 9,387 0 Darry Channe Plata 2.4 0 0 0 12,756,8 6,851 0 Bordini-free Shield 2.5 0 0 0 12,856,9 1,937 1,94 0 Foxe-Boothia Lowlands 3.1 8,038 0 37 230,209 2 7,0,114 Mackenzie Forbilis 4.1 14,0603 4,03		-	F	orest, 2017		Grassland			
Total Boreal Non-Joural Startal and semilal area Ecoprovince Kni ⁺ Kni ⁺ Kni ⁺ Kni ⁺ Canada 3,655,411 2,791,877 843,534 403,745 2,468,336 210,305 2,761,975 Total, areo autiside Ecological Land Classification		-				and natural	Arctic	Permanent	Other natural
Total Boreal Non-boreal 2015 io.2015 instural area variable Canada 3,635,411 2,791,877 843,534 403,745 2,468,380 210,305 2,761,975 Total, area outside Ecological Land Classification						pasture,	tundra,	snow and	and semi-
Ecoprovince Code kn ⁻¹ Canada 3,635,411 2,791,877 943,534 403,745 2,468,836 210,305 2,766,279 Total, area outside Ecological Land Classification 3,635,411 2,791,977 943,534 403,745 2,468,836 210,305 2,666,799 Northern Arctic Cordillera 1.1 0 0 0 92,517 37,234 0 Sverdrup Islands 2.1 0 0 0 119,727 9,387 0 Victoria Lowiands 2.2 0 0 0 0 127,583 6,851 0 Parry Channel Plataau 2.4 0 0 0 123,828 7,521 0 Fore-Boothia Lowlands 2.7 0 0 0 0 8,038 0 37 230,92 2 70,114 Logava-Beicher 3.1 8,038 0.8,038 0 37 230,92 2 70,114 Logava-Beicher 3.1 1		-	Total	Boreal	Non-boreal	2015	2015	ice, 2015	natural area
Canada 3,635,411 2,791,877 843,534 403,745 2,468,836 210,305 2,6761,975 Total, are outside Evological Land Classification 3,635,411 2,791,877 843,534 403,745 2,468,836 210,305 2,662,799 Northern Arctic Cordillera 1.1 0 0 0 0 91,774 90,774 0 Sverdring Islands 2.1 0 0 0 0 12,727 3,836,71 0 0 0 12,727 3,837 0 0 Sverdring Islands 2.2 0 0 0 0 12,728 3,851 0 0 0 12,853 6,851 0 0 0 12,853 6,851 0 0 0 12,853 6,851 0 0 0 12,853 6,851 0 0 12,853 6,851 0 0 0 7,521 0 2,752 0 7,521 0 7,521 0 7,521 <th>Ecoprovince</th> <th>Code</th> <th></th> <th></th> <th></th> <th>km²</th> <th></th> <th></th> <th></th>	Ecoprovince	Code				km ²			
Total, zero outside Ecological Land Classification 99.17 Northern Arctic Cordillera 1.1 0 0 0 19.246 94.420 0 Southern Arctic Cordillera 1.2 0 0 0 92.517 37.234 0 Sverdrup Islands 2.1 0 0 0 0.25.17 37.234 0 Victoria Lowlands 2.3 0 0 0 0.248.75 1.660 0 0 Parry Channel Plateau 2.4 0 0 0 0.254.428 1.041 0 Borthia-Foxe Shield 2.5 0 0 0 0 0.80.245.428 1.041 0 Dorae-Boothia Lowlands 2.7 0 0 0 0 0.80.245 129 0 Armundsen Lowlands 3.1 8.038 8.038 0 37.823 1.041 0 0 34.63.75 129 0 0	Canada		3,635,411	2,791,877	843,534	403,745	2,468,836	210,305	2,761,975
Total, Ecological Land Classification 3,635,411 2,791,877 843,534 403,745 2,468,836 210,305 2,662,790 Southern Arctic Cordillera 1.2 0 0 0 0 9,246 9,246 9,246 9,246 9,246 9,246 9,246 9,246 9,246 9,246 9,247 0 0 0 0 9,246 9,247 9,246 9,247 0 0 0 119,727 9,367 0 0 0 119,727 9,367 1,600 0 127,563 6,561 0 0 0 0 545,428 1,041 0 Barth Loylands 2,6 0 0 0 0 0 0 80,245 129 0 0 0 12,328 7,521 0 0 0 0 0 2,422 0 0,423 1,519 0 1,14 Ungava-barebarebarebarebarebarebarebarebarebare	Total, area outside Ecological Land Classification								99,176
Northern Arctic Cordillera 1.1 0 0 0 19,246 94,420 0 Sverdrup Islands 2.1 0 0 0 92,517 37,234 0 Sverdrup Islands 2.1 0 0 0 0 92,517 37,234 0 Victoria Lowlands 2.3 0 0 0 0 48,375 1,260 0 Parry Channel Plateau 2.4 0 0 0 123,828 7,521 0 Borthia - Foxe Shield 2.5 0 0 0 0 80,248 7,521 0 Rove-Boothia Lowlands 2.7 0 0 0 80,248 1,29 0 Amundsen Lowlands 3.1 8,038 8,038 0 37 230,209 2 70,114 Keewatin Lowlands 3.1 16,19 1,619 0 17 156,886 0 0 0 64,33 35,649 0 0 0 54,	Total, Ecological Land Classification		3,635,411	2,791,877	843,534	403,745	2,468,836	210,305	2,662,799
Southern Arctic Cordillera 1.2 0 0 0 9.5,17 37.234 0 Ellesmere Basin 2.2 0 0 0 0 65,068 451 0 Dary Channel Plateu 2.4 0 0 0 428,375 1.260 0 Dary Channel Plateu 2.4 0 0 0 127,563 6,851 0 Dary Channel Plateu 2.4 0 0 0 123,823 7,521 0 Baffin Uplands 2.6 0 0 0 123,823 7,521 0 Anundsen Lowlands 2.7 0 0 0 123,828 1 9,174 Ungava-Belcher 3.3 1,619 1,619 0 17 156,866 0 0 Mackenzie Foothils 4.1 42,063 0 8,761 8 23 36,869 Great Baer Lowlands 4.3 178,366 2,402 0 0 46,242	Northern Arctic Cordillera	1.1	0	0	0	0	19,246	94,420	0
Sverdrup Islands 2.1 0 0 0 66,068 451 0 Ellesmere Basin 2.2 0 0 0 119,727 9,387 0 Victoria Lowlands 2.3 0 0 0 0 428,377 1,260 0 Parry Channel Plateau 2.4 0 0 0 545,422 1,041 0 Baffin Uplands 2.6 0 0 0 80,245 1,29 0 Amundsen Lowlands 3.1 80,38 80,38 0 37 230,209 2 70,114 Keewatin Lowlands 3.1 80,38 80,38 0 367 282,209 2 70,174 Ungava-Betcher 3.3 16,19 0 17 156,866 0 0 0 Mackarzje Foothills 4.1 42,063 42,663 0 8,761 842,23 35,690 Great Bear Lowlands 4.2 132,081 132,081 12,665	Southern Arctic Cordillera	1.2	0	0	0	0	92,517	37,234	0
Ellesmire Basin 2.2 0 0 0 11727 9.387 0 Victoria Lowlands 2.3 0 0 0 0 428,375 1.260 0 Pary Channel Plateau 2.4 0 0 0 127,563 6.851 0 Bonthin-Frox Shield 2.5 0 0 0 123,828 1,041 0 Amundsen Lowlands 2.7 0 0 0 123,828 7,521 0 Amundsen Lowlands 3.1 8,038 8,038 0 37 230,209 2 70,114 Keewatin Lowlands 3.2 6,403 6,403 0 17 156,886 0 0 Mackenzie Foothils 4.1 42,063 8,761 8 23 36,699 Great Bear Lowlands 4.3 178,366 178,366 178,375 12,175 0 24,247 Western Taiga Shield 5.1 193,371 193,471 193,471 0 <td< td=""><td>Sverdrup Islands</td><td>2.1</td><td>0</td><td>0</td><td>0</td><td>0</td><td>65,068</td><td>451</td><td>0</td></td<>	Sverdrup Islands	2.1	0	0	0	0	65,068	451	0
Inctoria Lowlands 2.3 0 0 0 248.375 1.260 0 Parry Channel Plateau 2.4 0 0 0 127,563 6,851 0 Bodhia-Foxe Shield 2.5 0 0 0 545,428 1,041 0 Barlin Uplands 2.6 0 0 0 80,425 129 0 Amundsen Lowlands 3.1 8,038 8,038 0 37 230,209 2 70,114 Keewattin Lowlands 3.2 6,403 6,403 0 60 367,826 1 9,174 Ungava-Betcher 3.3 1,619 17 156,868 0 0 442,063 42,063 0 8,761 8 2.3 56,689 Great Bar Lowlands 4.1 132,066 178,366 0 2,402 0 0 54,247 Western Taga 5.4 125,150 0 4,032 15,737 140 149,497 Wh	Ellesmere Basin	2.2	0	0	0	0	119,727	9,387	0
Party Channel Plateau 2.4 0 0 0 127,563 6,851 0 Boothia-Foxe Shield 2.5 0 0 0 0 545,428 1,041 0 Badrin Uplands 2.6 0 0 0 123,828 7,521 0 Foxe-Boothia Lowlands 2.7 0 0 0 80,245 129 0 Amundsen Lowlands 3.1 80,38 80,33 0 37 230,209 2 70,114 Keewatin Lowlands 3.2 6,403 6,403 0 60 367,826 1 9,174 Ungava-Belcher 3.3 1,619 1,619 0 17,566 82 33,849 Great Bear Lowlands 4.2 132,081 132,081 12,654 582 83 194,651 Hay-Slave Lowlands 5.3 125,150 125,150 47,673 51,219 0 343,076 Labrador Uplands 5.3 125,510 124,427 0 <td>Victoria Lowlands</td> <td>2.3</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>428,375</td> <td>1,260</td> <td>0</td>	Victoria Lowlands	2.3	0	0	0	0	428,375	1,260	0
Bootmar-Foxe Shield 2.5 0 0 0 545,428 1,041 0 Barlin Uplands 2.6 0 0 0 0 123,828 7,521 0 Groe-Boothia Lowlands 2.7 0 0 0 80,238 0.37 230,209 2 70,114 Keewadin Lowlands 3.2 6,403 6,403 0 60 367,826 1 9,174 Ungava-Belcher 3.3 1,619 1,619 0 1.7 156,886 0 0 Great Bear Lowlands 4.2 132,081 132,641 0 2,402 0 0 343,076 Eastern Taiga 5.2 128,427 128,427 0 7,292 7,275 0 24,043,076 Eastern Boreal Shield 6.1 313,868 313,868 0 36,16 0 0 17,316 Mahe River Lowland 5.4 32,761 38,761 84,751 0 0 17,346 M	Parry Channel Plateau	2.4	0	0	0	0	127,563	6,851	0
Baffin Uplands 2.6 0 0 0 123,828 7,521 0 Foxe-Boothia Lowlands 2.7 0 0 0 80,245 129 0 Amundsen Lowlands 3.1 80,38 0.037 230,209 2 70,114 Keewatin Lowlands 3.2 6,403 6,403 0 60 367,826 1 9,174 Ungava-Belcher 3.3 1,619 10 17 156,886 0 0 0 Mackenzie Foothills 4.1 42,063 42,4063 0 8,761 8 23 35,689 Great Bear Lowlands 4.2 132,081 132,081 0 2,642 0 0 44,247 Vestern Taiga Shield 5.1 193,371 10 47,673 51,219 0 343,076 Labrador Uplands 5.4 38,761 38,761 38,761 0 495 17,966 17 57,381 Whale River Lowland 6.4 67,41	Boothia–Foxe Shield	2.5	0	0	0	0	545,428	1,041	0
Foxe-Boothia Lowlands 2.7 0 0 0 80,245 129 0 Amundsen Lowlands 3.1 8,038 8,038 0 37 230,209 2 70,114 Keewatin Lowlands 3.2 6,403 6,003 0 60 367,826 1 9,174 Ungava-Belcher 3.3 1,619 1,619 0 17 156,886 0 0 Mackenzie Foothills 4.1 42,063 42,063 0 8,761 8 23 35,689 Great Bear Lowlands 4.2 172,081 132,061 2,402 0 0 44,430,076 Eastern Taiga 5.2 128,427 128,427 0 7,292 7,275 0 251,310 Labrador Uplands 5.3 125,150 0 4,032 15,737 140 149,397 Whale River Lowland 6.4 37,037 3,076 9,415 0 0 93,958 Narelsernal Shield 6.1	Baffin Uplands	2.6	0	0	0	0	123.828	7.521	0
Amundsen Lowlands 3.1 8,038 6,038 0 37 230,209 2 70,114 Keewath Lowlands 3.2 6,403 6,403 0 60 367,826 1 9,174 Ungava-Belcher 3.3 1,619 0 17 156,886 0 0 Mackenzie Foothills 4.1 42,063 42,063 0 8,761 8 23 35,689 Great Bear Lowlands 4.2 132,081 0 2,402 0 0 54,247 Western Taiga Shield 5.1 193,371 193,371 0 47,673 51,219 0 343,076 Labrador Uplands 5.3 125,150 12 16,368 0 40,32 17,966 17 57,310 Western Boreal Shield 6.1 313,868 30,317 3,076 9,415 0 0 132,848 Newfoundland 6.4 67,410 67,848 0 0 33,93,351 3,064 0 3	Foxe–Boothia Lowlands	2.7	0	0	0	0	80.245	129	0
Keewatin Lowlands 3.2 6,403 6,403 0 60 367,826 1 1,174 Ungava-Belcher 3.3 1,619 1,619 0 17 156,886 0 0 Mackenzie Foothills 4.1 42,063 42,063 0 8,761 8 23 35,689 Great Bear Lowlands 4.2 132,061 132,081 0 12,654 582 33 194,651 Hay-Slave Lowlands 4.3 178,366 0 2,402 0 0 54,247 Westem Taiga 5.2 128,427 128,427 0 7,292 7,275 0 251,310 Labrador Uplands 5.3 125,150 0 40,32 15,737 140 104,939 Western Boreal Shield 6.1 313,868 313,868 0 36,136 0 0 17,365 Mid-Boreal Shield 6.2 373,393 370,377 39,76 9,415 0 0 17,346 <t< td=""><td>Amundsen Lowlands</td><td>3.1</td><td>8 038</td><td>8 038</td><td>0</td><td>37</td><td>230,209</td><td>2</td><td>70 114</td></t<>	Amundsen Lowlands	3.1	8 038	8 038	0	37	230,209	2	70 114
Instrumentation Bit a	Keewatin Lowlands	3.2	6 403	6 403	0	60	367 826	- 1	9 174
Original building 5.3 1,013 1,013 1,013 1,013 1,013 0 11 10,000 0 0 0 Great Bear Lowlands 4.1 42,063 42,063 0 8,761 8 23 35,689 Hay-Slave Lowlands 4.3 178,366 178,366 0 2,402 0 0 54,247 Western Taiga 5.1 193,371 193,371 0 47,673 51,219 0 343,076 Labrador Uplands 5.3 125,150 125,150 0 40,322 15,737 140 104,987 Whale River Lowland 6.4 87,761 0 495 17,966 17 57,381 Western Boreal Shield 6.1 313,868 313,686 36,618 0 0 115,236 Eastern Boreal Shield 6.4 67,410 67,414 0 0 39,351 Lake of the Woods 6.5 51,186 13,321 37,865 619 0 0<	Lingava-Belcher	33	1 619	1 610	0	17	156 886	0	0,174
Indictional formation 1.1 42,003 132,081 0 12,654 582 83 194,651 Hay–Slave Lowlands 4.3 178,366 0 2,402 0 0 54,247 Western Taiga Shield 5.1 193,371 193,371 0 47,673 51,219 0 343,076 Eastern Taiga 5.2 128,427 0 7,292 7,275 0 251,310 Labrador Uplands 5.3 125,150 125,150 0 4,032 15,737 140 104,987 Whale River Lowland 5.4 38,761 38,761 0 495 17,966 17 57,331 Western Boreal Shield 6.1 313,868 313,686 36,166 0 0 17,436 Mid-Boreal Shield 6.2 373,393 370,317 3,076 9,415 0 0 39,358 Lake of the Woods 6.5 51,186 13,321 37,865 619 0 17,346 Southern Boreal Shield 6.6 268,746 80,952 187,793 2,889 0	Mackenzie Foothills	4 1	42 063	42 063	0	8 761	8	23	35 689
Undar Dear Lowlands 4.2 12,031 12,031 12,031 302 03 134,031 Hay–Slave Lowlands 4.3 178,366 0 2,402 0 0 54,247 Western Taiga 5.2 128,427 128,427 0 7,292 7,275 0 251,310 Labrador Uplands 5.3 125,150 0 4,032 15,737 140 104,987 Whale River Lowland 5.4 38,761 0 495 17,966 17 57,381 Western Boreal Shield 6.1 313,868 313,868 0 36,136 0 0 174,316 Mid-Boreal Shield 6.2 373,393 370,317 3,076 9,415 0 0 39,558 Newfoundland 6.4 67,410 67,410 0 3,121 0 0 39,551 Lake of the Woods 6.5 51,186 13,321 37,865 619 0 0 17,346 Southern Boreal Shield 6.6 56,746 80,952 187,793 2,889 0 0	Great Bear Lowlands	4.1	132 081	132 081	0	12 65/	582	83	10/ 651
Hay-Gave Lowands4.317,30017,30017,67351,210034,247Western Taiga5.1193,371193,371047,67351,219034,207Eastern Taiga5.2128,427128,42707,2927,2750251,310Labrador Uplands5.3125,150125,15004,03215,737140104,987Western Boreal Shield6.1313,868313,868036,13600174,316Mid-Boreal Shield6.2373,393370,3173,0769,4150093,958Kewfoundland6.46,741003,1210033,311Lake of the Woods017,346Southern Boreal Shield6.6268,74680,952187,7932,8890040,229Appalachian-Acadian Highlands7.183,12914,32768,8024,48800345Northumberland Lowlands7.227,222027,2222,190007,600Great Lakes-St. Lawrence Lowlands8.131,396031,39613,4270020,535Oentral Boreal Plains9.228,486281,0012,48617,0300020,535Central Grassland9.197,86996,2421,6262,334020,583Central Fasins9.228,37605,5907,5706,5706,577Parkland Prairies10.	Hay Slave Lowlands	4.2	172,001	179 266	0	2 402	502	00	54,001
Destern Taiga 5.1 15,371 15,371 0 47,073 51,215 0 54,070 Labrador Uplands 5.3 125,150 125,150 0 4,032 15,737 140 104,987 Whale River Lowland 5.4 38,761 38,761 0 495 17,966 17 57,381 Western Boreal Shield 6.1 313,868 0 36,136 0 174,316 Mid-Boreal Shield 6.2 273,333 370,317 3,076 9,415 0 0 13,368 Eastern Boreal Shield 6.3 250,497 243,829 6,668 7,614 0 93,958 Newfoundland 6.4 67,410 67,410 0 3,121 0 39,351 Lake of the Woods 6.5 51,186 13,321 37,865 619 0 0 47,292 Appalachian–Acadian Highlands 7.1 83,129 14,327 68,802 4,488 0 0 345 Northumberland Lowlands 7.2 27,222 0 27,222 2,190 0 <t< td=""><td>Mostorn Taiga Shield</td><td>4.5</td><td>102 271</td><td>102 271</td><td>0</td><td>402</td><td>51 210</td><td>0</td><td>242 076</td></t<>	Mostorn Taiga Shield	4.5	102 271	102 271	0	402	51 210	0	242 076
Labrader Uplands5.2126,427126,427107,2927,2731023,310Whale River Lowland5.3125,15004,03215,737140104,987Whale River Lowland6.433,868036,13600174,316Mid-Boreal Shield6.1313,868313,868036,13600174,316Mid-Boreal Shield6.2373,393370,3173,0769,4150093,958Eastern Boreal Shield6.3250,497243,8296,6687,6140039,351Lake of the Woods6.551,18613,32137,865619017,346Southern Boreal Shield6.6268,74680,952187,7932,8890040,229Appalachian-Acadian Highlands7.183,12914,32768,8024,48800345Northumberland Lowlands7.227,222007,2222,190002,197Fundy Uplands7.356,100056,1002,395000Huron-Erie Plains8.22,63402,6342,5390020,583Central Boreal Potinils9.19,786996,2421,6262,334020,583Central Boreal Plains9.359,16556,1453,0206,19905,370Boreal Fothills9.359,16556,1453,0206,1990	Feetern Toige	J.1 5.0	100,071	100,071	0	47,073	7 975	0	251 210
Labrator Optimus5.3120,150123,15004,052153,157140104,957Whale River Lowland5.438,76138,761049517,9661757,381Western Boreal Shield6.1313,868313,868036,13600174,316Mid-Boreal Shield6.2373,393370,3173,0769,41500115,236Eastern Boreal Shield6.3250,497243,8296,6687,6140039,351Lake of the Woods6.551,18613,32137,8656190017,346Southern Boreal Shield6.6268,74680,952187,7932,8890040,229Appalachian–Acadian Highlands7.183,12914,32768,8024,488003,197Fundy Uplands7.356,100056,1002,39507,690Great Lakes–St. Lawrence Lowlands8.131,396031,39613,427000Huron–Erie Plains9.2283,486281,0012,48617,03000105,657Eastern Parines9.197,86996,2421,6262,5340025,198Central Boreal Plains9.2283,486281,0012,48617,0300057,966Eastern Pairies10.12,8701512,7205,625005,198Central Grassland10.3 <td< td=""><td>Edstelli I diya</td><td>5.2</td><td>120,427</td><td>120,427</td><td>0</td><td>1,292</td><td>1,273</td><td>140</td><td>201,010</td></td<>	Edstelli I diya	5.2	120,427	120,427	0	1,292	1,273	140	201,010
Write Hiver Lowind 5.4 38,761 0 495 17,966 17 57,381 Western Boreal Shield 6.1 313,868 313,868 0 36,136 0 0 174,316 Mid-Boreal Shield 6.2 373,393 370,317 3,076 9,415 0 0 93,958 Newfoundland 6.4 67,410 67,410 0 3,121 0 0 39,351 Lake of the Woods 6.5 51,186 13,321 37,865 619 0 0 4429 Appalachian-Acadian Highlands 7.1 83,129 14,327 68,802 4,488 0 0 345 Northumberland Lowlands 7.2 27,222 0 27,222 2,190 0 2,197 Fundy Uplands 7.3 56,100 0 56,100 2,395 0 0 0 0 0 20,583 Great Lakes-St. Lawrence Lowlands 8.1 31,396 31,3427 0 0 20,5	Labrauor Opianus	D.3	120,100	120,100	0	4,032	13,737	140	104,967
Western Boreal Shield 6.1 313,868 0 36,136 0 0 174,316 Mid-Boreal Shield 6.2 373,393 370,317 3,076 9,415 0 0 115,236 Eastern Boreal Shield 6.3 250,497 243,829 6,668 7,614 0 0 39,351 Lake of the Woods 6.5 51,186 13,321 37,865 619 0 0 17,346 Southern Boreal Shield 6.6 268,746 80,952 187,793 2,889 0 0 42,229 Appalachian-Acadian Highlands 7.1 83,129 14,327 68,802 4,488 0 0 345 Northumberland Lowlands 7.2 27,222 0 27,222 2,190 0 0 2,690 0 4,933 0 2,895 0 0 0 345 56,100 2,395 0 0 0 9,6242 1,626 2,334 0 2,583 0 0 2,583 0 0 2,583 0 0 59,655 0 0	Whater Devel Object	5.4	38,701	38,701	0	495	17,966	17	57,381
Mid-Boreal Shield6.2373,393370,3173,0769,41500115,236Eastern Boreal Shield6.3250,497243,8296,6687,6140093,958Lake of the Woods6.551,18613,32137,8656190017,346Southern Boreal Shield6.6268,74680,952187,7932,8890040,229Appalachian-Acadian Highlands7.183,12914,32768,8024,48800345Northumberland Lowlands7.227,222027,2222,190002,197Fundy Uplands7.356,100056,1002,3950000Great Lakes-St. Lawrence Lowlands8.131,396031,39613,4270000Huron-Erie Plains8.22,63402,6342,53900493Boreal Pothills9.197,86996,2421,6262,3340020,583Central Boreal Plains9.359,16556,1453,0206,1990057,966Eastern Boreal Plains9.359,16556,1453,0206,1990057,966Central Grassland10.35,59005,59078,771009,813Northern Yukon Mountains11.11,6611,66101,01716,16218,049Old Crow-Eagle Plains	western Boreal Shield	6.I	313,868	313,868	0	36,136	0	0	174,316
Lastern Boreal Shield6.3 6.4250,497 6,410243,829 6,6686,668 6,6687,614 6,6140093,958 9,351Lake of the Woods6.551,18613,32137,8656190040,229Appalachian-Acadian Highlands7.183,12914,32768,8024,4880034,55Northumberland Lowlands7.227,222027,2222,190002,197Fundy Uplands7.356,100056,1002,3950000Great Lakes-St. Lawrence Lowlands8.131,396031,39613,4270000Boreal Foothills9.197,86996,2421,6262,334002,638Boreal Pothills9.197,86996,2421,6262,3340020,583Central Boreal Plains9.2283,486281,0012,48617,0300057,966Eastern Prairies10.12,8701512,7205,625005,370Parkland Prairies10.26,7793686,41123,0140025,198Central Grassland10.35,59078,771009,813Northern Yukon Mountains11.11,6611,66101,01716,16218,049Old Crow-Eagle Plains12.25,32705022,971011,9540Ogilvie M	Mid-Boreal Shield	6.2	373,393	370,317	3,076	9,415	0	0	115,236
Newfoundland6.467,41067,41003,1210039,351Lake of the Woods6.551,18613,32137,8656190017,346Southern Boreal Shield6.6268,74680,952187,7932,8890004,229Appalachian-Acadian Highlands7.183,12914,32768,8024,48800345Northumberland Lowlands7.227,222027,2222,190002,197Fundy Uplands7.356,100056,1002,395007,690Great Lakes-St. Lawrence Lowlands8.131,396031,39613,427000Boreal Foothills9.197,86996,2421,6262,3340020,583Central Boreal Plains9.2283,486281,0012,48617,0300005,796Eastern Boreal Plains9.359,16556,1453,0206,1990053,70Parkland Prairies10.12,8701512,7205,625005,370Parkland Prairies10.26,7793686,41123,01409,813Northern Yukon Mountains11.11,6611,66101,01716,16218,049Old Crow-Eagle Plains12.25,3275,32705022,971011,954Ogilvie Mountains11.320,28320,283 <td>Eastern Boreal Shield</td> <td>6.3</td> <td>250,497</td> <td>243,829</td> <td>6,668</td> <td>7,614</td> <td>0</td> <td>0</td> <td>93,958</td>	Eastern Boreal Shield	6.3	250,497	243,829	6,668	7,614	0	0	93,958
Lake of the Woods6.551,18613,32137,8656190017,346Southern Boreal Shield6.6268,74680,952187,7932,8890040,229Appalachian–Acadian Highlands7.183,12914,32768,8024,48800345Northumberland Lowlands7.227,222027,2222,190002,197Fundy Uplands7.356,100056,1002,395007,690Great Lakes–St. Lawrence Lowlands8.131,396031,39613,427000Huron–Erie Plains8.22,63402,6342,5390020,583Central Boreal Plains9.197,86996,2421,6262,3340020,583Central Boreal Plains9.2283,486281,0012,48617,03000105,657Eastern Prairies10.12,8701512,7205,625005,370Parkland Prairies10.26,7793686,41123,01409,813Central Grassland10.35,59005,59078,771009,813Old Crow–Eagle Plains11.25,3275,32705022,971011,954Ogilvie Mountains11.320,28320,283014,9710624,771Mackenzie–Selwyn Mountains11.436,73036,730 </td <td>Newfoundland</td> <td>6.4</td> <td>67,410</td> <td>67,410</td> <td>0</td> <td>3,121</td> <td>0</td> <td>0</td> <td>39,351</td>	Newfoundland	6.4	67,410	67,410	0	3,121	0	0	39,351
Southern Boreal Shield6.6268,74680,952187,7932,8890040,229Appalachian-Acadian Highlands7.183,12914,32768,8024,48800345Northumberland Lowlands7.227,222027,2222,190002,197Fundy Uplands7.356,100056,1002,395007,690Great Lakes-St. Lawrence Lowlands8.131,396031,39613,427000Huron-Erie Plains8.22,63402,6342,539002,0583Gentral Boreal Plains9.197,86996,2421,6262,3340020,583Central Boreal Plains9.2283,486281,0012,48617,03000105,657Eastern Boreal Plains9.359,16556,1453,0206,199005,370Parkland Prairies10.12,8701512,7205,625002,5198Central Grassland10.35,59005,59078,771009,813Northern Yukon Mountains11.11,6611,66101,01716,16218,049Old Crow-Eagle Plains11.25,3275,32705022,971011,954Ogilvie Mountains11.320,28320,283014,9710624,771Mackenzie-Selwyn Mountains11.4 <t< td=""><td>Lake of the Woods</td><td>6.5</td><td>51,186</td><td>13,321</td><td>37,865</td><td>619</td><td>0</td><td>0</td><td>17,346</td></t<>	Lake of the Woods	6.5	51,186	13,321	37,865	619	0	0	17,346
Appalachian–Acadian Highlands7.183,12914,32768,8024,48800345Northumberland Lowlands7.227,222027,2222,190002,197Fundy Uplands7.356,100056,1002,395007,690Great Lakes–St. Lawrence Lowlands8.131,396031,39613,427000Huron–Erie Plains8.22,63402,6342,53900493Boreal Foothills9.197,86996,2421,6262,3340020,583Central Boreal Plains9.2283,486281,0012,48617,03000105,657Eastern Boreal Plains9.359,16556,1453,0206,1990057,966Eastern Prairies10.12,8701512,7205,6250025,198Central Grassland10.35,59005,59078,771009,813Northern Yukon Mountains11.11,6611,66101,01716,16218,049Old Crow–Eagle Plains11.25,3275,32705022,971011,954Ogilvie Mountains11.320,28320,283014,9710624,771Mackenzie–Selwyn Mountains11.436,73036,730025,355050196,869Wangel Mountains12.11,6391	Southern Boreal Shield	6.6	268,746	80,952	187,793	2,889	0	0	40,229
Northumberland Lowlands7.227,222027,2222,190002,197Fundy Uplands7.356,100056,1002,395007,690Great Lakes–St. Lawrence Lowlands8.131,396031,39613,427000Huron–Erie Plains8.22,63402,6342,53900493Boreal Foothills9.197,86996,2421,6262,3340020,583Central Boreal Plains9.2283,486281,0012,48617,03000105,657Eastern Boreal Plains9.359,16556,1453,0206,1990057,966Eastern Prairies10.12,8701512,7205,6250025,198Central Grassland10.35,59005,59078,771009,813Northern Yukon Mountains11.11,6611,66101,01716,16218,049Old Crow–Eagle Plains11.25,3275,32705022,971011,954Ogilvie Mountains11.320,28320,283014,9710624,771Mackenzie–Selwyn Mountains12.11,6391,388251928010,72011,183Wangel Mountains12.11,6391,388251928010,72011,183	Appalachian–Acadian Highlands	7.1	83,129	14,327	68,802	4,488	0	0	345
Fundy Uplands7.356,100056,1002,395007,690Great Lakes–St. Lawrence Lowlands8.131,396031,39613,427000Huron–Erie Plains8.22,63402,6342,53900493Boreal Foothills9.197,86996,2421,6262,3340020,583Central Boreal Plains9.2283,486281,0012,48617,03000105,657Eastern Boreal Plains9.359,16556,1453,0206,1990057,966Eastern Prairies10.12,8701512,7205,6250025,198Central Grassland10.35,59005,59078,771009,813Northern Yukon Mountains11.11,6611,66101,01716,16218,049Old Crow–Eagle Plains11.25,3275,32705022,971011,954Ogilvie Mountains11.320,28320,283014,9710624,771Mackenzie–Selwyn Mountains11.436,73036,730025,355050196,868Wrangel Mountains12.11,6391,388251928010,72011,183	Northumberland Lowlands	7.2	27,222	0	27,222	2,190	0	0	2,197
Great Lakes–St. Lawrence Lowlands8.131,396031,39613,427000Huron–Erie Plains8.22,63402,6342,53900493Boreal Foothills9.197,86996,2421,6262,3340020,583Central Boreal Plains9.2283,486281,0012,48617,03000105,657Eastern Boreal Plains9.359,16556,1453,0206,1990057,966Eastern Prairies10.12,8701512,7205,625005,370Parkland Prairies10.26,7793686,41123,0140025,198Central Grassland10.35,59005,59078,771009,813Northern Yukon Mountains11.11,6611,66101,01716,16218,049Old Crow–Eagle Plains11.25,3275,32705022,971011,954Ogilvie Mountains11.320,28320,283014,9710624,771Mackenzie–Selwyn Mountains11.436,73036,730025,355050196,869Wrangel Mountains12.11,6391,388251928010,72011,183	Fundy Uplands	7.3	56,100	0	56,100	2,395	0	0	7,690
Huron-Erie Plains8.22,63402,6342,53900493Boreal Foothills9.197,86996,2421,6262,3340020,583Central Boreal Plains9.2283,486281,0012,48617,03000105,657Eastern Boreal Plains9.359,16556,1453,0206,1990057,966Eastern Prairies10.12,8701512,7205,625005,370Parkland Prairies10.26,7793686,41123,0140025,198Central Grassland10.35,59005,59078,771009,813Northern Yukon Mountains11.11,6611,66101,01716,16218,049Old Crow-Eagle Plains11.25,3275,32705022,971011,954Ogilvie Mountains11.320,28320,283014,9710624,771Mackenzie-Selwyn Mountains11.436,73036,730025,355050196,869Wrangel Mountains12.11,6391,388251928010,72011,183	Great Lakes–St. Lawrence Lowlands	8.1	31,396	0	31,396	13,427	0	0	0
Boreal Foothills9.197,86996,2421,6262,3340020,583Central Boreal Plains9.2283,486281,0012,48617,03000105,657Eastern Boreal Plains9.359,16556,1453,0206,1990057,966Eastern Prairies10.12,8701512,7205,625005,370Parkland Prairies10.26,7793686,41123,0140025,198Central Grassland10.35,59005,59078,771009,813Northern Yukon Mountains11.11,6611,66101,01716,16218,049Old Crow-Eagle Plains11.25,3275,32705022,971011,954Ogilvie Mountains11.320,28320,283014,9710624,771Mackenzie-Selwyn Mountains11.436,73036,730025,355050196,869Wrangel Mountains12.11,6391,388251928010,72011,183	Huron–Erie Plains	8.2	2,634	0	2,634	2,539	0	0	493
Central Boreal Plains9.2283,486281,0012,48617,03000105,657Eastern Boreal Plains9.359,16556,1453,0206,1990057,966Eastern Prairies10.12,8701512,7205,625005,370Parkland Prairies10.26,7793686,41123,0140025,198Central Grassland10.35,59005,59078,771009,813Northern Yukon Mountains11.11,6611,66101,01716,16218,049Old Crow-Eagle Plains11.25,3275,32705022,971011,954Ogilvie Mountains11.320,28320,283014,9710624,771Mackenzie-Selwyn Mountains11.436,73036,730025,355050196,869Wrangel Mountains12.11,6391,388251928010,72011,183	Boreal Foothills	9.1	97,869	96,242	1,626	2,334	0	0	20,583
Eastern Boreal Plains9.359,16556,1453,0206,1990057,966Eastern Prairies10.12,8701512,7205,625005,370Parkland Prairies10.26,7793686,41123,0140025,198Central Grassland10.35,59005,59078,771009,813Northern Yukon Mountains11.11,6611,66101,01716,16218,049Old Crow-Eagle Plains11.25,3275,32705022,971011,954Ogilvie Mountains11.320,28320,283014,9710624,771Mackenzie-Selwyn Mountains11.436,73036,730025,355050196,869Wrangel Mountains12.11,6391,388251928010,72011,183	Central Boreal Plains	9.2	283,486	281,001	2,486	17,030	0	0	105,657
Eastern Prairies10.12,8701512,7205,625005,370Parkland Prairies10.26,7793686,41123,0140025,198Central Grassland10.35,59005,59078,771009,813Northern Yukon Mountains11.11,6611,66101,01716,16218,049Old Crow-Eagle Plains11.25,3275,32705022,971011,954Ogilvie Mountains11.320,28320,283014,9710624,771Mackenzie-Selwyn Mountains11.436,73036,730025,355050196,869Wrangel Mountains12.11,6391,388251928010,72011,183	Eastern Boreal Plains	9.3	59,165	56,145	3,020	6,199	0	0	57,966
Parkland Prairies10.26,7793686,41123,0140025,198Central Grassland10.35,59005,59078,771009,813Northern Yukon Mountains11.11,6611,66101,01716,16218,049Old Crow-Eagle Plains11.25,3275,32705022,971011,954Ogilvie Mountains11.320,28320,283014,9710624,771Mackenzie-Selwyn Mountains11.436,73036,730025,355050196,869Wrangel Mountains12.11,6391,388251928010,72011,181	Eastern Prairies	10.1	2,870	151	2,720	5,625	0	0	5,370
Central Grassland10.35,59005,59078,771009,813Northern Yukon Mountains11.11,6611,66101,01716,16218,049Old Crow-Eagle Plains11.25,3275,32705022,971011,954Ogilvie Mountains11.320,28320,283014,9710624,771Mackenzie-Selwyn Mountains11.436,73036,730025,355050196,869Wrangel Mountains12.11,6391,388251928010,72011,183	Parkland Prairies	10.2	6,779	368	6,411	23,014	0	0	25,198
Northern Yukon Mountains11.11,6611,66101,01716,16218,049Old Crow-Eagle Plains11.25,3275,32705022,971011,954Ogilvie Mountains11.320,28320,283014,9710624,771Mackenzie-Selwyn Mountains11.436,73036,730025,355050196,869Wrangel Mountains12.11,6391,388251928010,72011,183	Central Grassland	10.3	5,590	0	5,590	78,771	0	0	9,813
Old Crow-Eagle Plains11.25,3275,32705022,971011,954Ogilvie Mountains11.320,28320,283014,9710624,771Mackenzie-Selwyn Mountains11.436,73036,730025,355050196,869Wrangel Mountains12.11,6391,388251928010,72011,183	Northern Yukon Mountains	11.1	1.661	1.661	0	1.017	16.162	1	8.049
Ogilvie Mountains 11.3 20,283 20,283 0 14,971 0 6 24,771 Mackenzie–Selwyn Mountains 11.4 36,730 36,730 0 25,355 0 501 96,869 Wrangel Mountains 12.1 1,639 1,388 251 928 0 10,720 11,183	Old Crow-Eagle Plains	11.2	5.327	5.327	0	502	2.971	0	11.954
Mackenzie–Selwyn Mountains 11.4 36,730 36,730 0 25,355 0 501 96,869 Wrangel Mountains 12.1 1,639 1,388 251 928 0 10,720 11,183	Ogilvie Mountains	11.3	20,283	20,283	0	14,971	_,0	6	24,771
Wrangel Mountains 12.1 1,639 1,388 251 928 0 10,720 11,183	Mackenzie-Selwyn Mountains	11.4	36 730	36 730	0	25,355	0	501	96,869
	Wrangel Mountains	12 1	1 630	1 388	251	Q28	0	10 720	11 182
Northern Boreal Cordillera 12.2 111.315 111.173 143 22.168 0 102 105.145	Northern Boreal Cordillera	12.1	111 215	111 172	1/2	22 162	0	10,720	105 1/5
Southern Boreal Controllera 12.3 50 178 58 485 602 11 040 0 102 100,143	Southern Boreal Cordillera	10 2	50 179	52 /25	602	11 0/0	0	2 521	05,145
Operation borotor organization 12.0 00,110 002 11,040 0 2,034 30,034 Wastern Rozel Contrillars 12.4 12.768 12.760 0 6.61 0 2 10.040	Western Borgal Cordillera	12.3	12 760	12 760	092	6 161	0	2,004	10 010
Georgia Depression 13.1 14.398 0 14.398 106 0 46 1.775	Georgia Depression	13.1	14.398	13,700 N	14 398	106	0	46	1 775

Table 2.1

Terrestrial and freshwater ecosystem extent, by type and ecoprovince (Part 2)

		Ecosystem types - Natural and semi-natural area						
	-	Fo	orest, 2017		Grassland			
	-	Total	Boreal	Non-boreal	and natural pasture, 2015	Arctic tundra, 2015	Permanent snow and ice, 2015	Other natural and semi- natural area
Ecoprovince	Code				km ²			
Southern Coastal Mountains	13.2	95,757	0	95,757	1,379	0	13,543	47,589
Northern Coastal Mountains	13.3	6,205	369	5,837	129	0	14,363	11,173
Northern Montane Cordillera	14.1	99,065	21,055	78,010	1,646	0	1,744	37,843
Central Montane Cordillera	14.2	71,038	0	71,038	3,123	0	1,129	28,967
Southern Montane Cordillera	14.3	39,457	0	39,457	1,759	0	456	15,378
Columbia Montane Cordillera	14.4	108,050	13,507	94,543	3,835	0	6,598	60,214
Hudson Bay Coastal Plains	15.1	12,758	12,758	0	2,632	0	0	48,681
Hudson–James Lowlands	15.2	103,162	103,162	0	5,765	0	0	202,695

.. not available for a specific reference period

... not applicable

Notes: This table presents land cover and land use data at the ecoprovince level of the Ecological Land Classification (ELC) as a proxy for an ecosystem type classification. Ecosystem extent estimates are compiled using numerous sources based on satellite imagery, ground and photo plots and soil and respondent surveys. Source data are available at different resolutions, with varying levels of uncertainty. Data have been derived by rescaling and/or averaging across years to provide the best estimate for the time period. While these estimates provide information on the extent of Canadian ecosystems at a point in time, unless otherwise noted, they are not suitable for assessing change. Areas outside the ELC include the Canadian portion of the Great Lakes and other residual areas along shorelines. Other natural and semi-natural area is unclassified area calculated based on subtraction of all other ecosystem type classes from the total area of Canada. For more information about definitions, sources and methods, see Appendix A.

Sources: Agriculture and Agri-Food Canada (AAFC), 2013, Terrestrial Ecoprovinces of Canada, https://open.canada.ca/data/en/dataset/98fa7335-fbfe-4289-9a0e-d6bf3874b424 (accessed December 2, 2020); Natural Resources Canada (NRCan), 2014, Atlas of Canada National Scale Data 1:1,000,000 – Waterbodies, https://open.canada.ca/data/en/dataset/e9931fc7-034c-52ad-91c5-6c64d4ba0065 (accessed December 9, 2020); NRCan, Canada Centre for Mapping and Earth Observation (CCMEO), 2018, Lakes, Rivers and Glaciers in Canada – CanVec Series - Hydrographic Features, 50K, https://open.canada.ca/data/en/dataset/9d96e8c9-22fe-4ad2-b5e8-94a6991b744b (accessed December 2, 2020); Tarnocai, C., I.M. Kettles and B. Lacelle, 2011, Peatlands of Canada, Geological Survey of Canada, https://geoscan.nrcan.gc.ca/starweb/geoscan/servlet.starweb?path=geoscan/fulle.web&search1=R=288786 (accessed March 16, 2020); National Forest Inventory, 2021, First remeasurement standard reports, (2007-2017): Table 4.1. Area (1000 ha) of forest and non-forest land by terrestrial ecozone in Canada, https:// nfi.nfis.org/resources/general/summaries/t1/en/NFI/html/NFI_T4_FOR_AREA_en.html (accessed August 13, 2021); Beaudoin, A., et al., 2017, Species composition, forest properties and land cover types across Canada's forests at 250 m resolution for 2001 and 2011, NRCan, Canadian Forest Service (CFS), Laurentian Forestry Centre, https://doi.org/10.23687/ec9e2659-1c29-4ddb-87a2-6aced147a990 (accessed March 31, 2019); Brandt, J.P., 2009, "The extent of the North American boreal zone," Environmental Reviews, Vol. 27, no. 1, pp. 101-161, http:// cfs.nrcan.gc.ca/publications/?id=29569 (accessed June 15, 2017); AAFC, 2020, Annual Crop Inventory, 2014-2016, https://open.canada.ca/data/en/dataset/ba2645d5-4458-414d-b196-6303ac06c1c9 (accessed December 3, 2020); NRCan, CCMEO, 2020. 2010 and 2015 Land Cover of North America at 30 metres, Ed. 2.0, Commission for Environmental Cooperation (CEC), North American Land Change Monitoring System, http://www.cec.org/north-american-land-change-monitoring-system/ (accessed December 9, 2020); AAFC, 2016, Interpolated Census of Agriculture, https://open.canada.ca/data/en/dataset/1dee8513-5c73-43b6-9446-25f7b985cd00 (accessed December 3, 2020); Baldwin, K., et al., 2018, Vegetation Zones of Canada; a Biogeoclimatic Perspective [Map], Scale 1:5,000,000, NRCan, CFS, https://open.canada.ca/data/en/dataset/22b0166b-9db3-46b7-9baf-6584a3acc7b1 (accessed October 26, 2020); AAFC 2015, Land Use, 1990, 2000 & 2010, https://open.canada.ca/data/en/dataset/18e3ef1a-497c-40c6-8326-aac1a34a0dec (accessed June 1, 2020); Environment and Climate Change Canada, 2020, CRF Tables, Canada's National Inventory Submissions 2018 to the UNFCCC, https://unfccc.int/process-and-meetings/transparency-and-reporting/reporting-and-review-under-theconvention/greenhouse-gas-inventories-annex-i-parties/submissions/national-inventory-submissions-2018#fn1 (accessed April 30, 2020).

Table 2.1

Ecosystem extent, by type and ecoprovince (Part 3)

		Ecosystem types - Intensive use area					
	_		Arable		Built-up and	l artificial su	rfaces
		2001	2011	2016	2000	2010	2015
Ecoprovince	Code			km ²			
Canada		445,782	425,299	437,945	56,398	60,706	62,641
Total, area outside Ecological Land Classification							
Total, Ecological Land Classification		445,782	425,299	437,945	56,398	60,706	62,641
Northern Arctic Cordillera	1.1	0	0	0	0	0	
Southern Arctic Cordillera	1.2	0	0	0	7	7	
Sverdrup Islands	2.1	0	0	0	2	2	
Ellesmere Basin	2.2	0	0	0	2	2	
Victoria Lowlands	2.3	0	0	0	34	34	
Parry Channel Plateau	2.4	0	0	0	8	8	
Boothia–Foxe Shield	2.5	0	0	0	23	23	
Baffin Unlands	2.6	0	0	0	2	2	
Foxe–Boothia Lowlands	2.7	0	0	0	13	13	
Amundsen Lowlands	3.1	0	0	0	67	67	
Keewatin Lowlands	32	0	0	0	25	25	
Lingava–Belcher	3.3	0	ů 0	0	3	5	
Mackenzie Foothills	4 1	0	0	0	30	30	
Great Bear Lowlands	4.1	0	0	0	155	155	
Hav_Slave Lowlands	4.2	24	23	46	426	446	
Western Taiga Shield	4.0 5 1	0	20	-+0 0	30	/1	
Factorn Taiga	5.1	0	0	0	159	171	
Lastelli Talya	5.2	0	0	0	100	105	
Whale Piver Lowland	5.0	0	0	0	15	20	
Whatern Porcel Shield	J.4 6 1	0	0	20	10	400	
Mid Porcel Shield	0.1	470	9	20	440	402	
Miu-Duleal Shield	0.2	470	1 202	1 007	1,703	1,000	
Edsterni Duredi Silleiu	0.3	1,024	1,292	1,297	1,107	1,300	
Newtoundiand	0.4	1 405	1 45 4	90	1,222	1,201	
Lake of the woods	6.5	1,425	1,454	1,462	997	1,033	
Southern Boreal Shield	0.0	3,040	3,331	3,230	4,096	4,893	
Appalachian–Acadian Highlands	7.1	4,731	4,661	4,573	2,155	2,417	
Northumberland Lowlands	7.2	2,284	2,322	2,403	1,501	1,619	
Fundy Uplands	7.3	1,826	1,935	1,898	2,798	3,004	
Great Lakes–St. Lawrence Lowlands	8.1	34,455	34,225	34,120	8,520	9,231	
Huron–Erie Plains	8.2	14,244	13,806	14,287	4,562	4,771	
Boreal Foothills	9.1	3,125	3,328	3,014	868	890	
Central Boreal Plains	9.2	76,759	/1,50/	72,254	4,827	5,566	
Eastern Boreal Plains	9.3	7,102	6,582	6,584	838	857	
Eastern Prairies	10.1	18,417	17,073	17,655	1,308	1,352	
Parkland Prairies	10.2	119,471	109,291	116,106	6,180	6,351	
Central Grassland	10.3	153,373	149,081	153,674	6,372	6,528	
Northern Yukon Mountains	11.1	0	0	0	4	4	
Old Crow–Eagle Plains	11.2	0	0	0	8	8	
Ogilvie Mountains	11.3	0	0	0	58	58	
Mackenzie–Selwyn Mountains	11.4	0	0	0	31	31	
Wrangel Mountains	12.1	0	0	0	2	2	
Northern Boreal Cordillera	12.2	0	0	6	302	303	
Southern Boreal Cordillera	12.3	0	0	0	73	79	
Western Boreal Cordillera	12.4	0	0	0	54	54	
Georgia Depression	13.1	854	870	967	2,039	2,178	

Table 2.1

Ecosystem extent, by type and ecoprovince (Part 3)

		Ecosyste	m types - In	itensive use ar	ea		
		Arable			Built-up and artificial surface		faces
		2001	2011	2016	2000	2010	2015
Ecoprovince	Code		km ²				
Southern Coastal Mountains	13.2	34	49	115	346	367	
Northern Coastal Mountains	13.3	0	0	0	11	11	
Northern Montane Cordillera	14.1	534	667	491	454	493	
Central Montane Cordillera	14.2	896	1,173	1,315	413	437	
Southern Montane Cordillera	14.3	876	1,053	988	903	997	
Columbia Montane Cordillera	14.4	757	779	672	883	961	
Hudson Bay Coastal Plains	15.1	0	0	0	10	19	
Hudson–James Lowlands	15.2	0	0	0	86	108	

.. not available for a specific reference period

... not applicable

Notes: This table presents land cover and land use data at the ecoprovince level of the Ecological Land Classification (ELC) as a proxy for an ecosystem type classification. Ecosystem extent estimates are compiled using numerous sources based on satellite imagery, ground and photo plots and soil and respondent surveys. Source data are available at different resolutions, with varying levels of uncertainty. Data have been derived by rescaling and/or averaging across years to provide the best estimate for the time period. While these estimates provide information on the extent of Canadian ecosystems at a point in time, unless otherwise noted, they are not suitable for assessing change. Areas outside the ELC include the Canadian portion of the Great Lakes and other residual areas along shorelines. Other natural and semi-natural area is unclassified area calculated based on subtraction of all other ecosystem type classes from the total area of Canada. For more information about definitions, sources and methods, see Appendix A.

Sources: Agriculture and Agri-Food Canada (AAFC), 2013, Terrestrial Ecoprovinces of Canada, https://open.canada.ca/data/en/dataset/98fa7335-fbfe-4289-9a0e-d6bf3874b424 (accessed December 2, 2020); Natural Resources Canada (NRCan), 2014, Atlas of Canada National Scale Data 1:1,000,000 - Waterbodies, https://open.canada.ca/data/en/dataset/e9931fc7-034c-52ad-91c5-6c64d4ba0065 (accessed December 9, 2020); NRCan, Canada Centre for Mapping and Earth Observation (CCMEO), 2018, Lakes, Rivers and Glaciers in Canada - CanVec Series - Hydrographic Features, 50K, https://open.canada.ca/data/en/dataset/9d96e8c9-22fe-4ad2-55e8-94a6991b744b (accessed December 2, 2020); Tarnocai, C., I.M. Kettles and B. Lacelle, 2011, Peatlands of Canada, Geological Survey of Canada, https://geoscan.nrcan.gc.ca/starweb/geoscan/servlet.starweb?path=geoscan/fulle.web&search1=R=288786 (accessed March 16, 2020); National Forest Inventory, 2021, First remeasurement standard reports, (2007-2017): Table 4.1. Area (1000 ha) of forest and non-forest land by terrestrial ecozone in Canada. https:// nfi.nfis.org/resources/general/summaries/t1/en/NFI/html/NFI T4 FOR AREA en.html (accessed August 13, 2021); Beaudoin, A., et al., 2017, Species composition, forest properties and land cover types across Canada's forests at 250 m resolution for 2001 and 2011, NRCan, Canadian Forest Service (CFS), Laurentian Forestry Centre, https://doi.org/10.23687/ec9e2659-1c29. 4ddb-87a2-6aced147a990 (accessed March 31, 2019); Brandt, J.P., 2009, "The extent of the North American boreal zone," *Environmental Reviews*, Vol. 27, no. 1, pp. 101-161, http:// cfs.nrcan.gc.ca/publications/?id=29569 (accessed June 15, 2017); AAFC, 2020, Annual Crop Inventory, 2014-2016, https://open.canada.ca/data/en/dataset/ba2645d5-4458-414d-b196-6303ac06c1c9 (accessed December 3, 2020); NRCan, CCMEO, 2020, 2010 and 2015 Land Cover of North America at 30 metres, Ed. 2.0, Commission for Environmental Cooperation (CEC), North American Land Change Monitoring System, http://www.cec.org/north-american-land-change-monitoring-system/ (accessed December 9, 2020); AAFC, 2016, Interpolated Census of Agriculture, https://open.canada.ca/data/en/dataset/1dee8513-5c73-43b6-9446-25f7b985cd00 (accessed December 3, 2020); Baldwin, K., et al., 2018, Vegetation Zones of Canada: a Biogeoclimatic Perspective [Map], Scale 1:5,000,000, NRCan, CFS, https://open.canada.ca/data/en/dataset/22b0166b-9db3-46b7-9baf-6584a3acc7b1 (accessed October 26, 2020); AAFC, 2015, Land Use, 1990, 2000 & 2010, https://open.canada.ca/data/en/dataset/18e3ef1a-497c-40c6-8326-aac1a34a0dec (accessed June 1, 2020); Environment and Climate Change Canada, 2020, CRF Tables, Canada's National Inventory Submissions 2018 to the UNFCCC, https://unfccc.int/process-and-meetings/transparency-and-reporting/reporting-and-review-under-theconvention/greenhouse-gas-inventories-annex-i-parties/submissions/national-inventory-submissions-2018#fn1 (accessed April 30, 2020).

Table 2.2

Population, by ecoprovince, 2016

			Total	Population	Population in	Population centre share
	-	Land area	population	density	population centres1	of total population1
Ecoprovince	Code	km ²	persons	persons/km ²	persons	percentage
Canada		8,644,654	35,151,728	4.1	28,576,355	81.3
Northern Arctic Cordillera	1.1	112,625	0	0.0	0	
Southern Arctic Cordillera	1.2	123,306	1,651	0.0	0	0.0
Sverdrup Islands	2.1	62,650	0	0.0	0	
Ellesmere Basin	2.2	124,957	0	0.0	0	
Victoria Lowlands	2.3	370,563	4,089	0.0	2,816	68.9
Parry Channel Plateau	2.4	129,945	2,614	0.0	0	0.0
Boothia–Foxe Shield	2.5	472,764	17,192	0.0	9,847	57.3
Baffin Uplands	2.6	119,793	0	0.0	0	
Foxe–Boothia Lowlands	2.7	67,263	3,525	0.1	0	0.0
Amundsen Lowlands	3.1	254,569	3,785	0.0	2,119	56.0
Keewatin Lowlands	3.2	304,554	7,561	0.0	4,955	65.5
Ungava–Belcher	3.3	122,042	6,347	0.1	2,350	37.0
Mackenzie Foothills	4.1	83,262	700	0.0	0	0.0
Great Bear Lowlands	4.2	265,135	6,256	0.0	2,078	33.2
Hay–Slave Lowlands	4.3	214,896	14,941	0.1	6,094	40.8
Western Laiga Shield	5.1	470,061	27,466	0.1	18,884	68.8
Eastern Taiga	5.2	311,732	9,075	0.0	2,967	32.7
Labrador Uplands	5.3	202,643	4,715	0.0	0	0.0
Whale River Lowland	5.4	95,599	5,467	0.1	1,353	24.7
Western Boreal Shield	6.1	426,918	80,933	0.2	28,589	35.3
Mid-Boreal Shield	6.2	433,169	2/1,519	0.6	157,219	57.9
Eastern Boreal Shield	6.3	310,752	386,762	1.2	255,447	66.0
Newfoundland	6.4	98,981	492,519	5.0	286,698	58.2
Lake of the Woods	6.5	59,817	203,121	3.4	122,052	60.1
Southern Boreal Shield	6.6	282,250	1,581,203	5.6	913,173	57.8
Appalachian–Acadian Highlands	7.1	92,222	860,248	9.3	418,670	48.7
Northumberland Lowlands	7.2	34,390	639,389	18.6	323,423	50.6
Fundy Uplands	7.3	67,191	1,105,911	10.5	610,479	55.2
Great Lakes–St. Lawrence Lowiands	8.1	83,385	10,059,562	120.7	8,453,277	84.0
Huron–Erie Plains	8.2	24,139	8,324,391	344.8	7,873,584	94.6
Boreal Footnills	9.1	122,257	87,670	0.7	41,907	47.8
Central Boreal Plains	9.2	450,567	695,800	1.5	322,881	40.4
Eastern Boreal Plains	9.3	89,071	139,801	0.1	49,172	35.2
Eastern Prairies	10.1	28,955	914,493	31.0	792,530	80.7
Parkianu Plaines	10.2	107,000	2,000,002	14.9	2,002,202	03.3
Northorn Vukon Mountaine	10.5	242,144	2,021,042	0.3	1,730,320	00.9
Ald Crow Eagle Plains	11.1	19 025	221	0.0	0	
Ord Grow-Layle Frans Ordinie Mountains	11.2	50 018	221	0.0	0	0.0
Mackenzie-Selwyn Mountains	11.0	156 172	108	0.0	0	0.0
Wrangel Mountaine	10.4	22 820	72	0.0	0	0.0
Northern Boreal Cordillera	12.1	23,030	33 151	0.0	0 21 732	65.0
Southern Boreal Cordillera	12.2	150,880	2 / 187	0.1	21,732	00.0
Western Boreal Cordillera	12.5	37 507	1 013	0.0	0	0.0
Georgia Depression	12.4	18 / 29	3 544 749	102.5	3 310 895	0.0 Q3 /
Southern Coastal Mountains	13.2	151 029	135 380	0.9	73 160	54.0
Northern Coastal Mountains	13.3	30 944	1 011	0.0	10,100	0.0
Northern Montane Cordillera	14.1	133 129	123 637	0.0	83 022	67.1
Central Montane Cordillera	14.2	100 245	69 195	0.5	24 867	35.0
Southern Montane Cordillera	14.3	56,469	537,455	9.5	396,655	73.8
Columbia Montane Cordillera	14.4	172,464	208.007	12	118,120	56.8
Hudson Bay Coastal Plains	15.1	56,965	1,475	0.0	0	0.0
Hudson–James Lowlands	15.2	291,363	12,008	0.0	6,552	54.6

... not applicable 1. The term 'population centre' was introduced for the 2011 Census and replaced the term 'urban area.' All areas outside population centres are classified as rural areas.

Source: Statistics Canada, Table 38-10-0047-01, https://doi.org/10.25318/3810004701-eng (accessed September 18, 2020).

Table 2.3

Marine and coastal extent, by depth class and marine ecoregion

	Maximum water depth class ¹								
	Coastal epipelagic	Epipelagic	Mesopelagic	Bathypelagic	Abyssalpelagic	Total			
Marine ecoregion	egion km ²								
Total exclusive economi	ic			·					
zone	812,532	1,866,901	1,459,181	1,485,749	122,533	5,746,894			
Strait of Georgia	3,273	3,173	2,522	2	0	8,970			
Southern Shelf	4,132	11,176	4,583	8,267	0	28,158			
Offshore Pacific	3	15	211	315,495	0	315,724			
Northern Shelf	23,423	39,737	25,109	13,060	0	101,328			
Arctic Basin	142	13,117	224,802	513,992	0	752,053			
Western Arctic	177,824	189,473	172,497	0	0	539,793			
Arctic Archipelago	43,739	91,959	133,099	0	0	268,797			
Eastern Arctic	77,149	154,899	362,773	187,819	0	782,639			
Hudson Bay Complex	343,386	759,653	141,606	0	0	1,244,644			
Newfoundland-Labrador									
Shelves	49,994	350,532	287,743	344,977	8,410	1,041,656			
Scotian Shelf	25,963	145,984	28,277	102,137	114,123	416,485			
Gulf of St. Lawrence	63,504	107,183	75,959	0	0	246,646			

Note: This table classifies areas of Canada's exclusive economic zone (EEZ) by their maximum water depth. Areas classed as coastal epipelagic have a maximum depth of 50 m, the epipelagic class has depths from 50 m to 200 m, the mesopelagic class has depths of 200 m to 1000 m, the bathypelagic class has depths of 1 km to 4 km, and the abyssalpelagic class includes all areas with depths of more than 4 km. Within each area, the water column from the water surface to the seafloor is similarly divided into vertical zones. For example, areas classed as abyssalpelagic will have waters that are within the epipelagic, mesopelagic and bathypelagic zones.

Source: GEBCO Compilation Group, 2015, GEBCO_2014 Grid, version 20150318, www.gebco.net (accessed December 5, 2018).

Table 2.4

Marine and coastal ecosystem extent, by marine ecoregion

		Ecosystem type							
	Salt marsh	Seagrass meadow	Kelp forest	Cold coral and sea sponge reef	Area unassigned				
Marine ecoregion			k	xm ²					
Estimated minimum total	1,114	1,429	634	293,353	5,451,558				
Strait of Georgia	64	252	77	33	8,637				
Southern Shelf	75	94	126	177	27,776				
Offshore Pacific				124	315,710				
Northern Shelf	599	371	431	2,610	97,799				
Arctic Basin					752,425				
Western Arctic	1	1			539,588				
Arctic Archipelago					268,633				
Eastern Arctic	1	1	2	55,542	727,291				
Hudson Bay Complex	1	274	2	757	1,243,656				
Newfoundland-Labrador Shelves	1	21	2	110,321	931,315				
Scotian Shelf	178	49	2,3	80,742	335,497				
Gulf of St. Lawrence	198	364	2,3	43,160	203,232				

.. not available for a specific reference period

1. Salt marsh is known to occur in this marine ecoregion. However, the area was unavailable and is not included in this estimate.

 Kelp beds are known to occur in this marine ecoregion. However, the area was unavailable and is not included in this estimate. Point data for kelp can be found in Wilson K.L., M.A. Skinner and H.K. Lotze, 2019, "Projected 21st-century distribution of canopy-forming seaweeds in the Northwest Atlantic with climate change," *Diversity and Distributions*, Vol. 25, no. 4, pp. 582-602, https://doi.org/10.1111/ddi.12897 (accessed May 22, 2020).

Kelp was observed pre- and post-2000, but decreases have occurred as a result of warming waters. Bernier, R.Y., R.E. Jamieson and A.M. Moore (Eds.), 2018, "State of the Atlantic Ocean synthesis report," *Can. Tech. Rep. Fish. Aquat. Sci.* 3167:iii+149p. Kelp was historically found in the southern Gulf of St. Lawrence, but is now uncommon. The Eastern shore Islands of the Scotian Shelf have dense kelp beds, Fisheries and Oceans Canada, 2019, "Ecological Importance," *Eastern Shore Islands: Area of Interest (AOI)*, https://www.dfo-mpo.gc.ca/oceans/aoi-si/ easternshore-ilescoteest-eng.html (accessed September 29, 2020).

4. Coldwater coral is known to occur in the Offshore Pacific Seamounts and Vents Marine Protected Area and SGaan Kinghlas-Bowie Seamount Marine Protected Area. However, the area within these protected areas was unavailable and is not included in this estimate.

Notes: Salt marsh, seagrass meadow, kelp forest and cold coral and sea sponge reef areas are underestimated because of the difficulty of fully mapping Canada's marine regions. Some seagrass and cold water coral area estimates have been derived from point data. The total marine and coastal area covered by this table includes some small inlets and shallow bays that are excluded from other tabulations and small overlaps between ecosystem types may occur. For more information, see Appendix A.

Sources: McOwen, C., et al., 2017, "A global map of saltmarshes," Biodiversity Data Journal, Vol. 5: e11764, https://doi.org/10.3897/BDJ.5.e11764 and http://data.unepwcmc.org/ datasets/43 (v.6) (accessed September 20, 2019); British Columbia Ministry of Forests, Lands, Natural Resource Operations and Rural Development, 2019, Kelp Beds - Coastal Resource Information Management System (CRIMS), GeoBG, https://catalogue.data.gov.bc.ca/dataset/kelp-beds-coastal-resource-information-management-system-crims (accessed April 4, 2019); Freiwald, A., et al., 2017, ""Global distribution of cold-water corals (version 5.0),"" Fifth update to the dataset in Freiwald, et al., 2004, by UNEP-WCMC, in collaboration with A. Freiwald and J. Guinotte, Cambridge (UK): UN Environment World Conservation Monitoring Centre, http://data.unep-wcmc.org/datasets/3 (accessed June 3, 2019); Kenchington, E., et al., 2018, Delineation of Coral and Sponge Significant Benthic areas in Eastern Canada Using Kernel Density Analyses and Species Distribution Models, https://data.mendeley.com/datasets/hnp4xr2sy3 (accessed May 14, 2019); Fisheries and Oceans Canada, 2016, Oceans Act Marine Protected Areas, https://open.canada.ca/data/en/dataset/a1e18963-25dd-4219-a33f-1a38c4971250 accessed September 9, 2019); Fisheries and Oceans Canada, 2017, Other Effective Area-Based Conservation Measures, https://open.canada.ca/data/en/dataset/44769543-7a23-4991a53f-c2cf7c7a946f (accessed September 9, 2019); B.C. Ministry of Forests, Lands, Natural Resource Operations and Rural Development, 2019, Eelarasses - Coastal Resource Information Management System (CRIMS), GeoBC, https://catalogue.data.gov.bc.ca/dataset/eelgrasses-coastal-resource-information-management-system-crims (accessed April 4, 2019); Fisheries and Oceans Canada, 2019, Eelgrass inventory in James Bay, Chaleur Bay, Estuary and Gulf of St. Lawrence, https://open.canada.ca/data/en/dataset/c9ab948f-5009-4dbc-9129-2f6e373f17f6 (accessed September 30, 2019); Personal communication with Brett Painter, Environment and Climate Change Canada, June 21, 2019; Personal communication with Heike Lotz, Dalhousie University, June 21, 2019; Personal communication with John Cristiani and Mary O'Connor, University of British Columbia, June 14, 2019; Personal communication with Amanda Bates and Jasmin Schuster, Memorial University (February 10, 2020), Personal communication with Arnault LeBris, Memorial University (May 20, 2020); UNEP-WCMC and F.T. Short. 2018. Global distribution of seagrasses (version 6.0), Sixth update to the data layer used in Green and Short, 2003, Cambridge, (UK): UN Environment World Conservation Monitoring Centre, http://data. unep-wcmc.org/datasets/7 (accessed September 30, 2020)
Table 2.5

Marine and coastal terrain ruggedness, slope and substrate, by marine ecoregion and depth class (Part 1)

			Terrain	ruggedness ¹		Slope percentage ²				
		Nearly	Slightly	Intermediately	Moderately to					
	Level	level	rugged	rugged	extremely rugged	Level	Undulating	Rolling	Hilly	
									Greater	
	0 to 80	81 to 116	117 to 161	162 to 239	240 to 4,367	0 to 0.5	0.5 to 5	5 to 30	than 30	
Marine ecoregion and depth class					km ²					
Strait of Georgia										
Coastal	1,464	510	417	355	528	238	1,312	1,604	119	
Epipelagic	1,389	605	450	332	397	17	1,419	1,684	53	
Mesopelagic	1,776	304	149	88	205	34	1,714	678	97	
Bathypelagic	0	0	0	0	2	0	0	0	2	
Southern Shelf										
Coastal	3,313	229	166	197	225	606	2,782	723	21	
Epipelagic	10,722	200	98	66	90	3,895	6,886	392	3	
Mesopelagic	1,368	915	924	874	502	39	1,297	3,207	41	
Bathypelagic	2,989	1,401	1,291	1,371	1,216	81	3,010	5,043	133	
Offshore Pacific										
Coastal	0	0	2	0	1	0	0	3	0	
Epipelagic	0	1	1	7	6	0	0	15	0	
Mesopelagic	14	10	14	28	145	0	20	135	56	
Bathypelagic	260,078	19,287	12,601	11,458	12,071	52,160	210,975	50,703	1,657	
Northern Shelf										
Coastal	16,368	1,538	1,341	1,523	2,650	8,134	8,834	6,077	378	
Epipelagic	34,432	1,971	1,092	910	1,333	8,747	26,060	4,747	183	
Mesopelagic	17,478	1,944	1,842	1,763	2,083	4,714	12,761	7,290	343	
Bathypelagic	3,562	2,120	2,237	2,826	2,316	29	3,499	9,249	282	
Arctic Basin										
Coastal	130	8	2	1	0	14	117	10	0	
Epipelagic	12,955	108	40	14	0	4,580	8,370	167	0	
Mesopelagic	216,406	5,750	1,934	632	80	83,661	131,504	9,638	0	
Bathypelagic	481,786	18,843	8,026	3,896	1,440	109,235	369,028	35,653	75	
Western Arctic										
Coastal	175,799	1,112	492	292	129	123,568	51,974	2,280	2	
Epipelagic	187,044	1,776	447	165	40	89,912	96,642	2,919	0	
Mesopelagic	170,974	1,130	314	71	8	84,445	86,289	1,763	0	
Arctic Archipelago										
Coastal	35,875	2,571	1,741	1,656	1,895	7,504	27,684	8,192	359	
Epipelagic	84,291	4,243	1,988	1,013	425	15,945	66,576	9,406	32	
Mesopelagic	125,709	4,247	1,847	1,003	292	31,358	92,015	9,712	14	
Eastern Arctic										
Coastal	60,239	4,924	3,675	3,656	4,656	17,494	42,395	16,318	941	
Epipelagic	145,499	4,479	2,237	1,545	1,139	49,809	94,168	10,728	194	
Mesopelagic	339,700	11,467	6,471	3,400	1,734	136,062	200,213	26,160	338	
Bathypelagic	184,388	2,452	728	225	26	58,270	124,735	4,814	0	
Hudson Bay Complex										
Coastal	340,711	1,550	683	360	82	266,025	74,862	2,497	1	
Epipelagic	758,450	779	309	100	15	596,649	161,593	1,411	0	
Mesopelagic	140,566	792	173	63	11	62,041	78,370	1,195	0	
Newfoundland-Labrador Shelves										
Coastal	41,944	3,445	2,149	1,481	974	12,012	30,791	7,104	87	
Epipelagic	343,377	4,081	1,757	977	339	222,157	121,774	6,598	3	
Mesopelagic	267,163	9,491	6,199	3,676	1,213	116,714	150,599	20,371	58	
Bathypelagic	305,044	21,486	10,286	5,615	2,547	34,129	271,198	39,349	303	
Abyssalpelagic	7,445	583	250	102	30	182	7,265	964	0	

Table 2.5

Marine and coastal terrain ruggedness, slope and substrate, by marine ecoregion and depth class (Part 1)

			Terrain	ruggedness ¹		Slope percentage ²			
	Level	Nearly level	Slightly rugged	Intermediately rugged	Moderately to extremely rugged	Level	Undulating	Rolling	Hilly
	0 to 80	81 to 116	117 to 161	162 to 239	240 to 4,367	0 to 0.5	0.5 to 5	5 to 30	Greater than 30
Marine ecoregion and depth class					km ²				
Scotian Shelf									
Coastal	25,671	212	62	18	1	11,707	13,982	275	0
Epipelagic	144,773	934	222	46	9	71,910	72,950	1,124	0
Mesopelagic	20,284	2,189	1,980	2,318	1,506	8,219	12,024	7,952	81
Bathypelagic	73,622	10,707	6,786	6,241	4,781	406	73,374	28,228	128
Abyssalpelagic	113,773	266	69	13	2	28,400	85,405	318	0
Gulf of St. Lawrence									
Coastal	61,752	893	401	284	174	38,939	22,932	1,625	7
Epipelagic	105,949	845	240	118	30	49,461	56,598	1,124	0
Mesopelagic	75,729	190	31	5	4	37,681	38,080	198	0

. not available for any reference period

1. Terrain ruggedness calculated using the method in Riley, Shawn J., et al., 1999, "A terrain ruggedness index that quantifies topographic heterogeneity," Intermountain Journal of Sciences, Vol. 5, no. 1-4.

2. Slope was calculated from the bathymetry using ArcGis, slope classifications match broader class from http://www.env.gov.bc.ca/esd/distdata/ecosystems/Soil_Data/Legends/ SlopeClassLegend.pdf

3. Data was not obtained for Atlantic and Arctic regions with the exception of the Gulf of St Lawrence. Classification of sediment substrate differed between sources—sediment for the Gulf of St. Lawrence was redefined as follows: sand sediment as soft, pelite and glacial drift as hard, and everything else as mixed.

4. Low-resolution maps that do not include the required level of detail exist; other data sets may be available for smaller regions, but were not obtained.

Note: Areas classed as coastal have a maximum depth of 50 m, the epipelagic class has depths from 50 m to 200 m, the mesopelagic class has depths from 200 m to 1,000 m, the bathypelagic class has depths of 1 km to 4 km and the abyssalpelagic class includes all areas with depths of more than 4 km.

Sources: GEBC0 Compilation Group, 2015, GEBC0_2014 Grid, version 20150318, www.gebco.net (accessed December 5, 2018); Gregr, E. J., J. Lessard and J. Harper, 2013, "Pacific data from A spatial framework for representing nearshore ecosystems," *Progress in Oceanography*, Vol. 1153, p. 189-201; B.C. Ministry of Forests, Lands, Natural Resource Operations and Rural Development, 1979, *Benthic Marine Ecounits - Coastal Resource Information Management System (CRIMS)*, GeoBC, https://catalogue.data.gov.bc.ca/dataset/benthic-marine-ecounits-coastal-resource-information-management-system-crims (accessed August 19, 2019); Loring, D. H. and D. J. G. Nota, 1973, "Morphology and sediments of the Gulf of St. Lawrence," *Bull. Fish. Res. Bd. Can.*, Vol. 182, https://open.canada.ca/data/en/dataset/8c269a91-d3a2-4f49-943d-6b2401c42cba (accessed November 20, 2019).

Table 2.5 Marine and coastal terrain ruggedness, slope and substrate, by marine ecoregion and depth class (Part 2)

		Substrate type ³						
	Soft	Mixed	Hard	Unavailable ⁴				
Marine ecoregion and depth class		km ²						
Strait of Georgia								
Coastal	1,129	1,413	555	177				
Epipelagic	387	2,347	416	24				
Mesopelagic	28	2,440	52	2				
Bathypelagic	0	2	0	0				
Southern Shelf								
Coastal	1,295	1,527	1,148	162				
Epipelagic	7,591	1,582	1,815	189				
Mesopelagic	1,430	102	4	3,047				
Bathypelagic	6			8,262				
Offshore Pacific								
Coastal				3				
Epipelagic				15				
Mesopelagic				211				
Bathypelagic			224	315,271				
Northern Shelf								
Coastal	10,520	5,053	6,276	1,575				
Epipelagic	20,572	5,501	12,989	675				
Mesopelagic	7,872	3,131	8,527	5,578				
Bathypelagic			74	12,986				

Table 2.5

Marine and coastal terrain ruggedness, slope and substrate, by marine ecoregion and depth class (Part 2)

		Subs	strate type ³	
	Soft	Mixed	Hard	Unavailable ⁴
Marine ecoregion and depth class			km ²	
Arctic Basin				
Coastal				142
Epipelagic				13,117
Mesopelagic				224,802
Bathypelagic				513,992
Western Arctic				
Coastal				177,824
Epipelagic				189,473
Mesopelagic				172,497
Arctic Archipelago				
Coastal				43,739
Epipelagic				91,959
Mesopelagic				133,099
Eastern Arctic				
Coastal				77,149
Epipelagic				154,899
Mesopelagic				362,773
Bathypelagic				187,819
Hudson Bay Complex				
Coastal				343,386
Epipelagic				759,653
Mesopelagic				141,606
Newfoundland-Labrador Shelves				
Coastal	1			49,993
Epipelagic				350,532
Mesopelagic				287,743
Bathypelagic				344,977
Abyssalpelagic				8,410
Scotian Shelf				
Coastal				25,964
Epipelagic				145,984
Mesopelagic				28.277
Bathypelagic				102.137
Abyssalpelagic				114,123
Gulf of St. Lawrence	-	-	-	,.=0
Coastal	27.537	14.960	6.665	14.342
Epipelagic	43.424	17.349	40.033	6.378
Mesopelagic	3.610	901	66.106	5.342

. not available for any reference period

1. Terrain ruggedness calculated using the method in Riley, Shawn J., et al., 1999, "A terrain ruggedness index that quantifies topographic heterogeneity," Intermountain Journal of Sciences, Vol. 5, no. 1-4.

2. Slope was calculated from the bathymetry using ArcGis, slope classifications match broader class from http://www.env.gov.bc.ca/esd/distdata/ecosystems/Soil_Data/Legends/ SlopeClassLegend.pdf

3. Data was not obtained for Atlantic and Arctic regions with the exception of the Gulf of St Lawrence. Classification of sediment substrate differed between sources—sediment for the Gulf of St. Lawrence was redefined as follows: sand sediment as soft, pelite and glacial drift as hard, and everything else as mixed.

4. Low-resolution maps that do not include the required level of detail exist; other data sets may be available for smaller regions, but were not obtained.

Note: Areas classed as coastal have a maximum depth of 50 m, the epipelagic class has depths from 50 m to 200 m, the mesopelagic class has depths from 200 m to 1,000 m, the bathypelagic class has depths of 1 km to 4 km and the abyssalpelagic class includes all areas with depths of more than 4 km.

Sources: GEBC0 Compilation Group, 2015, GEBC0_2014 Grid, version 20150318, www.gebco.net (accessed December 5, 2018); Gregr, E. J., J. Lessard and J. Harper, 2013, "Pacific data from A spatial framework for representing nearshore ecosystems," *Progress in Oceanography*, Vol. 1153, p. 189-201; B.C. Ministry of Forests, Lands, Natural Resource Operations and Rural Development, 1979, *Benthic Marine Ecounits - Coastal Resource Information Management System (CRIMS)*, GeoBC, https://catalogue.data.gov.bc.ca/dataset/benthic-marine-ecounits-coastal-resource-information-management-system-crims (accessed August 19, 2019); Loring, D. H. and D. J. G. Nota, 1973, "Morphology and sediments of the Gulf of St. Lawrence," *Bull. Fish. Res. Bd. Can.*, Vol. 182, https://open.canada.ca/data/en/dataset/8c269a91-d3a2-4f49-943d-6b2401c42cba (accessed November 20, 2019).

Table 2.6

Average annual, average annual maximum and minimum monthly and variability of temperature and precipitation by ecoprovince, 1979 to 2016

	Average	Average maximum	Average minimum	T	Average	Average maximum	Average minimum	Durainitation
	annual temperature	monthly	monthly	Temperature variability	annual	monthly	monthly	Precipitation variability
Ecoprovince Code		°C		CV	mm	kn	1 ³	CV
Canada	-4.3	13.0	-23.1	5.70	545.8	25.4	4.8	0.58
Northern Arctic Cordillera	-21.3	0.7	-38.7	0.66	207.3	4.3	0.8	0.55
Southern Arctic Cordillera	-12.5	4.0	-29.4	0.93	402.6	7.1	1.8	0.41
Sverdrup Islands 2.	-18.1	3.3	-35.9	0.78	78.5	1.3	0.1	0.96
Fllesmere Basin 2.1	-19.7	2.8	-37.7	0.74	142.3	3.8	0.5	0.66
Victoria Lowlands 2.1	3 -14.9	5.8	-33.1	0.94	115.3	10.6	0.9	0.83
Parry Channel Plateau 24	4 -15.9	5.2	-34.4	0.88	173.7	5.1	0.4	0.82
Boothia–Foxe Shield 2 !	5 -12.3	7.5	-31.8	1.10	271.3	26.1	3.2	0.61
Baffin Unlands 24	5 -12.8	51	-30.7	0.97	307.6	7.3	0.9	0.64
Foxe–Boothia Lowlands 2	7 -11.9	7.3	-30.8	1 11	233.3	37	0.3	0.74
Amundsen Lowlands 3	-10.4	10.0	-29.6	1.36	200.1	11.6	1.5	0.68
Keewatin Lowlands 31	-116	10.3	-32.2	1.30	244.4	17.9	1.0	0.68
Ungava–Belcher 3:	-72	91	-26.2	1.00	489.7	12.8	1.0	0.55
Mackenzie Foothills 4	,	13.9	-26.8	2 45	351.0	5.6	0.8	0.67
Great Bear Lowlands 4:	-66	14.4	-28.0	2.40	268.3	15.9	2.5	0.60
Hav–Slave Lowlands 4:	17	16.0	-22.0	7 84	399.2	18.3	2.0	0.00
Western Taiga Shield 5.	-67	14.1	-28.1	2 22	345.7	36.4	5.8	0.72
Fastern Taiga Shicid 5.	-43	19.1	-24.4	2.22	718.6	14 7	5.0 7.8	0.50
Labrador Unlands 5.		12.7	-21 0	2.50	906.4	29.6	8.8	0.34
Whale River Lowland 5.	5 5.5 1 -5.4	11 5	-24.7	2 32	671 7	11 7	23	0.34
Western Boreal Shield 6	-17	16.9	-23.3	8.06	537.6	47.3	73	0.40
Mid-Boreal Shield 6'	05	17.1	_19.7	24.49	794.7	56.9	13.3	0.07
Eastern Boreal Shield 6'	- 0.5	14.7	-18.4	10 27	1 020 0	46.6	14.8	0.40
Newfoundland 6.	0.0 1 37	15.8	-8.6	2 21	1 330 1	18.4	7 1	0.00
Lake of the Woods	5 24	18.7	-17.8	5 13	700 7	0.4	1.1	0.23
Southern Boreal Shield 6 (3 2.4	18.2	-15.2	3.13	998.8	42.6	14.0	0.00
Annalachian_Acadian Highlands 7 .	J 3.2	17.2	-13.2	3.37	1 160 7	42.0	14.0	0.32
Northumberland Lowlands 7') 5.1 D 5.1	10.0	-10.4	1 01	1,100.7	5.7	4.5	0.35
Fundy Unlands 7.2	2 5.1	18.5	-10.0	1.51	1,204.0	13 /	1.7	0.30
Great Lakes_St Lawrence	0.0	10.5	-7.5	1.45	1,502.1	15.4	4.1	0.00
I owlands 8.	0 60	20.0	-10 5	1 72	1 038 8	12.2	41	0.32
Huron–Frie Plains 8 :	2 84	20.0	-6.4	1.12	937.8	3.4	0.9	0.37
Boreal Foothills 9	12	14.4	-15.3	8 24	533.0	13.4	14	0.01
Central Boreal Plains 9:	07	16.7	-19.1	17.85	446.4	41.0	5.2	0.68
Fastern Boreal Plains 0'	2 0.7	18.4	-20.4	14.13	509.5	12.8	1 4	0.00
Fastern Prairies 10 °) 0.5 I 28	10.4	-18.2	4.61	535 5	3.6	0.3	0.00
Parkland Prairies 10.	2.0	18.0	-16.0	4.80	457.0	17.2	17	0.72
Central Grassland 10.2	2.0	18.0	-14.4	2.83	373 3	20.5	1.7	0.72
Northern Yukon Mountains 11 *	J -10.8	0.3	-20 1	1.00	161 1	1 1	0.1	0.75
Old Crow_Eagle Plains 11 '	-10.0 2 _0.1	0.8	-23.1	1.20	1// 6	0.8	0.1	1 10
Onivie Mountains 11.2		11 0	-27.4	1.42	166.2	2.6	0.0	1.10
Mackenzie-Selwyn Mountains 11.	5 0.5 1 _80	10.6	-27.6	1.07	300.5	10.3	1 1	0.77
Wrangel Mountains 10.4	-0.0 _50	10.0 7 Q	-27.0	1.07	6/0 0	10.5	1.1	0.77
Northern Boreal Cordillera	-J.Z) _2Q	7.0 12 5	-20.0	1.00	21/1 2	1.0	0.3	0.44
Southern Borgal Cordillera		12.0	-23.7	J.20	519.2	19.2	1.0	0.07
Western Boreal Cordillera	-2.1 1 E O	10.0	-17.7	4.40	017.1	10.0	2.2	1.04
12.5	1 /		-/-> /	2.7.5	2171	,,		1 1 1 4

Table 2.6

Average annual, average annual maximum and minimum monthly and variability of temperature and precipitation by ecoprovince, 1979 to 2016

		Average annual temperature	Average maximum monthly temperature	Average minimum monthly temperature	Temperature variability	Average annual precipitation	Average maximum monthly precipitation	Average minimum monthly precipitation	Precipitation variability
Ecoprovince	Code		°C		CV	mm	kn	1 ³	CV
Southern Coastal Mountains	13.2	5.0	13.3	-3.6	1.12	1,947.0	50.1	8.7	0.52
Northern Coastal Mountains	13.3	0.7	10.5	-10.9	10.31	1,089.9	4.0	0.9	0.45
Northern Montane Cordillera	14.1	1.1	12.8	-13.5	8.18	618.1	12.8	2.8	0.44
Central Montane Cordillera	14.2	2.7	13.5	-10.3	2.88	622.9	9.6	2.3	0.42
Southern Montane Cordillera	14.3	3.7	15.0	-8.1	2.05	675.1	6.1	1.1	0.47
Columbia Montane Cordillera	14.4	1.0	12.5	-11.6	8.06	964.6	25.6	6.0	0.42
Hudson Bay Coastal Plains	15.1	-4.4	14.4	-25.4	3.12	502.2	5.5	0.8	0.62
Hudson–James Lowlands	15.2	-1.7	16.0	-22.6	7.91	629.2	31.4	5.9	0.52

... not applicable

Notes: Variability is measured by using a coefficient of variation (CV) that allows the comparison of all months in all years of the 38-year time period. The CV of the data is a measure of the dispersion or variation in the monthly values over the period 1979 to 2016. It is defined as the ratio of the standard deviation of the monthly values to the mean. A higher CV indicates that the monthly data are more variable. The CV calculated for temperature is based on absolute degrees using kelvin (K). To convert precipitation measured in depth in mm to a volume per area in m³/m², divide by 1000.

Sources: Wang, S., Y. Yang, Y. Luo and A. Rivera, 2013, "Spatial and seasonal variations in evapotranspiration over Canada's landmass," *Hydrology and Earth System Sciences*, Vol. 17, no. 9, pp. 3561-3575, https://doi.org/10.5194/hess-17-3561-2013 (accessed December 1, 2020); Wang, S., et al., 2014, "A national-scale assessment of long-term water budget closures for Canada's watersheds," *Journal of Geophysical Research: Atmospheres*, Vol. 119, pp. 8712–8725, https://doi.org/10.1002/2014JD021951 (accessed February 1, 2021).

Table 2.7

Average annual, average annual maximum and minimum monthly and variability of evapotranspiration and potential evapotranspiration by ecoprovince, 1979 to 2016

		Average annual evapotrans- piration	Average maximum monthly evapotrans- piration	Average minimum monthly evapotrans- piration	Evapotrans- piration variability	Average annual potential evapotrans- piration	Average maximum monthly potential evapotrans- piration	Average minimum monthly potential evapotrans- piration	Potential evapotrans- piration variability
Ecoprovince	Code	mm	km ³	3	CV	mm	km ³	3	CV
Canada		257	18.86	0.36	1.10	561	43.05	-1.86	1.23
Northern Arctic Cordillera	1.1	89	4.37	-0.44	1.76	154	9.41	-1.00	2.04
Southern Arctic Cordillera	1.2	113	4.32	-0.36	1.32	227	11.36	-0.88	1.66
Sverdrup Islands	2.1	72	1.73	-0.16	1.54	295	7.26	-0.38	1.67
Ellesmere Basin	2.2	97	4.88	-0.37	1.66	265	16.33	-0.92	1.86
Victoria Lowlands	2.3	105	14.49	-1.41	1.47	328	51.59	-4.00	1.67
Parry Channel Plateau	2.4	120	6.19	-0.62	1.69	265	15.70	-1.34	1.90
Boothia–Foxe Shield	2.5	125	18.08	-1.47	1.29	315	63.71	-3.88	1.64
Baffin Uplands	2.6	121	4.90	-0.47	1.42	246	13.27	-1.10	1.76
Foxe–Boothia Lowlands	2.7	135	3.10	-0.25	1.37	295	8.75	-0.58	1.67
Amundsen Lowlands	3.1	142	12.49	-0.77	1.33	404	40.25	-2.85	1.53
Keewatin Lowlands	3.2	149	15.10	-0.73	1.25	394	50.43	-2.42	1.52
Ungava-Belcher	3.3	101	3.92	-0.72	1.26	388	20.14	-1.64	1.50
Mackenzie Foothills	4.1	200	4.62	0.03	1.18	515	11.20	-0.43	1.26
Great Bear Lowlands	4.2	176	14.77	0.01	1.20	499	45.37	-2.24	1.31
Hav–Slave Lowlands	4.3	320	17.50	0.52	1.07	647	33.74	-1.38	1.09
Western Taiga Shield	5.1	141	22.66	-0.76	1.14	495	85.83	-5.05	1.31
Eastern Taiga	5.2	150	13.09	0.34	0.89	508	50.90	-2.42	1.18
Labrador Uplands	5.3	205	11.13	0.65	0.84	515	31.21	-1.08	1.10
Whale River Lowland	5.4	114	3.04	-0.15	1.00	436	13.68	-0.91	1.29
Western Boreal Shield	6.1	275	34.38	1.33	1.02	649	75.18	-3.34	1.06
Mid-Boreal Shield	6.2	400	43.88	3.47	0.88	731	74.24	-0.65	0.91
Fastern Boreal Shield	6.3	311	23.10	2.59	0.77	639	47.84	-0.45	0.96
Newfoundland	6.4	373	9.03	0.99	0.78	793	16.07	1 18	0.73
Lake of the Woods	6.5	470	7.92	0.30	0.98	848	11.74	-0.08	0.88
Southern Boreal Shield	6.6	521	38 74	2 76	0.00	797	50.68	0.03	0.85
Appalachian–Acadian	0.0	021	00.11	2.10	0.02	101	00.00	0.00	0.00
Highlands	7.1	488	12.19	0.40	1.07	756	14.74	-0.29	0.93
Northumberland Lowlands	7.2	535	4.98	0.20	1.04	907	6.14	0.14	0.82
Fundy Uplands	7.3	522	9.19	0.54	0.95	969	12.67	0.79	0.74
Great Lakes-St. Lawrence		022	0110	0.01	0.00		. 2.0.	011 0	011 1
Lowlands	8.1	485	12.28	0.05	1.13	873	15.12	-0.22	0.85
Huron–Erie Plains	8.2	556	3.81	0.01	1.04	1005	4.47	0.00	0.76
Boreal Foothills	9.1	425	12.14	0.42	0.98	718	18.25	-0.77	0.98
Central Boreal Plains	9.2	378	47.72	0.52	1.15	720	74.15	-3.35	1.04
Fastern Boreal Plains	9.3	397	11.54	0.13	1 15	767	21 47	-0.75	1 02
Fastern Prairies	10.0	450	4.39	-0.06	1.33	841	5 94	-0.21	1.01
Parkland Prairies	10.1	411	23 35	-0.31	1 35	819	31.25	-1.20	1.01
Central Grassland	10.2	349	26.00	-0.19	1.00	905	47 72	-1.50	0.95
Northern Yukon Mountains	11 1	141	1 19	-0.05	1 39	415	3 43	-0.20	1 48
Old Crow-Fagle Plains	11.1	136	0.92	-0.03	1.00	453	2.82	-0.17	1.40
Onitorio Mountains	11.2	150	2 72	-0.03	1.41	433	7 53	-0.32	1.45
Mackenzie-Selwyn	11.0	101	2.12	0.00	1.01	475	1.55	0.02	1.01
Mountains	11 4	175	7 52	-0.13	1 24	462	19 77	-1 04	1 35
Wrangel Mountains	12.1	136	0.60	-0.02	1 29	252	1 8/	-0.12	1 42
Northern Boreal Cordillera	12.1	207	12 27	0.02 0 <i>1</i> 2	1 /12	535	20 70	_1 //	1 17
Southern Boreal Cordillera	12.2	207	1 Z.Z/ 2 Q2	0.42	1 02	530	23.70	-1.44	1 1 2
Western Boreal Cordillera	12.0	181	1 8/	0.20	1 17	542	1 88	_0.15	1 16
Georgia Denression	12.4	500	1.04 2.20	0.03	0.77	542 205	4.00 2 0 0	-0.13	1.10 0.97
0001910 000100001	10.1	720	2.00	0.20	0.77	000	0.00	-0.09	0.07

Table 2.7

Average annual, average annual maximum and minimum monthly and variability of evapotranspiration and potential evapotranspiration by ecoprovince, 1979 to 2016

		Average annual evapotrans- piration	Average maximum monthly evapotrans- piration	Average minimum monthly evapotrans- piration	Evapotrans- piration variability	Average annual potential evapotrans- piration	Average maximum monthly potential evapotrans- piration	Average minimum monthly potential evapotrans- piration	Potential evapotrans- piration variability
Ecoprovince	Code	mm	km ³	3	CV	mm	km	3	CV
Southern Coastal Mountains	13.2	392	12.12	1.27	0.74	659	20.83	-0.75	0.92
Northern Coastal Mountains	13.3	203	1.09	0.00	1.05	455	2.91	-0.26	1.26
Northern Montane									
Cordillera	14.1	365	10.81	0.84	0.86	616	18.46	-1.16	1.06
Central Montane Cordillera	14.2	352	7.73	0.61	0.82	668	14.55	-0.52	0.95
Southern Montane									
Cordillera	14.3	420	5.82	0.32	0.89	746	9.48	-0.53	0.97
Columbia Montane									
Cordillera	14.4	417	16.85	1.04	0.86	693	27.65	-1.83	1.02
Hudson Bay Coastal Plains	15.1	206	3.31	0.06	1.04	544	8.23	-0.25	1.13
Hudson–James Lowlands	15.2	306	22.74	1.26	0.96	632	42.57	-1.07	1.00

... not applicable

Notes: Evapotranspiration is the process of evaporation from land surfaces and transpiration from plants. It is controlled by surface water availability and by meteorological variables such as net solar radiation, air temperature and humidity and wind speed. Potential evapotranspiration represents the evapotranspiration that would occur without limitations on water supply, and is therefore linked to the amount of energy available to generate evapotranspiration in a specific area and is independent of water supply. Variability is measured by using a coefficient of variation (CV) that allows the comparison of all months in all years of the 38-year time period. The CV of the data is a measure of the dispersion or variation in the monthly values over the period 1979 to 2016. It is defined as the ratio of the standard deviation of the mean. A higher CV indicates that the monthly data are more variable.

Sources: Wang, S., Y. Yang, Y. Luo and A. Rivera, 2013, "Spatial and seasonal variations in evapotranspiration over Canada's landmass," *Hydrology and Earth System Sciences*, Vol. 17, no. 9, pp. 3561-3575, https://doi.org/10.5194/hess-17-3561-2013 (accessed December 1, 2020); Wang, S., et al., 2014, "A national-scale assessment of long-term water budget closures for Canada's watersheds," *Journal of Geophysical Research: Atmospheres*, Vol. 119, pp. 8712–8725, https://doi.org/10.1002/2014JD021951 (accessed February 1, 2021); Li, Z., S. Wang, and J. Li, 2020, "Spatial variations and long-term trends of potential evapotranspiration in Canada," *Scientific Reports*, Vol. 10, no. 22089, https://doi.org/10.1038/s41598-020-78994-9 (accessed February 3, 2021); Wang, S., et al., 2014, "Assessment of water budget for sixteen large drainage basins in Canada," *Journal of Hydrology*, Vol. 512, pp. 1-15, https://doi.org/10.1016/j. jhydrol.2014.02.058 (accessed December 11, 2020).

Table 2.8

Temperature and precipitation change, by ecoprovince

		Annual temperature change, 1948 to 2016	Season of largest temperature change, 1948 to 2016	Temperature change for season of largest change, 1948 to 2016	Annual precipitation change, 1979 to 2016	Season of largest precipitation change, 1979 to 2016	Precipitation change for season of largest change, 1979 to 2016
Ecoprovince	Code	0°	season	°C	mm	season	mm
Northern Arctic Cordillera	1.1	2.2	Fall	3.2	4.7 ^E	Summer [₌]	4.5 ^E
Southern Arctic Cordillera	1.2	1.6	Winter	2.2	-99.9*	Fall*	-30.7*
Sverdrup Islands	2.1	2.4	Fall	3.4	5.7 ^E	Spring**	1.9**
Ellesmere Basin	2.2	2.1	Fall	3.3	-0.5 ^E	Fall [∈]	-4.0 ^E
Victoria Lowlands	2.3	2.6	Winter	4.1	-2.9 ^E	Spring ^E	-2.2 ^E
Parry Channel Plateau	2.4	2.1	Fall	2.9	-0.8 ^E	Fall [∈]	-3.5 ^E
Boothia–Foxe Shield	2.5	1.9	Winter	2.8	-31.1*	Summer ^E	-19.2 ^E
Baffin Uplands	2.6	1.7	Winter	2.4	-77.2*	Summer*	-31.4*
Foxe–Boothia Lowlands	2.7	1.8	Winter	2.7	-4.8 ^E	Summer ^E	-10.7 ^E
Amundsen Lowlands	3.1	3.0	Winter	5.0	-9.8 ^E	Fall [∈]	-6.8 ^E
Keewatin Lowlands	3.2	2.3	Winter	3.9	-3.9 ^E	Fall [∈]	11.1 ^E
Ungava–Belcher	3.3	1.4	Summer	1.9	-33.4 ^E	Spring ^E	-13.6 [⊧]
Mackenzie Foothills	4.1	2.8	Winter	5.7	37.5 [⊧]	Summer*	37.8*
Great Bear Lowlands	4.2	3.0	Winter	5.4	7.4 ^E	Summer ^E	16.5 [⊧]
Hay–Slave Lowlands	4.3	2.6	Winter	5.3	24.6 ^E	Summer ^E	30.7 ^E
Western Taiga Shield	5.1	2.2	Winter	4.0	-10.0 ^E	Spring*	-11.3*
Eastern Taiga	5.2	1.3	Summer	1.8	-74.9 ^E	Spring ^E	-20.9 ^E
Labrador Uplands	5.3	0.8	Fall	1.6	-98.2*	Spring ^E	-32.2 ^E
Whale River Lowland	5.4	1.2	Fall	2.0	-43.1 ^E	Summer*	47.1*
Western Boreal Shield	6.1	1.7	Winter	3.2	39.2**	Summer**	24.9**
Mid-Boreal Shield	6.2	1.3	Winter	2.1	60.7**	Winter*	25.3*
Eastern Boreal Shield	6.3	0.8	Summer	1.2	-75.2 ^E	Spring**	-39.7**
Newfoundland	6.4	0.7	Summer	1.3	-125.0*	Spring**	-52.9**
Lake of the Woods	6.5	1.7	Winter	2.7	122.5*	Spring*	66.3*
Southern Boreal Shield	6.6	1.0	Winter	1.2	66.1*	Winter*	56.6*
Appalachian–Acadian Highlands	7.1	0.9	Summer	1.1	107.4 ^E	Winter ^E	42.1 ^E
Northumberland Lowlands	7.2	0.9	Summer	1.3	58.3 ^E	Winter ^E	53.5 ^E
Fundy Uplands	7.3	0.9	Summer	1.4	-0.9 ^E	Spring*	-51.1*
Great Lakes–St. Lawrence Lowlands	8.1	1.1	Winter	1.3	77.0**	Winter*	62.3*
Huron–Erie Plains	8.2	0.9	Spring	1.1	-29.1 ^E	Winter*	45.6*
Boreal Foothills	9.1	2.0	Winter	4.5	-12.0 ^E	Winter ^E	-12.5 [⊧]
Central Boreal Plains	9.2	2.3	Winter	4.5	34.1 ^E	Summer ^E	28.7 ^E
Eastern Boreal Plains	9.3	2.0	Winter	3.6	105.0*	Summer*	67.7*
Eastern Prairies	10.1	1.7	Winter	3.1	135.2*	Spring*	51.2*
Parkland Prairies	10.2	1.9	Winter	3.7	67.1*	Summer**	26.0**
Central Grassland	10.3	1.9	Winter	3.8	55.7**	Summer ^E	26.7 ^E
Northern Yukon Mountains	11.1	3.2	Winter	5.2	15.7 ^E	Summer ^E	12.4 ^E
Old Crow–Eagle Plains	11.2	3.2	Winter	5.2	-2.0 ^E	Fall [∈]	-8.5 ^E
Ogilvie Mountains	11.3	3.3	Winter	6.4	5.2 ^E	Summer ^E	6.4 ^E
Mackenzie–Selwyn Mountains	11.4	2.8	Winter	6.1	44.3*	Summer*	34.9*
Wrangel Mountains	12.1	2.5	Winter	5.7	-130.9*	Summer [≞]	-38.0 [⊧]
Northern Boreal Cordillera	12.2	2.5	Winter	6.1	28.7 ^E	Summer**	25.8**
Southern Boreal Cordillera	12.3	2.1	Winter	5.1	27.0 ^E	Summer**	36.1**
Western Boreal Cordillera	12.4	3.0	Winter	6.7	-23.5 ^E	Summer [≞]	-12.9 [⊧]
Georgia Depression	13.1	1.5	Summer	1.8	-23.2 ^E	Winter ^E	-95.8 [⊧]

Table 2.8

Temperature and precipitation change, by ecoprovince

	t cł	Annual emperature 1ange, 1948 to 2016	Season of largest temperature change, 1948 to 2016	Temperature change for season of largest change, 1948 to 2016	Annual precipitation change, 1979 to 2016	Season of largest precipitation change, 1979 to 2016	Precipitation change for season of largest change, 1979 to 2016
Ecoprovince	Code	°C	season	°C	mm	season	mm
Southern Coastal Mountains	13.2	1.7	Winter	2.4	-77.1 ^E	Winter**	-108.9**
Northern Coastal Mountains	13.3	2.1	Winter	4.5	-3.7 ^E	Summer [₌]	49.7 ^E
Northern Montane Cordillera	14.1	2.1	Winter	4.3	35.2*	Summer [₌]	24.4 ^E
Central Montane Cordillera	14.2	1.9	Winter	3.2	-0.1 ^E	Fall [≞]	14.0 ^E
Southern Montane Cordillera	14.3	2.0	Winter	2.6	-38.7 ^E	Summer [⊾]	-57.6 [⊧]
Columbia Montane Cordillera	14.4	1.7	Winter	3.0	-95.9 [⊧]	Winter*	-82.9*
Hudson Bay Coastal Plains	15.1	1.4	Winter	2.5	-13.7 ^E	Fall [≞]	-8.0 ^E
Hudson–James Lowlands	15.2	1.2	Winter	2.0	16.6 ^E	Winter**	17.6**

... not applicable * significantly different from reference category (p < 0.05)

** significantly different from reference category (p < 0.10)

E use with caution

Notes: To convert precipitation measured in depth in mm to a volume per area in m3/m2 to, divide by 1000. Trends in precipitation are reported for linear trends to the 90% confidence interval or above. Caution should be used when analyzing trends in the northern Arctic islands and along the Yukon-Alaska border because of lower climate station densities. Levels of significance are not provided for temperature trends as these trends were generated by Environment and Climate Change Canada.

Sources: Environment and Climate Change Canada (ECCC), Canadian Gridded Temperature and Precipitation Anomalies (CANGRD), https://open.canada.ca/data/en/dataset/3d4b68a5-13bc-48bb-ad10-801128aa6604#wb-auto-6 (accessed May 15, 2020); ECCC, Climate Trends and Variations Bulletin, https://www.canada.ca/en/environment-climate-change/services/ climate-change/science-research-data/climate-trends-variability/trends-variations.html (accessed May 15, 2020); Statistics Canada, Environment and Energy Statistics Division, 2021, special Vol. 17, no. 9, pp. 3561-3575, https://doi.org/10.5194/hess-17-3561-2013 (accessed December 1, 2020); Wang, S., et al., 2014, "A national-scale assessment of long-term water budget closures for Canada's watersheds," Journal of Geophysical Research: Atmospheres, Vol. 119, pp. 8712–8725, https://doi.org/10.1002/2014JD021951 (accessed February 1, 2021).

Table 2.9

Temperature change, by ecosystem type, land cover or land use and ecoprovince, 1948 to 2016 (Part 1)

			Forest			Freshwater		Peatland
	_	Annual temperature change, 1944	Season of largest temperature change, 1944	Temperature change for season of largest change, 1948	Annual temperature change, 1948	Season of largest temperature change, 1948	Temperature change for season of largest change, 1948	Annual temperature change, 1948
Faannauinaa	0.40	to 2016	to 2016	to 2016	to 2016	to 2016	to 2016	to 2016
Ecoprovince	Loae	-0	season	-0		season	-0	
Northern Arctic Cordillera	1.1				2.2	Fall	3.4	
Southern Arctic Cordillera	1.2				1.4	Fall	2.1	1.1
Sverdrup Islands	2.1				2.4	Fall	3.5	
Ellesmere Basin	2.2				2.1	Fall	3.4	
Victoria Lowlands	2.3				2.6	Winter	4.3	2.6
Parry Channel Plateau	2.4				2.1	Fall	2.8	2.2
Boothia–Foxe Shield	2.5				2.0	Winter	3.0	1.5
Baffin Uplands	2.6				1.6	Winter	2.3	
Foxe–Boothia Lowlands	2.7				1.8	Winter	2.6	1.7
Amundsen Lowlands	3.1	3.1	Winter	5.2	3.0	Winter	4.9	3.1
Keewatin Lowlands	3.2	2.3	Winter	3.8	2.3	Winter	3.9	2.1
Ungava–Belcher	3.3	1.4	Summer	2.2	1.4	Summer	2.1	1.4
Mackenzie Foothills	4.1	2.8	Winter	5.7	3.0	Winter	5.9	2.9
Great Bear Lowlands	4.2	3.0	Winter	5.4	3.0	Winter	5.3	3.0
Hay–Slave Lowlands	4.3	2.5	Winter	5.3	2.7	Winter	5.4	2.6
Western Taiga Shield	5.1	2.2	Winter	4.0	2.3	Winter	4.1	1.9
Eastern Taiga	5.2	1.2	Summer	1.9	1.3	Summer	2.0	1.2
Labrador Uplands	5.3	0.7	Fall	1.4	0.9	Fall	1.7	0.8
Whale River Lowland	5.4	1.2	Fall	2.1	1.2	Fall	2.1	1.2
Western Boreal Shield	6.1	1.7	Winter	3.2	1.8	Winter	3.4	1.6
Mid-Boreal Shield	6.2	1.3	Winter	2.1	1.3	Winter	2.1	1.3
Eastern Boreal Shield	6.3	0.8	Summer	1.2	0.8	Fall	1.2	0.8
Newfoundland	6.4	0.7	Summer	1.2	0.7	Summer	1.2	0.7
Lake of the Woods	6.5	1.7	Winter	2.7	1.7	Winter	2.7	1.7
Southern Boreal Shield	6.6	1.0	Winter	1.2	1.0	Winter	1.2	1.0
Appalachian–Acadian Highlands	7.1	0.8	Summer	1.1	0.9	Summer	1.1	0.8
Northumberland Lowlands	7.2	0.9	Summer	1.3	0.9	Summer	1.3	0.9
Fundy Uplands	7.3	0.9	Summer	1.4	0.9	Summer	1.4	0.9
Great Lakes-St. Lawrence		0.0	cumit		010	ounnor		0.0
Lowlands	8.1	1.1	Winter	1.3	1.1	Winter	1.3	1.1
Huron–Erie Plains	8.2	0.9	Spring	1.1	0.9	Spring	1.2	0.9
Boreal Foothills	9.1	2.1	Winter	4.5	2.0	Winter	4.5	2.0
Central Boreal Plains	9.2	2.3	Winter	4.6	2.3	Winter	4.5	2.4
Fastern Boreal Plains	9.3	2.0	Winter	3.6	1.9	Winter	3.5	2.0
Fastern Prairies	10.0	17	Winter	3.1	1.8	Winter	3.1	1.8
Parkland Prairies	10.1	19	Winter	3.6	2.0	Winter	3.9	1.0
Central Grassland	10.2	1.0	Winter	3.0	1.0	Winter	3.0	1.0
Northern Vukon Mountains	11.1	1.5	Winter	5.0	3.2	Winter	5.0	3.0
Old Crow_Eagle Plains	11.1	3.0	Winter	53	3.2	Winter	5.1	3.2
Ogilvie Mountains	11.2	3.2	Winter	5.5 6.2	3.2	Winter	5.1	3.2
Mackanzia_Salwyn Mountaine	11.0	5.5 9.7	Winter	0.2	ວ.ວ ງ ຊ	Winter	0.4 6 1	ა.ა იი
Wrangel Mountaine	101	2.1	Winter	0.1	2.0 2 E	Winter	U.I 5 0	2.3
Northorn Roroal Cordillora	12.1	2.0	Winter	0.0	2.0	Winter	J.0 E.0	···· • • •
Southern Percel Cordillers	12.2	2.4	Winter	0.U E 1	2.4	Winter	0.0 F 0	2.4
Western Percel Cardillera	12.3	2.1	Winter	0.1 6 7	2.1	Winter	J.Z	2.0
WESTEILI DULLAI UULUIILELA	12.4	3.U	winter	0./	2.9	winter	0./	2.9
deorgia Depression	13.1	1.5	Summer	1.7	1.5	Summer	1.7	1.5

Table 2.9

Temperature change, by ecosystem type, land cover or land use and ecoprovince, 1948 to 2016 (Part 1)

			Forest			Freshwater		Peatland
	_	Annual temperature change, 1948 to 2016	Season of largest temperature change, 1948 to 2016	Temperature change for season of largest change, 1948 to 2016	Annual temperature change, 1948 to 2016	Season of largest temperature change, 1948 to 2016	Temperature change for season of largest change, 1948 to 2016	Annual temperature change, 1948 to 2016
Ecoprovince	Code	°C	season	°C		season	°C	
Southern Coastal Mountains	13.2	1.7	Winter	2.4	1.7	Winter	2.5	1.7
Northern Coastal Mountains	13.3	1.9	Winter	3.9	2.0	Winter	4.2	1.9
Northern Montane Cordillera	14.1	2.1	Winter	4.3	2.2	Winter	4.4	2.2
Central Montane Cordillera	14.2	1.9	Winter	3.2	2.0	Winter	3.3	1.9
Southern Montane Cordillera	14.3	2.0	Winter	2.6	2.0	Winter	2.6	1.9
Columbia Montane Cordillera	14.4	1.7	Winter	2.9	1.7	Winter	2.8	1.8
Hudson Bay Coastal Plains	15.1	1.4	Winter	2.5	1.5	Winter	2.6	1.4
Hudson–James Lowlands	15.2	1.2	Winter	1.9	1.2	Winter	1.9	1.2

... not applicable

Notes: This table provides temperature trend data for various classes of ecosystem, land cover or land use. These areas represented by the forest and the farm area classes differ from areas reported in Table 1. Each class is treated independently from other classes and overlaps exist. Caution should be used when analyzing trends in the northern Arctic islands and along the Yukon–Alaska border because of lower climate station densities.

Sources: Statistics Canada, Environment and Energy Statistics Division, 2021, special tabulation based on Environment and Climate Change Canada (ECCC), *Canadian Gridded Temperature and Precipitation Anomalies (CANGRD)*, https://open.canada.ca/data/en/dataset/3d4b68a5-13bc-48bb-ad10-801128aa6604#wb-auto-6 (accessed May 15, 2020); ECCC, *Climate Trends and Variations Bulletin*, https://www.canada.ca/en/environment-climate-change/services/climate-change/science-research-data/climate-trends-variability/tr

Table 2.9

Temperature change, by ecosystem type, land cover or land use and ecoprovince, 1948 to 2016 (Part 2)

		А	gricultural area		Built-up and artificial surfaces						
	_	Annual temperature change, 1948 to 2016	Season of largest temperature change, 1948 to 2016	Temperature change for season of largest change, 1948 to 2016	Annual temperature change, 1948 to 2016	Season of largest temperature change, 1948 to 2016	Temperature change for season of largest change, 1948 to 2016	Linear features Annual temperature change, 1948 to 2016			
Ecoprovince	Code	۵°	season	°C		season	°C	;			
Northern Arctic Cordillera	1.1					•					
Southern Arctic Cordillera	1.2				1.8	Winter	2.6	1.8			
Sverdrup Islands	2.1										
Ellesmere Basin	2.2				1.0	Fall	3.4	1.0			
Victoria Lowlands	2.3				2.6	Winter	4.0	2.6			
Parry Channel Plateau	2.4				2.0	Winter	2.7	2.1			
Boothia–Foxe Shield	2.5				1.6	Winter	2.4	1.7			
Baffin Uplands	2.6										
Foxe–Boothia Lowlands	2.7				2.0	Winter	2.9	1.9			
Amundsen Lowlands	3.1				2.9	Winter	4.6	3.2			
Keewatin Lowlands	3.2				1.8	Winter	3.5	1.9			
Ungava–Belcher	3.3				1.3	Summer	2.2	1.4			
Mackenzie Foothills	4.1							3.1			
Great Bear Lowlands	4.2							3.0			
Hay–Slave Lowlands	4.3	2.4	Winter	5.3	2.4	Winter	5.2	2.5			
Western Taiga Shield	5.1				1.9	Winter	3.7	2.7			
Eastern Taiga	5.2				1.2	Summer	1.9	1.2			

Table 2.9

Temperature change, by ecosystem type, land cover or land use and ecoprovince, 1948 to 2016 (Part 2)

	_	A	gricultural area	Built-up and artificial surfaces						
	-	Annual temperature change, 1948 to 2016	Season of largest temperature change, 1948 to 2016	Temperature change for season of largest change, 1948 to 2016	Annual temperature change, 1948 to 2016	Season of largest temperature change, 1948 to 2016	Temperature change for season of largest change, 1948 to 2016	Linear features Annual temperature change, 1948 to 2016		
Ecoprovince	Code	0°	season	°C		season	°C	;		
Labrador Uplands	5.3				0.9	Fall	1.7	0.9		
Whale River Lowland	5.4				1.2	Fall	2.0	1.2		
Western Boreal Shield	6.1	2.0	Winter	3.7	1.8	Winter	3.5	1.7		
Mid-Boreal Shield	6.2	1.0	Summer	1.3	1.2	Winter	1.8	1.2		
Eastern Boreal Shield	6.3	0.9	Winter	1.4	0.8	Fall	1.2	0.8		
Newfoundland	6.4	0.7	Fall	1.2	0.7	Summer	1.2	0.7		
Lake of the Woods	6.5	1.7	Winter	3.0	1.7	Winter	2.7	1.7		
Southern Boreal Shield	6.6	1.1	Winter	1.3	1.0	Winter	1.3	1.0		
Appalachian–Acadian Highlands	7.1	1.0	Summer	1.2	0.9	Summer	1.1	0.9		
Northumberland Lowlands	7.2	0.8	Summer	1.2	0.9	Summer	1.3	0.9		
Fundy Uplands	7.3	0.9	Summer	1.3	0.9	Summer	1.4	0.9		
Great Lakes–St. Lawrence										
Lowlands	8.1	1.1	Winter	1.3	1.1	Winter	1.3	1.1		
Huron–Erie Plains	8.2	0.9	Spring	1.1	0.9	Spring	1.2	0.9		
Boreal Foothills	9.1	1.9	Winter	4.2	2.0	Winter	4.3	2.1		
Central Boreal Plains	9.2	2.1	Winter	4.3	2.2	Winter	4.4	2.2		
Eastern Boreal Plains	9.3	1.8	Winter	3.3	1.9	Winter	3.4	1.9		
Eastern Prairies	10.1	1.7	Winter	3.1	1.7	Winter	3.2	1.7		
Parkland Prairies	10.2	1.9	Winter	3.8	1.9	Winter	3.8	1.9		
Central Grassland	10.3	1.9	Winter	3.8	1.9	Winter	3.8	1.9		
Northern Yukon Mountains	11.1				3.3	Winter	5.8	3.3		
Old Crow–Eagle Plains	11.2				3.2	Winter	5.3	3.2		
Ogilvie Mountains	11.3				3.3	Winter	6.6	3.3		
Mackenzie–Selwyn Mountains	11.4				2.5	Winter	5.8	2.6		
Wrangel Mountains	12.1				2.4	Winter	5.6	2.7		
Northern Boreal Cordillera	12.2				2.1	Winter	5.5	2.5		
Southern Boreal Cordillera	12.3				2.0	Winter	5.1	2.1		
Western Boreal Cordillera	12.4				3.0	Winter	6.7	3.0		
Georgia Depression	13.1	1.5	Summer	1.7	1.5	Summer	1.8	1.5		
Southern Coastal Mountains	13.2	1.9	Winter	2.8	1.7	Winter	2.5	1.7		
Northern Coastal Mountains	13.3				1.9	Winter	3.5	2.0		
Northern Montane Cordillera	14.1	2.1	Winter	3.7	2.1	Winter	4.0	2.1		
Central Montane Cordillera	14.2	2.0	Winter	3.3	2.0	Winter	3.3	1.9		
Southern Montane Cordillera	14.3	2.1	Winter	2.7	2.0	Winter	2.6	2.0		
Columbia Montane Cordillera	14.4	1.7	Winter	3.0	1.7	Winter	2.7	1.7		
Hudson Bay Coastal Plains	15.1				1.5	Winter	2.8	1.5		
Hudson–James Lowlands	15.2				1.2	Winter	1.9	1.2		

. not available for any reference period

... not applicable

Notes: This table provides temperature trend data for various classes of ecosystem, land cover or land use. These areas represented by the forest and the farm area classes differ from areas reported in Table 1. Each class is treated independently from other classes and overlaps exist. Caution should be used when analyzing trends in the northern Arctic islands and along the Yukon–Alaska border because of lower climate station densities.

Sources: Statistics Canada, Environment and Energy Statistics Division, 2021, special tabulation based on Environment and Climate Change Canada (ECCC), *Canadian Gridded Temperature and Precipitation Anomalies (CANGRD)*, https://open.canada.ca/data/en/dataset/3d4b68a5-13bc-48bb-ad10-801128aa6604#wb-auto-6 (accessed May 15, 2020); ECCC, *Climate Trends and Variations Bulletin*, https://www.canada.ca/en/environment-climate-change/science-research-data/climate-trends-variability/trends-

Table 2.10

Evapotranspiration and potential evapotranspiration change. I	by ecoprovince.	1979 to	2016
---	-----------------	---------	------

		Annual evapotrans- piration change, 1979 to 2016	Season of largest evapotrans- piration change, 1979 to 2016	Evapotrans- piration change for season of largest change, 1979 to 2016	Annual potential evapotrans- piration change, 1979 to 2016	Season of largest potential evapotrans- piration change, 1979 to 2016	Potential evapotrans- piration change for season of largest change, 1979 to 2016
Ecoprovince	Code	mm	season	mr	n	season	mm
Northern Arctic Cordillera	1.1	15.0*	Summer*	12.1*	28.9*	Summer*	26.8*
Southern Arctic Cordillera	1.2	0.8 ^E	Summer**	-6.0**	-6.9 [⊧]	Summer**	-21.8**
Sverdrup Islands	2.1	4.1**	Fall*	4.3*	23.2*	Summer	10.0 ^E
Ellesmere Basin	2.2	3.2 [⊾]	Spring*	2.6*	33.4*	Summer*	31.8*
Victoria Lowlands	2.3	0.0 ^E	Fall**	2.5**	32.3*	Summer*	23.1*
Parry Channel Plateau	2.4	-1.3	Summer [≞]	-2.6 ^c	26.9*	Summer*	26.4*
Boothia–Foxe Shield	2.5	3.9	Spring [*]	3.0^	26.5	Summer**	19.2**
Battin Uplands	2.6	-0.1	Summer	-3.5	-14.3 ^L	Summer ^L	-18.8 ^L
Foxe-Boolina Lowiands	2.7	2.8 ⁻	Spring ²	2.5	13.5 ⁻	Summer	10.0 ⁻
Amundsen Lowlands	3.1	4.8 ⁻	Spring	3.9***	10.4 ^E	Spring	8.0 ⁻
Neewaliii Lowianus	3.Z	0.0°	Fall Summor*	3.4 22.7*	21.0-	Summer*	13.2"
Uliyava-Delchel Maakanzia Easthilla	0.0 / 1	-30.2	Summor*	-33.7 0.2*	30.3 25.0*	Summor**	10.0**
Great Bear Lowlands	4.1	14.9 5.1E	SpringE	0.3 2 6E	23.0 11.8 ^E	Summer	12.3 10.3 ^E
Hav_Slave Lowlands	4.2	3.1 28.4*	Summer ^E	2.0 12.8 ^E	10.1E	Spring**	10.5
Western Taiga Shield	4.5 5.1	-20.4	Summer*	-18.7*	12 QE	Spring	7 3 ^E
Fastern Taiga	5.2	14.5*	Fall*	6.3*	51.8*	Spring*	19.0*
Labrador Unlands	5.3	20.3*	Summer*	13.5*	49.3*	Summer*	19.8*
Whale River Lowland	5.4	5.2**	Summer ^E	3.7 ^E	27.4*	Spring*	15.2*
Western Boreal Shield	6.1	10.6 ^E	Fall*	6.7*	3.5⁼	Fall*	9.4*
Mid-Boreal Shield	6.2	16.7 ^E	Fall*	14.6*	21.9 ^E	Fall*	20.8*
Eastern Boreal Shield	6.3	43.3*	Summer*	21.2*	68.0*	Fall*	24.8*
Newfoundland	6.4	23.7*	Summer [≞]	13.5 [⊧]	40.6*	Fall*	22.1*
Lake of the Woods	6.5	21.3 [₌]	Fall*	17.4*	15.6 [∈]	Fall*	19.5*
Southern Boreal Shield	6.6	46.6*	Fall*	24.8*	38.0*	Fall*	24.1*
Appalachian–Acadian Highlands	7.1	76.7*	Summer*	34.4*	64.2*	Fall*	23.6*
Northumberland Lowlands	7.2	35.9*	Fall*	17.4*	29.1**	Fall*	16.8*
Fundy Uplands	7.3	27.7*	Fall*	14.7*	17.2 ^E	Fall*	14.2*
Great Lakes–St. Lawrence Lowlands	8.1	34.5*	Spring**	15.1**	56.5*	Fall*	27.8*
Huron–Erie Plains	8.2	16.6 ^E	Summer [⊾]	-16.9 ^E	54.1*	Fall*	28.0*
Boreal Foothills	9.1	22.6**	Fall*	12.6*	42.2*	Fall*	18.6*
Central Boreal Plains	9.2	27.5*	Summer*	15.9*	13.4**	Fall**	10.7**
Eastern Boreal Plains	9.3	17.3 ^E	Fall*	15.6*	-31.1 ^E	Summer*	-43.3*
Eastern Prairies	10.1	63.5*	Summer*	40.3*	-22.6 ^E	Summer**	-35.9**
Parkland Prairies	10.2	48.1*	Summer*	41.6*	1.5 ^E	Fall*	19.4*
Central Grassland	10.3	45.5*	Summer*	33.3*	23.1 ^E	Fall*	29.9*
Northern Yukon Mountains	11.1	-0.5 ^E	Summer	-5.8 ^E	6.6 ^E	Spring	7.5⁵
Old Crow–Eagle Plains	11.2	-15.3 [⊾]	Summer	-18.4 ^E	11.2**	Spring [⊾]	7.3⁵
Ogilvie Mountains	11.3	-1.0 ^E	Summer⊧	-2.5 ^E	14.0*	Spring⊧	9.3⁵
Mackenzie–Selwyn Mountains	11.4	16.7*	Summer*	10.7*	25.9*	Summer*	17.9*
Wrangel Mountains	12.1	11.0 ^E	Spring*	5.0*	44.6**	Summer*	28.1*
Northern Boreal Cordillera	12.2	24.3*	Summer*	13.9*	28.1*	Summer*	14.7*
Southern Boreal Cordillera	12.3	20.6*	Summer*	12.4*	28.9*	Spring⁼	10.4 ^e
western Boreal Cordillera	12.4	12.3 ^c	Summer*	/.l ⁻	24.6	Summer*	13.2^
deurgia Depression	13.1	4Z.Z	Summer	21.0	59. I "	Summer	∠0.9"

Table 2	2.10
---------	------

Evapotranspiration and potential evapotranspiration change, by ecoprovince, 1979 to 2016

		Annual evapotrans- piration change, 1979 to 2016	Season of largest evapotrans- piration change, 1979 to 2016	Evapotrans- piration change for season of largest change, 1979 to 2016	Annual potential evapotrans- piration change, 1979 to 2016	Season of largest potential evapotrans- piration change, 1979 to 2016	Potential evapotrans- piration change for season of largest change, 1979 to 2016
Ecoprovince	Code	mm	season	m	m	season	mm
Southern Coastal Mountains	13.2	33.2**	Summer*	18.1*	49.6*	Spring*	14.3*
Northern Coastal Mountains	13.3	27.0*	Summer*	14.4*	48.2*	Spring*	28.8*
Northern Montane Cordillera	14.1	57.1*	Summer*	33.4*	33.5*	Fall*	11.6*
Central Montane Cordillera	14.2	54.3*	Summer*	30.2*	49.0*	Summer*	17.3*
Southern Montane Cordillera	14.3	32.4*	Spring*	15.7*	64.4*	Summer*	29.3*
Columbia Montane Cordillera	14.4	51.7*	Summer*	17.1*	65.0*	Spring*	21.4*
Hudson Bay Coastal Plains	15.1	7.4 ^E	Fall*	4.2*	11.4 [⊧]	Fall*	12.5*
Hudson–James Lowlands	15.2	9.8 ^E	Fall*	7.7*	9.5 ^E	Fall*	15.9*

.. not applicable

^E use with caution

* significantly different from reference category (p < 0.05) ** significantly different from reference category (p < 0.10)

Notes: To convert evapotranspiration measured in depth in mm to volume per area in m3/m2 to divide by 1000. Trends in evapotranspiration and potential evapotranspiration are reported for linear trends to the 90% confidence interval or above. Caution should be used when analyzing trends in the northern Arctic islands and along the Yukon-Alaska border because of lower climate station densities.

Sources: Statistics Canada, Environment and Energy Statistics Division, 2021, special tabulation based on Wang, S., Y. Yang, Y. Luo and A. Rivera, 2013, "Spatial and seasonal variations in evapotranspiration over Canada's landmass," Hydrology and Earth System Sciences, Vol. 17, no. 9, pp. 3561-3575, https://doi.org/10.5194/hess-17-3561-2013 (accessed December 1, 2020); Wang, S., et al., 2014, "A national-scale assessment of long-term water budget closures for Canada's watersheds," *Journal of Geophysical Research: Atmospheres*, Vol. 119, pp. 8712–8725, https://doi.org/10.1002/2014JD021951 (accessed February 1, 2021); Li, Z., S. Wang and J. Li, 2020, "Spatial variations and long-term trends of potential evapotranspiration in Canada," *Scientific Reports*, Vol. 10, no. 22089, https://doi.org/10.1038/s41598-020-78994-9 (accessed February 3, 2021).

3.0 Ecosystem condition

Human activities can have a far-reaching impact on ecosystem condition,⁵⁰ which relates to the quality of ecosystems and influences their ability to provide ecosystem services. In ecosystem accounting, the assessment of ecosystem condition includes measuring the state and changes over time of many different abiotic, biotic and landscape and seascape characteristics.

3.1 Terrestrial and freshwater ecosystem condition

Canada's diversity of ecosystems, ranging from northern wildernesses, to urban, industrial and agricultural landscapes across the south, can face vastly different pressures from human activity. For example, these pressures may be related to activities that affect land use, pollution emissions and climate change. Some of the key ecosystem condition characteristics for terrestrial and freshwater ecosystems presented in this section relate to abiotic characteristics such as water availability and air quality; biotic characteristics covering forest disturbance and urban greenness; and landscape characteristics on fragmentation and degree of modification. There are many other aspects of ecosystem condition; however, data for many other characteristics have not yet been compiled for Canada at a national scale or by ecosystem type.

Freshwater resources

Canada has abundant freshwater resources, with water held in lakes, wetlands, glaciers, snow and aquifers and runoff flowing into lakes, rivers and streams. These freshwater resources are integral to the functioning of terrestrial and aquatic ecosystems and provide essential benefits to humans.⁵¹

Total water storage change is an estimate of the change in water stored in the environment as groundwater, soil moisture, surface water, snow and ice estimated using gravity-based measurements from satellites. These changes occur as a result of changing climate conditions, such as increasing temperatures causing glacier melt and changing precipitation patterns.

The largest decreases⁵² in water storage from 2002 to 2016 were in ecoprovinces located in the Arctic Cordillera and Northern Arctic, as well as the Boreal Cordillera in the Yukon and northern British Columbia (Map 3.1), where large quantities of freshwater are frozen in permafrost, glaciers and ice caps.⁵³ For example, in the Northern Arctic Cordillera, water storage has been decreasing at an average rate of 105 mm per year, followed by the Southern Arctic Cordillera (-103 mm/year) and the Ellesmere Basin (-96 mm/year) (Table 3.1).

The decline in water storage in these areas is consistent with observations on temperature increases, permafrost thaw and glacier retreat.⁵⁴ The largest temperature increases in Canada are measured in the northwest, driving major changes in ecosystems in the region. For example, thinning alpine glaciers have an impact on water availability in the Prairies, since meltwater from glaciers is a contributor to summer streamflows. Meltwater from ice caps in the Canadian Arctic contributes to global sea level rise and influences salinity levels.⁵⁵

⁵⁰ Wiken, E., et al., 1996, A Perspective on Canada's Ecosystems, Canadian Council on Ecological Areas, No. 14, Ottawa.

⁵¹ Statistics Canada, 2017, "Freshwater in Canada," *Human Activity and the Environment*, Catalogue no. 16-201-X https://www150.statcan.gc.ca/n1/pub/16-201-x/16-201-

⁵² Statistical significance is assessed at the 90% and the 95% confidence levels.

⁵³ Natural Resources Canada, 2019, Glaciers, https://www.nrcan.gc.ca/environment/science/indicators-change/glaciers/11005 (accessed October 13, 2020).

⁵⁴ Wang, S. and J. Li, 2016, "Terrestrial water storage climatology for Canada from GRACE satellite observations in 2002-2014," *Canadian Journal of Remote Sensing*, Vol. 42, no. 3, pp. 190-202, https://doi.org/10.1080/07038992.2016.1171132 (accessed December 17, 2020); Derksen C., et al., 2019, "Changes in snow, ice, and permafrost across Canada," *Canada's Changing Climate Report*, Bush, E. and D.S. Lemmen (eds.), https://changingclimate.ca/CCCR2019/chapter/5-0/ (accessed June 26, 2020).

⁵⁵ Frederikse, Thomas et al., 2020, "The causes of sea-level rise since 1900," *Nature*, Vol. 584, pp. 393-397, https://doi.org/10.1038/s41586-020-2591-3 (accessed April 26, 2021); Greenan, B.J.W., et al., 2019, "Changes in oceans surrounding Canada," *Canada's Changing Climate Report*, Bush, E. and D.S. Lemmen (eds.), Government of Canada, Ottawa, Ontario, https://changingclimate.ca/CCCR2019/chapter/7-0/ (accessed June 26, 2020).

While decreases in water storage occurred in the north, increases⁵⁶ occurred in the Eastern Boreal Plains (+19 mm/ year), Central Grassland (+12 mm/year) and Parkland Prairies (+11 mm/year) ecoprovinces and in the Appalachian– Acadian Highlands (+15 mm/year) on the East Coast. These increases generally align with increasing precipitation trends and in the Prairies also reflect the recovery of groundwater storage following depletion from the historic 2001 drought across western Canada.⁵⁷

⁵⁶ Statistical significance is assessed at the 90% and the 95% confidence levels.

⁵⁷ Wang, S., et al., 2015, "Long-term water budget imbalances and error sources for cold region drainage basins," *Hydrological Processes*, Vol. 29, no. 9, pp. 2125–2136, https://doi.org/10.1002/hyp.10343 (accessed March 23, 2021).

Map 3.1

Annual total water storage change, by ecoprovince, 2002 to 2016

Notes: Total water storage change is an estimate of the change in water stored in the environment as groundwater, soil moisture, surface water, snow and ice. Caution must be used in interpreting total water storage change results because of the level of uncertainty in the models, the short length of the time series, and the coarse resolution of the data. Data were suppressed for smaller ecoprovinces using a threshold of approximately 90,000 km². Statistically significant linear trends are presented at the 90% confidence interval or above.

Sources: Statistics Canada, Environment and Energy Statistics Division, 2021, special tabulation based on Wang, S., et al., 2014, "Assessment of water budget for sixteen large drainage basins in Canada," *Journal of Hydrology*, Vol. 512, pp. 1-15; Wang, S. and J. Li, 2016, "Terrestrial water storage climatology for Canada from GRACE satellite observations in 2002-2014," *Canadian Journal of Remote Sensing*, Vol. 42, no. 3, pp. 190-202; Li, J., S. Wang and F. Zhou, 2016, "Time series analysis of long-term terrestrial water storage over Canada from GRACE satellites using principal component analysis," *Canadian Journal of Remote Sensing*, Vol. 42, no. 3, pp. 161-170.

16-201-X — Statistics Canada

Canada's average annual water yield was 3,514 km³ from 1971 to 2014, equivalent to a depth of 350 mm across the extent of the country. This renewable freshwater production varies spatially across the country's diverse landscape and also varies temporally—monthly, seasonally and yearly.

From 1971 to 2014, ecoprovinces within the Pacific Maritime ecozone in British Columbia had the highest average annual water yield per unit area (Map 3.2 and Table 3.1). Within the Pacific Maritime ecozone, the Southern Coastal Mountains ecoprovince had the highest water yield per area at 2,308 mm, followed by the neighbouring Georgia Depression (1,696 mm) and Northern Coastal Mountains (1,652 mm). Other ecoprovinces with high water yields per area were Newfoundland (1,147 mm) and the Fundy Uplands (986 mm).

The lowest water yields were found in the Prairies and the Boreal Plains ecozones, which cover most of Alberta, Saskatchewan and Manitoba. At the ecoprovince level, the lowest yields were found in the Central Grassland (20 mm), the Parkland Prairies (42 mm), the Eastern Prairies (68 mm) and the Central Boreal Plains (83 mm).

Map 3.2

Average annual water yield per area, by ecoprovince, 1971 to 2014

Notes: Water yield is an estimate of freshwater runoff. Data were suppressed at the ecoprovince level for the North. **Sources:** Statistics Canada, Environment and Energy Statistics Division, 2021, *Table 38-10-0091-01;* Spence, C. and A. Burke, 2008, "Estimates of Canadian Arctic Archipelago runoff from observed hydrometric data," *Journal of Hydrology*, Vol. 362, pp. 247-259.

Ambient air quality

Ambient air quality varies by region, city, and neighbourhood since it reflects the quantity and location of air pollutant emissions and meteorological conditions such as wind speed, wind direction, temperature and precipitation.⁵⁸ Air emissions can result from human sources including motor vehicles, power generating plants, oil and gas production, industrial facilities and fertilizer use. In addition to having impacts on human health, emissions can also affect ecosystems, for example through acid deposition on forests.⁵⁹ Natural sources of air pollutants include forest fires, dust, lightning and even trees,⁶⁰ which can release pollen and volatile organic compounds (VOCs).

Canadian Ambient Air Quality Standards (CAAQS)⁶¹ exist for fine particulate matter (PM_{2.5}), ground level ozone (O₃), sulphur dioxide (SO₂) and nitrogen dioxide (NO₂) and are a driver for air quality management across the country. In 2016, average ambient concentrations of PM_{2.5} were 6.4 μ g/m³, 32.5 ppb for ground-level ozone, 7.8 ppb for nitrogen dioxide, 1.0 ppb for sulphur dioxide and 58.4 ppb carbon for volatile organic compounds. Between 2002 and 2016, average annual and peak ambient air concentrations of SO₂ and NO₂, as well as average concentrations of VOCs decreased (Chart 3.1 and 3.2).⁶² While peak O₃ concentrations decreased, the average annual concentrations remained stable. No long-term trends were found for PM_{2.5}, whose concentrations remained relatively stable.

Average ambient levels of pollutants varied by region and urban area (Table 3.2). Higher concentrations of $PM_{2.5}$ were detected in the urban areas of Windsor, Québec City and Regina in 2016. For ozone, the regional average ambient levels ranged from 26.6 ppb of O₃ in British Columbia to 37.5 ppb of O₃ in southern Ontario in 2016, with urban areas in Ontario having among the highest concentrations. Ambient air concentrations for SO₂ and NO₂ were lowest in Atlantic Canada (0.6 ppb of SO₂ and 3.1 ppb of NO₂) and highest in southern Quebec for SO₂ (1.7 ppb) and British Columbia for NO₃ (9.2 ppb).

⁵⁸ Canadian Council of Ministers of the Environment, 2017, Canada's Air, https://ccme.ca/en/air-quality-report (accessed February 14, 2020); Evans, G., 2019, Near-Road Air Pollution Pilot Study Final Report, http://hdl.handle.net/1807/96917 (accessed February 27, 2020); Cakmak, S., et al., 2018, "Associations between long-term PM₂₅ and ozone exposure and mortality in the Canadian Census Health and Environment Cohort (CANCHEC), by spatial synoptic classification zone," Environment International, Vol. 111, https://doi.org/10.1016/j.envint.2017.11.030 (accessed February 27, 2020).

⁵⁹ Carou, S., et al., 2008, A National Picture of Acid Deposition Critical Loads for Forest Soils in Canada, Report prepared for the CCME Acid Rain Task Group, p. 1–8, <u>https://central.bac-lac.gc.ca/.item?id=PN1412&op=pdf&app=Library</u> (accessed December 17, 2021); Fraser, G. A., et al., 1985, *The Potential Impact of the Long Range Transport of Air Pollutants on Canadian Forests: Report of a Scientific Opinion Survey*, Information Report E-X-36, <u>http://cfs.nrcan.gc.ca/pubwarehouse/pdfs/24756.pdf</u> (accessed October 16, 2017).

⁶⁰ California Air Resources Board, 2012, Trees and Air Quality, <u>https://ww2.arb.ca.gov/sites/default/files/classic//cc/capandtrade/offsets/CARB_2012_trees_and_air_quality.pdf</u> (accessed February 20, 2020); Environment and Climate Change Canada, 2016, Common air pollutants: ground-level ozone, <u>https://www.canada.ca/en/environment-climate-change/services/air-pollution/pollutants/common-contaminants/ground-level-ozone.html</u> (accessed February 20, 2020).

⁶¹ The Canadian Air Quality Standards (CAAQS) were developed by the Canadian Council of Ministers of the Environment as outdoor air quality targets that are to drive air quality management across Canada, under the Canadian Environmental Protection Act. See: Canadian Council of Ministers of the Environment, 2017.

⁶² Ambient air quality concentrations are averaged from monitoring station data. These stations are spread across the country, but are more concentrated in urban areas. For more information about the methodology and included stations, see: Environment and Climate Change Canada, 2018, *Canadian Environmental Sustainability Indicators: Air quality*, https://www.canada.ca/en/environmental-indicators/air-quality.html#def (accessed May 8, 2020).

Chart 3.1 Average ambient air quality, Canada, 2002 to 2016

Notes: Ambient air quality concentrations are averaged from monitoring station data. These stations are spread across the country, but are more concentrated in urban areas. For more information about the methodology and included stations, see the CESI Air Quality Indicator.

Sources: Environment and Climate Change Canada, 2018, "Air Quality," *Canadian Environmental Sustainability Indicators*, https://www.canada.ca/en/environment-climate-change/services/environmental-indicators/air-quality.html (accessed May 11, 2020), based on data from the National Air Pollutant Surveillance Program, https://www.canada.ca/en/environment-climate-change/services/air-pollution/monitoring-networks-data/national-air-pollution-program.html.

Notes: Ambient air quality concentrations are averaged from monitoring station data. These stations are spread across the country, but are more concentrated in urban areas. For more information about the methodology and included stations, see the CESI Air Quality Indicator.

Sources: Environment and Climate Change Canada, 2018, "Air Quality," *Canadian Environmental Sustainability Indicators*, https://www.canada.ca/en/environment-climate-change/services/environmental-indicators/air-quality.html (accessed May 11, 2020), based on data from the National Air Pollutant Surveillance Program, https://www.canada.ca/en/environment-climate-change/services/air-pollution/monitoring-networks-data/national-air-pollution-program.html.

Forest condition

There are many different variables that can be used to track the condition of forest ecosystems. For example, forest biodiversity and composition (e.g., genus, species), structure (e.g., age class, biomass), timber stocks, natural disturbances and harvesting are important measures of the biotic condition of forests.⁶³ Natural disturbances, including wildfire, insect and disease outbreaks, landslides and windthrow, are important ecosystem processes that affect and shape forests. These disturbances can occur on a local to extensive geographical scale and effects may be limited to small reductions in tree health or growth, but can also result in significant mortality.

The areas affected by natural disturbances fluctuate widely from year to year and by region. For example, outbreaks of insects, such as spruce budworm, forest tent caterpillar and mountain pine beetle, can be short lived or may last for many years. These pests can reduce tree growth, damage trees and lead to increased mortality. In 2018, approximately 5% of forest area experienced moderate or severe insect infestations causing defoliation and tree mortality.⁶⁴

The 2017 and 2018 fire seasons were particularly severe in British Columbia, while 2019 was a more severe year in Alberta.⁶⁵ From 1986 to 2019, the total area affected by forest fires in Canada ranged from a low of 6,264 km² in 2001 to a high of 70,951 km² in 1995.⁶⁶ On average, the area burned each year represents less than 1% of forest area, with the largest proportion of forest fires in unmanaged forest areas that have limited or no access and no active fire suppression. Over the period from 1986 to 2019, forest fires have burned large areas across the boreal zone, particularly in the Western Boreal Shield and Western Taiga Shield ecoprovinces (Map 3.3 and Table 3.3).

Similarly, forest harvesting affects a small proportion of the country's forests, but these activities are more localized in temperate forests and in the southern parts of the boreal zone.⁶⁷ On average, the area harvested each year represents less than 0.3% of the total forest area. In 2018, the area harvested totalled 7,472 km², up from the low of 6,132 km² set in 2009 following the 2008 financial crisis and U.S. housing market crash.⁶⁸

Statistics Canada — 16-201-X

⁶³ Montréal Process Working Group, 2015, "Criteria and indicators for the conservation and sustainable management of temperate and boreal forests," *The Montréal Process*, Fifth Edition, https://www.montrealprocess.org/documents/publications/techreports/MontrealProcessSeptember2015.pdf (accessed October 27, 2020).

⁶⁴ National Forestry Database, 2020, *Forest insects*, <u>http://nfdp.ccfm.org/en/data/insects.php</u> (accessed July 15, 2020).

⁶⁵ Wang, J. and K. Strong, 2019, "British Columbia's forest fires, 2018," *Environment Fact Sheets*, Catalogue no. 16-508-X, <u>https://www150.statcan.gc.ca/n1/pub/16-508-x/16-508-x2019002-eng.htm</u> (accessed May 5, 2021). National Forestry Database, 2020, Forest fires, <u>http://nfdp.ccfm.org/en/data/fires.php</u> (accessed May 7, 2021).

⁶⁶ National Forestry Database, 2020; Statistics Canada 2018, "Forests in Canada," *Human Activity and the Environment*, Catalogue no. 16-201-X <u>https://www150.statcan.gc.ca/n1/pub/16-201-x/16-201-x/018001-eng.htm</u> (accessed July 15, 2020).

⁶⁷ Natural Resources Canada, 2019, "Canada's forests: Managing for the future," *The State of Canada's Forests 2019*, https://www.nrcan.gc.ca/sites/www.nrcan.gc.ca/files/forest/sof2019/ map/Map_EN_w1140px.jpg (accessed June 9, 2020).

⁶⁸ National Forestry Database, 2020, Harvest, http://nfdp.ccfm.org/en/data/harvest.php (accessed July 15, 2020).

Map 3.3 Forest fire and harvesting

Code Ecoprovince

1.1	Northern Arctic Cordillera	4.
1.2	Southern Arctic Cordillera	5.
2.1	Sverdrup Islands	5.
2.2	Ellesmere Basin	5.
2.3	Victoria Lowlands	5.
2.4	Parry Channel Plateau	6.
2.5	Boothia–Foxe Shield	6.
2.6	Baffin Uplands	6.
2.7	Foxe–Boothia Lowlands	6.
3.1	Amundsen Lowlands	6.
3.2	Keewatin Lowlands	6.

- 3.3 Ungava-Belcher 4.1 Mackenzie Foothills
- 4.2 Great Bear Lowlands

Ecoprovince	
-------------	--

.3 Hay-Slave Lowlands Western Taiga Shield .1

Code

- Eastern Taiga .2
- .3 Labrador Uplands
- Whale River Lowland .4
- Western Boreal Shield .1
- .2 Mid-Boreal Shield
- Eastern Boreal Shield
- .3
- .4 Newfoundland
- Lake of the Woods .5
- Southern Boreal Shield 6
- Appalachian–Acadian Highlands 7.1 Northumberland Lowlands 7.2
- Fundy Uplands 7.3

- Code Ecoprovince
- 8.1 Great Lakes-St. Lawrence
- 8.2 Huron–Erie Plains
- 9.1 Boreal Foothills
- 9.2 Central Boreal Plains
- 9.3 Eastern Boreal Plains
- 10.1 Eastern Prairies
- 10.2 Parkland Prairies
- 10.3 Central Grassland
- 11.2 Old Crow–Eagle Plains
- 11.3 Ogilvie Mountains
- 12.1 Wrangel Mountains

- 13.1 Georgia Depression
- 13.2 Southern Coastal Mountains
- 13.3 Northern Coastal Mountains
- 11.1 Northern Yukon Mountains
- 14.1 Northern Montane Cordillera
- 14.2 Central Montane Cordillera
- 14.3 Southern Montane Cordillera
- 14.4 Columbia Montane Cordillera
- 15.1 Hudson Bay Coastal Plains
- 15.2 Hudson–James Lowlands

Notes: Harvest data are identified by 30 m Landsat remote sensing. Fire data are taken from the National Burned Area Composite, part of the Fire Monitoring, Accounting and Reporting System, based on the integration of data from fine and coarse resolution satellite data from Natural Resources Canada and Provincial, Territorial and Parks Canada Agencies. These data differ from the harvesting and burned area totals reported in the National Forestry Database, which are based on different methodologies. Sources: Natural Resources Canada, Canadian Forest Service, 2020, National Burned Area Composite (NBAC); Guindon, L., et al., 2017,

Canada Landsat Disturbance (CanLaD): a Canada-wide Landsat-based 30-m resolution product of fire and harvest detection and attribution since 1984.

- 11.4 Mackenzie–Selwyn Mountains
- 12.2 Northern Boreal Cordillera
- 12.3 Southern Boreal Cordillera

- Code Ecoprovince 12.4 Western Boreal Cordillera

Urban greenness

The presence and health of trees and other vegetation are also important characteristics of ecosystem condition in urban areas. Satellite imagery can be used to track the relative greenness of cities and towns over time.⁶⁹ The level of urban greenness depends on natural environmental conditions, for example climate, as well as differences in local land use.⁷⁰ Urbanization processes can result in significant reductions in the quantity of 'green' areas that have more vegetation and related increases in 'grey' areas that are predominantly covered by buildings, impervious surfaces, bare soil and low-density vegetation (Figure 3.1). Increases in greenness seen over longer periods in urban areas can be linked to the introduction or maturation of vegetation in yards and gardens. Interannual variations in urban vegetation quantity and condition can also be related to natural factors such as drought, insects or disease.

Figure 3.1 Example of urban pixels classed as green or grey

Green

Grey

Note: The green or grey class is based on the MODIS NDVI value.

In 2019, 76% of the area of population centres in southern Canada was classed as green in summer (Table 3.4). This percentage varied based on city size and regional differences. In large urban population centres, an average of 70% of the total land area was classed as green, compared to 78% in medium population centres and 87% in small population centres. In general, the proportion of green area in population centres in 2019 was lower than in 2001. Approximately three-quarters of large urban (77%) and medium (71%) population centres experienced this drop in greenness levels, despite widespread drought conditions across the Canadian south-west and an abnormally dry summer in Ontario and Quebec in 2001.⁷¹ In comparison, 35% of small population centres experienced a drop in greenness, while 33% saw no change in greenness levels.

⁶⁹ Estimates of greenness presented here are based on the normalized difference vegetation index (NDVI) from MODIS. For more information, see Appendix A. Corbane et al., (2020) have proposed greenness, as measured using NDVI, as a proxy indicator to measure progress towards United Nations Sustainable Development Goal (SDG) Target 11.7. Corbane, C., et al., 2020, "The grey-green divide: multi-temporal analysis of greenness across 10,000 urban centres derived from the Global Human Settlement Layer (GHSL)," *International Journal of Digital Earth*, 2020, Vol. 13, no. 1, pp. 101-118. https://doi.org/10.1080/17538947.2018.1530311 (accessed September 21, 2020).

⁷⁰ Nowak, D. J., et al., 1996, "Measuring and analyzing urban tree cover," Landscape and Urban Planning, Vol. 36, no. 1, https://doi.org/10.1016/S0169-2046(96)00324-6 (accessed September 18, 2020).

⁷¹ Wheaton, E., et al., 2008, "Dry times: hard lessons from the Canadian drought of 2001 and 2002," *The Canadian Geographer*, Vol. 52, no. 2, <u>https://onlinelibrary.wiley.com/doi/full/10.1111//j.1541-0064.2008.00211.x</u> (accessed September 18, 2020); Statistics Canada, 2002, "The western Canadian drought of 2001 – how dry was it?, *Vista on the Agri-Food Industry and the Farm Community*, Catalogue no. 21-004-XIE, <u>http://publications.gc.ca/Collection/Statcan/21-004-X/21-004-XIE2002103.pdf</u> (accessed September 18, 2020); Hogg, E.H., J.P. Brandt and M. Michaelian, 2008, "Impacts of a regional drought on the productivity, dieback, and biomass of western Canadian aspen forests," *Canadian Journal of Forest Research*, Vol. 38, no. 6, <u>https://doi.org/10.1139/X08-001</u> (accessed September 18, 2020).

Winnipeg, Milton, Kelowna, Windsor and Vancouver experienced the largest decreases in the share that was classed as green from 2001 to 2019 (Chart 3.3). These larger decreases in greenness may have been driven by the contributions of urbanization and moderate drought conditions in 2019. For example, Milton experienced population growth of 350% from 2001 to 2016.⁷² However, decreases in Winnipeg and Windsor may also have been amplified by the impact of the emerald ash borer—an exotic invasive insect that has had a large impact on trees in some regions.⁷³

Notes: Estimates of population centre greenness are based on the Normalized Difference Vegetation Index (NDVI) from MODIS. Large urban population centres are presented here in order by size of land area, from largest to smallest. For more information, see Appendix A. Source: Statistics Canada. 2020. Corrected representation of the NDVI using historical MODIS satellite images (250 m resolution) from 2000 to 2019.

Source: statistics canada, 2020, Corrected representation of the NDVI using historical MUDIS satellite images (250 m resolution) from 2000 to 20

https://open.canada.ca/data/en/dataset/dc700f75-19d8-4913-9846-78615ca93784 (accessed April 29, 2020).

73 Natural Resources Canada, 2020, Emerald Ash Borer, https://www.nrcan.gc.ca/our-natural-resources/forests-forestry/wildland-fires-insects-disturban/top-forest-insects-diseases-cana/ emerald-ash-borer/13377 (accessed September 18, 2020); Epp, B., 2018, Emerald Ash Borer Management in Manitoba, Manitoba Sustainable Development, http://www.cif-ifc.org/wpcontent/uploads/2018/10/ReducedFileSize-3-EAB-Manitoba-Brad-Epp.pdf (accessed September 21, 2020); City of Winnipeg, 2020, Emerald Ash Borer (EAB), https://www.winnipeg.ca/ PublicWorks/parksOpenSpace/UrbanForestry/EmeraldAsh.stm (accessed September 21, 2020).

61 / Human Activity and the Environment

⁷² Statistics Canada, Environment and Energy Statistics Division, special tabulation from the Census of Population, using 2016 population centre boundaries.

Landscape condition characteristics

Human activities have an impact on ecosystem characteristics, functions and the supply of ecosystem goods and services. For example, changing land cover and land use can affect water regulation, habitat provision and pollination services. The degree of modification lies on a continuum. For example, agro-ecosystems have been modified from natural ecosystems through tillage, drainage, introduction of different species and use of chemical inputs, but still maintain important ecosystem functions such as nutrient cycling and pollination.⁷⁴ Heavily built areas with a large proportion of artificial surfaces and lower proportion of natural and semi-natural areas are considered the most modified ecosystems.

In 2016, 9% of Canada's landmass had been directly modified for agricultural production, recent forest harvesting (since 1986) or urban and industrial development (Chart 3.4). The majority of this area was used for agriculture (64%), followed by forest harvesting (29%) and built-up area (7%). Other areas including old growth and regenerating forests, tundra, grassland and other ecosystems are considered indirectly modified. These areas may have been modified from their original condition through historic logging or dam construction, may be actively managed for timber production or may be affected by acid deposition and climate change, but retain many characteristics of natural and semi-natural ecosystems.

⁷⁴ Power, A. G., 2010, "Ecosystem services and agriculture: Tradeoffs and synergies," *Philosophical Transactions of the Royal Society B*, Vol. 365, https://doi.org/10.1098/rstb.2010.0143 (accessed January 26, 2021).

Notes: All areas of Canada are directly or indirectly modified by human activity. Directly modified land includes areas used for agriculture (e.g., cropland, pasture, summerfallow), recent forest harvest (1986 to 2015) and built-up and artificial surface. For more information on methodology, see Appendix A.

Sources: National Forest Inventory, 2021, *First remeasurement standard reports, (2007-2017): Table 4.1. Area (1000 ha) of forest and non-forest land by terrestrial ecozone in Canada,* https://nfi.nfis.org/resources/general/summaries/11/en/NFI/html/NFI_T4_FOR_AREA_en.html (accessed August 13, 2021); Guindon, L., et al., 2017, Canada Landsat Disturbance (CanLaD): a Canada-wide Landsat-based 30-m resolution product of fire and harvest detection and attribution since 1984, https://doi.org/10.23687/add1346b-f632-4eb9-a83d-a662b38655ad (accessed July 20, 2020), Data files downloaded from https://open.data.nfis.org/mapserver/nfis-change_eng.html (accessed July 20, 2020); Agriculture and Agri-Food Canada (AAFC), 2020, *Annual Crop Inventory, 2014-2016,* https://open.canada.ca/data/en/dataset/ba2645d5-4458-414d-b196-6303ac06c1c9 (accessed December 3, 2020); Natural Resources Canada (NRCan), Canada Centre for Mapping and Earth Observation (CCME0), 2020, *2010 and 2015 Land Cover of North America at 30 metres*, Ed. 2.0, Commission for Environmental Cooperation (CEC), North American Land Change Monitoring System, http://www.cec.org/north-american-environmental-atlas/land-cover-2010-landsat-30m/ (accessed December 3, 2020); AAFC, 2016, *Interpolated Census of Agriculture*, https://open.canada.ca/data/en/dataset/1dee8513-5c73-43b6-9446-25f7b985cd00 (accessed December 9, 2020); AAFC, 2016, *Interpolated Census of Agriculture*, https://open.canada.ca/data/en/dataset/1dee8513-5c73-43b6-9446-25f7b985cd00 (accessed December 9, 2020); AAFC, 2016, *Interpolated Census of Agriculture*, https://open.canada.ca/data/en/dataset/1dee8513-5c73-43b6-9446-25f7b985cd00 (accessed December 9, 2020); AAFC, 2015, *Land Use, 2010*, https://open.canada.ca/data/en/dataset/2be0166b-9db3-465b7-9baf-6584a3acc7b1 (accessed October 26, 2020); Perspective [Map], Scale 1:5,000,000, NRCan, Canadian Forest Service, https://open.canada.ca/dataet/2be0166b-9db3-465b7-9baf-6584a3acc7b1 (accessed October 26, 2020); Environment and Climate Change Canada, 2020

Habitat and landscape fragmentation refers to the division of natural and semi-natural ecosystems into smaller and more isolated patches. Farm fields, forest cut blocks and built-up and artificial surfaces have transformed the natural landscape. Linear features such as roads, rail lines, transmission lines and cutlines divide landscapes into smaller patches and are often the first encroachments of human activity into an area.⁷⁵ Larger cities and densely populated areas generally have higher linear feature densities as a result of demand for road, water, waste and communication infrastructure. Increased fragmentation can affect an ecosystem's ability to function, for example, by reducing its capacity to support species abundance and richness or ability to provide ecosystem services such as flood attenuation, pollination, or erosion prevention.

In 2016, the smallest natural and semi-natural patch sizes and longest distance to natural and semi-natural patch were found in ecoprovinces across the Prairies and the Mixedwood Plains ecozones where the majority of the country's agricultural activity takes place (Table 3.5). The Central Grassland and Parkland Prairies ecoprovinces had the smallest

63 / Human Activity and the Environment

⁷⁵ European Environment Agency / Federal Office for the Environment, 2011, Landscape fragmentation in Europe: Joint EEA-FOEN report, <u>https://www.eea.europa.eu/publications/landscape-fragmentation-in-europe</u> (accessed February 2, 2021); Forman. R., et al., 2003, Road Ecology: Science and Solutions, Island Press.

average natural and semi-natural patches at 1.0 km² and 1.1 km², followed by the Huron–Erie Plains (1.1 km²) and the Great Lakes–St. Lawrence Lowlands (1.3 km²). The longest average distance to a natural and semi-natural patch was in the Central Grassland (515 m), followed by the Eastern Prairies (508 m) and the Huron–Erie Plains (331 m).

Linear feature density was highest in the Huron–Erie Plains ecoprovince (2,769 m/km²), the Great Lakes–St. Lawrence Lowlands (1,815 m/km²) and the Georgia Depression (1,692 m/km²), which include Canada's largest population centres including Montréal, Toronto and Vancouver.

The human landscape modification index (HLMI) integrates data on land use, natural and semi-natural patch size and linear features to provide a measure of the degree to which an area has been modified from its natural state (Maps 3.4 and 3.5). Higher HLMI scores indicate a higher degree of modification from the natural ecosystem state and occur where grassland, wetland and forest ecosystems have been converted to agroecosystems and urban centres and where there is more landscape fragmentation. Conversely, lower HLMI scores indicate lower rates of modification and where ecosystem functions are more likely to be closer to their natural state. The highest HLMI score was found in the Huron–Erie Plains in southern Ontario. The lowest HLMI scores are found in the North since much of the landscape remains intact with few direct modifications.⁷⁶

Human activities also affect freshwater ecosystems. The construction of dams or bridges and water withdrawal for agricultural and industrial use or drinking water production result in direct impacts on the flow of rivers and streams. Nutrient emissions from wastewater treatment plants or farm runoff have direct impacts on water quality. Carbon emissions from human activity indirectly affect freshwater ecosystems as a result of long-term changes in the water cycle and water temperatures. The human freshwater influences index is an overall ranking of drainage regions based on individual rankings of selected anthropogenic variables that affect freshwater ecosystems (Map 3.6).⁷⁷ By combining multiple influencing factors, this index helps convey the cumulative effects of human activities on freshwater ecosystems. The higher rankings for drainage regions in the south reflect the large number of influences associated with higher population densities and landscape conversion, while warming temperatures are the major influence on freshwater ecosystems in the North.

⁷⁶ The HLMI provides a proxy measure that can be used to report on progress towards the United Nations Sustainable Development Goal (SDG) Target 15.3 Combat desertification, restore degraded land and soil and strive to achieve a land degradation-neutral world.

⁷⁷ The HFII provides a proxy measure that can be used to report on progress towards the United Nations Sustainable Development Goal (SDG) Target 6.6. Protect and restore water-related ecosystems.

Human landscape modification index, 2011

Notes: The human landscape modification index (HLMI) is a composite index used to measure direct human modifications to the landscape based on the degree that an area has been modified from a natural or semi-natural state. Values range from 0 to 100, with higher scores indicating more intensively-used ecosystems.

Sources: Statistics Canada, Environment and Energy Statistics Division, 2021, special tabulation based on Agriculture and Agri-Food Canada (AAFC), 2015, *Land Use, 2010*; Natural Resources Canada, 2017, Topographic Data of Canada - CanVec Series; Statistics Canada, 2017, *Road Network File, 2016*; AAFC, 2016, *Interpolated Census of Agriculture*; Guindon, L., et al., 2017, *Canada Landsat Disturbance (CanLaD): a Canada-wide Landsat-based 30-m resolution product of fire and harvest detection and attribution since 1984*.

Map 3.5

Human landscape modification index, highly modified regions, 2011

landscape based on the degree that an area has been modified from a natural or semi-natural state. Values range from 0 to 100, with higher scores indicating more intensively-used ecosystems.

Sources: Statistics Canada, Environment and Energy Statistics Division, 2021, special tabulation based on Agriculture and Agri-Food Canada (AAFC), 2015, Land Use, 2010; Natural Resources Canada, 2017, Topographic Data of Canada - CanVec Series; Statistics Canada, 2017, Road Network File, 2016; AAFC, 2016, Interpolated Census of Agriculture; Guindon, L., et al., 2017, Canada Landsat Disturbance (CanLaD): a Canada-wide Landsat-based 30-m resolution product of fire and harvest detection and attribution since 1984.

Map 3.6

Human freshwater influences index, by drainage region

Notes: The human freshwater influences index is an overall ranking of drainage regions based on individual rankings of selected anthropogenic variables that affect freshwater ecosystems. The overall rank is determined by ranking each variable individually from highest to lowest impact and then calculating the average of the rankings. Lower values indicate a higher degree of human influence.

Sources: Statistics Canada, Environment and Energy Statistics Division, 2021, special tabulation based on Environment and Climate Change Canada (ECCC), *Canadian Gridded Temperature and Precipitation Anomalies (CANGRD);* Statistics Canada, 2011, *Census of Population;* Agriculture and Agri-Food Canada (AAFC), 2015, *Land Use, 2010;* Natural Resources Canada (NRCan), 2017, *Topographic Data of Canada - CanVec Series;* Statistics Canada, 2017, *Road Network File, 2016;* Statistics Canada, 2013, *Table 16-403-X, Survey of Drinking Water Plants, 2011;* Statistics Canada, 2014, *Table 16-401-X Industrial Water Use, 2011;* AAFC, 2015, *Agri-environmental Indicator—Residual Soil Nitrogen (RSN);* AAFC, 2015, *Agri-environmental Indicator—Risk of P release in agricultural land (P-Source);* ECCC, 2015, *National Pollutant Release Inventory, Pollution Data and Reports;* Statistics Canada, 2020, *Table 38-10-0099-01 Wastewater volumes processed by municipal sewage systems (x 1,000,000);* NRCan, 2017, *CanVec Series;* Canadian Dam Association, 2019, *Inventory of Large Dams in Canada 2019.*

16-201-X — Statistics Canada

Textbox: Invasive species

Non-native species are plants, pathogens, insects, fish or other animals that have been introduced to Canada from other parts of the world. Some introduced species do not survive to reproduce and proliferate because environmental conditions may be unfavourable or native species may outcompete them. However other non-native species become invasive, establishing and spreading rapidly because of a lack of predators, changing environmental conditions and other reasons, which may cause considerable harm to existing ecosystems. These invasives can be found across the country on land and in fresh and marine waters.

In addition, some native species to Canada and the United States are expanding their ranges into new areas where they may become invasive. For example, the mountain pine beetle is native in certain parts of British Columbia,⁷⁸ but is causing devastation as it moves north in the province and eastward into Alberta. Not only does this cause mortality amongst pine species but may increase the risk of severe forest fires.⁷⁹ As sea ice melts in the Arctic Ocean, killer whales are becoming more common, potentially impacting populations of other whales such as narwhal.⁸⁰

Over 80 destructive forest pests and pathogens have been introduced into Canada, including Dutch elm disease and more recent arrivals such as the Asian longhorned beetle and the emerald ash borer.⁸¹ The emerald ash borer arrived in Canada in 2002 and has since killed millions of trees in five of Canada's provinces.⁸² Purple loosestrife was introduced in the 1800s from Europe, but continues to be a problem in wetlands where it chokes out native plants.⁸³ Japanese knotweed establishes itself in dense patches with extensive root bases and aggressively chokes out native species and damages infrastructure.⁸⁴ Even moose, the well-known Canadian symbol, have become a problem since their 1878 introduction to Newfoundland,⁸⁵ with current numbers as high as one for every four people and moose density estimated at 3 to 20 times that of other boreal forest systems.⁸⁶ Moose affect the abundance and distribution of native vegetation throughout the province and are a traffic hazard along the province's highways.

Invasive species have spread into Canadian waters through the release of ballast water and hull fouling from global shipping, aquaculture importation of non-native species, as well as habitat, climate and oceanographic changes that have enabled invasive species to take hold. Zebra and quagga mussels, native to the Black Sea, are thought to have arrived in the Great Lakes in the late 1980s from ballast water in transoceanic vessels.⁸⁷ These

⁷⁸ Forest Invasives Canada, n.d., Mountain Pine Beetle, https://forestinvasives.ca/Meet-the-Species/Insects/Mountain-Pine-Beetle (accessed May 9, 2020).

⁷⁹ Ontario Federation of Anglers and Hunters/Ontario Ministry of Natural Resources and Forestry – Ontario Invading Species Awareness Program, 2012, Mountain Pine Beetle, www.invadingspecies.com/mountain-pine-beetle/ (accessed May 11, 2020); Stockdale, C., 2018, "Mountain pine beetle effects on wildfire rate of spread and landscape fire risk," QuickNotes the information note of FRI Research, <u>https://friresearch.ca/sites/default/files/MPBEP_2018_06_MPB%20effects%20on%20wildfire%20quick%20note.pdf</u> (accessed April 28, 2021).

⁸⁰ Breed, G. A., et al., 2017, "Sustained disruption of narwhal habitat use and behaviour in the presence of Arctic killer whales," *Proceedings of the National Academy of Sciences of the United States of America*, https://doi.org/10.1073/pnas.1611707114 (accessed May 9, 2020).

⁸¹ Natural Resources Canada, 2015, Forest Invasive Alien Species: Established species, https://www.exoticpests.gc.ca/e-species (accessed May 2, 2020).

⁸² Natural Resources Canada, 2019, Emerald Ash borer, https://www.nrcan.gc.ca/our-natural-resources/forests-forestry/wildland-fires-insects-disturban/top-forest-insects-diseases-cana/ emerald-ash-borer/13377 (accessed May 9, 2020).

⁸³ Ontario Federation of Anglers and Hunters/Ontario Ministry of Natural Resources and Forestry – Ontario Invading Species Awareness Program, 2012, Purple Loosestrife, http://www.invadingspecies.com/purple-loosestrife/ (accessed May 9, 2020).

⁸⁴ Ontario Federation of Anglers and Hunters/Ontario Ministry of Natural Resources and Forestry – Ontario Invading Species Awareness Program, 2012, Japanese Knotweed, http://www.invadingspecies.com/japanese-knotweed/ (accessed May 9, 2020).

⁸⁵ McLaren, Brian, et al., 2004, "Effects of overabundant moose on the Newfoundland landscape," ALCES, Vol. 40, pp. 45-59, <u>https://www.researchgate.net/publication/266214665_Effects_of_overabundant_moose_on_the_Newfoundland_landscape</u> (accessed Nov 9, 2020).

⁸⁶ Gosse, J., et al., n.d., Impacts of Hyperabundant Moose on Forest Regeneration in Terra Nova and Gros Morne National Park, Parks Canada, https://www.fir.gov.nl.ca/wildlife/biodiversity/ invasive_alien_species/moose.pdf (accessed May 11, 2020).

⁸⁷ Ontario Federation of Anglers and Hunters/Ontario Ministry of Natural Resources and Forestry – Ontario Invading Species Awareness Program, 2012, Zebra and Quagga Mussels, http://www.invadingspecies.com/zebra-quagga-mussels (accessed May 9, 2020).

aggressive species quickly colonized all available hard surfaces,⁸⁸ fouling boats and clogging water intakes on power stations and water treatment plants. The spread of Asian carp is another serious concern for the Great Lakes because of their voracious appetites, fast growth rates and ability to reproduce quickly, which may enable them to outcompete local species.⁸⁹ They were introduced in aquaculture facilities in the United States in the 1960s and 70s to use as a biological control, but escaped fish have moved north through the Mississippi River basin. Individual Asian carp have recently been found in the Great Lakes and in Canadian waterways.⁹⁰ Ongoing surveillance efforts are in place to prevent the establishment of these fish in Canadian waters.

Marine invasive species of concern include the European green crab and tunicates, which have been found on both the east and west coasts.⁹¹ European green crabs outcompete native crabs, cause severe damage to mollusc beds and disrupt eelgrass beds, a productive habitat for many juvenile fish species. Tunicates or sea squirts are very hardy, tolerate a wide range of temperature and salinity conditions, have very few predators because of their noxious outer skin and can reproduce in vast numbers. They attach to firm surfaces such as fishing and aquaculture gear and also shellfish. Both species have had a substantial impact on the aquaculture industry, particularly on the East Coast.

3.2 Marine and coastal ecosystem condition

The health of Canada's oceans can be measured through a number of different abiotic, biotic and seascape characteristics. The complex interactions between these different characteristics can result in large-scale impacts on ocean currents, weather patterns⁹² and productivity⁹³ to more local impacts affecting the level of biodiversity in marine regions.⁹⁴ This, in turn, can have serious impacts on ocean services and benefits, such as fishery landings and tourism as well as marine transportation routes and the accessibility of oil fields. Key abiotic characteristics include sea temperature, salinity, oxygen, stratification, acidity, nutrient and pollution levels; biotic characteristics may relate to the abundance of species and food webs; and seascape characteristics can include sea ice cover and the intactness or modification of ecosystems.

Sea surface temperature

Ocean temperatures are increasing with increasing atmospheric temperatures. Heat from the sun and atmosphere is absorbed at the ocean surface and spreads gradually into deeper waters and around the world by way of ocean currents and mixing of layers. Ocean warming can change the range distribution of species⁹⁵ and can impact fish spawning

⁸⁸ Minnesota Sea Grant, n.d., Zebra Mussels Threaten Inland Waters: An Overview, http://www.seagrant.umn.edu/ais/zebramussels_threaten (accessed May 11, 2020).

⁸⁹ Asian Carp Canada, n.d., About Asian Carps, https://asiancarp.ca/asian-carps/ (accessed May 9, 2020); Ontario Federation of Anglers and Hunters/Ontario Ministry of Natural Resources and Forestry – Ontario Invading Species Awareness Program, 2012, Asian Carps, http://www.invadingspecies.com/asian-carps (accessed May 9, 2020).

⁹⁰ Duchaine, H., 2020, "Une carpe asiatique a été pêchée à Chambly," Le Journal de Montréal, July 28, 2020; Fisheries and Oceans Canada, 2020, Asian Carp, <u>https://dfo-mpo.gc.ca/species-especes/profiles-profils/asiancarp-carpeasiatique-eng.html</u> (accessed December 8, 2020).

⁹¹ Klassen, G., 2012, "Invasive species," State of the Scotian Shelf Report, Atlantic Coastal Zone Information Steering Committee, https://ofb5ebe8-ca92-4c3c-9170-ef778a77f76e.filesusr.com/ugd/cf2ff9-4899b39256974b1ea9da2bc791d2bd57.pdf (accessed May 11, 2020); Fisheries and Oceans Canada, 2018, *Invasive Tunicates*, https://www.dfo-mpo.gc.ca/species-especes/profiles-profiles/invasivetunicates-tuniciersenvahissants-eng.html (accessed May 11, 2020); Fisheries and Oceans Canada, 2017, *Invasive tunicates and shellfish aquaculture: Assessing impacts and testing solutions*, https://www.dfo-mpo.gc.ca/aquaculture: Assessing impacts and testing solutions, https://www.dfo-mpo.gc.ca/aquaculture/rp-pr/acrdp-pcrda/projects-projets/P-09-03-011-eng.html (accessed May 11, 2020); Gillespie, G.E., et al., 2006, Status of the European Green Crab, Carcinus maenas, in British Columbia- 2006, Fisheries and Oceans Canada, http://www.aquaticnuisance.org/wordpress/wp-content/uploads/2009/01/Green%20Crab%20British%20Columbia%20Gillespie%20et%20al%202007.pdf (accessed September 30, 2020).

⁹² Jenkins, A., 2009, "With a pinch of salt," NASA Global climate Change Vital Signs of the Planet, April 19, 2009, https://climate.nasa.gov/news/58/with-a-pinch-of-salt/ (accessed May 15, 2020).

⁹³ Greenan, B.J.W., et al., 2019.

⁹⁴ McHenry, J., et al., 2019, "Projecting marine species range shifts from only temperature can mask climate vulnerability," *Global Change Biology*, Vol. 25, no. 12, https://doi.org/10.1111/gcb.14828 (accessed May 12, 2020).

⁹⁵ Harball, E., 2013, "Climate Change Shifts Range and Behaviour of Ocean Species," Scientific American, <u>https://www.scientificamerican.com/article/climate-change-shifts-range-and-behavior-of-ocean-species/</u> (accessed May 12, 2020); McHenry, J., et al, 2019.

areas and the survival of fish eggs.⁹⁶ Ocean temperature can also have a significant impact on coastal communities, not only through its impact on local fisheries and tourism, but also because of its effect on sea level through thermal expansion⁹⁷ and because warmer waters create more intense storms.⁹⁸

Between 1901 and 2014, all Canadian marine ecoregions saw a rise in mean sea surface temperatures, with the highest temperature changes of 2°C or more occurring in the Arctic.⁹⁹ When the average annual temperature¹⁰⁰ from 2005 to 2017 is compared with the 1981 to 2010 climate normal average, most areas of the Canadian exclusive economic zone (EEZ) have warmed, though cooling is seen in parts of the Pacific and Hudson Bay (Map 3.7 and Table 3.6).

In summer, the Pacific waters had very different regions of warming than in winter, with a cold offshore region stretching from the Skeena River delta between two regions of warming, while in winter this region was warmer than the threedecade average (Maps 3.8 to 3.10). Temperature change in the Arctic was driven more by summer changes than by winter changes, while the Atlantic more consistently showed warming in both seasons, with the exception of the Gulf of St. Lawrence, which was colder in winter. The largest temperature differences were seen on the southern Scotian Shelf where they were larger than 3°C in some locations.

⁹⁶ Pankhurst, N.W. and P.L. Munday, 2011, "Effects of climate change on fish reproduction and early life history stages," *Marine and Freshwater Research*, Vol. 62, no. 9, https://doi.org/10.1071/MF10269 (accessed May 16, 2020).

⁹⁷ Frederikse, Thomas et al., 2020.

⁹⁸ Office of Ocean Exploration and Research, National Oceanic and Atmospheric Administration, n.d., *How does the ocean affects hurricanes*?, https://oceanexplorer.noaa.gov/facts/hurricanes.html (accessed January 31, 2020).

⁹⁹ Statistics Canada, 2017, "Freshwater in Canada," Human Activity and the Environment, Catalogue no. 16-201-X, https://www150.statcan.gc.ca/n1/pub/16-201-x/16-201-x/06-201

¹⁰⁰ Locarnini, R. A., et al., 2018, World Ocean Atlas 2018, Volume 1: Temperature, National Oceanic and Atmospheric Administration, Mishonov, A. (ed.), https://www.nodc.noaa.gov/OC5/SELECT/woaselect/woaselect.html (accessed November 19, 2019). Note: the climatic mean data was used in this tabulation.

Map 3.7

Sea surface temperature departures (2005 to 2017) from the climate normal, by depth class, marine ecoregion and season

Note: The climate normal is the three decade average of climatological variables from 1981 to 2010. Winter data are from January to March with other seasons following sequentially. Source: Locarnini, R. A., et al., 2018, World Ocean Atlas 2018, Volume 1: Temperature, A. Mishonov Technical Ed., NOAA Atlas NESDIS 81, 52 pp.

Map 3.8

Note: The climate normal is the three decade average of climatological variables from 1981 to 2010. Source: Locarnini, R. A., et al., 2018, World Ocean Atlas 2018, Volume 1: Temperature, A. Mishonov Technical Ed., NOAA Atlas NESDIS 81, 52 pp.
Map 3.9

Summer sea surface temperature departures (2005 to 2017) from the climate normal, at quarter degree grid

Note: The climate normal is the three-decade average of climatological variables from 1981 to 2010. Summer data are from July to September. Source: Locarnini, R. A., et al., 2018, World Ocean Atlas 2018, Volume 1: Temperature, A. Mishonov Technical Ed., NOAA Atlas NESDIS 81, 52 pp.

Map 3.10

Winter sea surface temperature departures (2005 to 2017) from the climate normal, at quarter degree grid

Note: The climate normal is the three decade average of climatological variables from 1981 to 2010. Winter data are from January to March. Source: Locarnini, R. A., et al., 2018, World Ocean Atlas 2018, Volume 1: Temperature, A. Mishonov Technical Ed., NOAA Atlas NESDIS 81, 52 pp.

Sea surface salinity

Salinity is another important abiotic component of marine ecosystems. Salinity, along with temperature and pressure, affects the mixing of different ocean layers. Freshwater flow from rivers and melting land and sea ice reduce salinity and increase stratification—the formation of distinct layers.¹⁰¹ Significantly increased stratification can limit nutrient availability to surface phytoplankton at the base of the marine food web, affecting productivity and influencing the ocean's ability to capture carbon. A long-term decreasing trend in salinity has been found for most Canadian surface waters while deeper waters (200 m to 330 m) in the Gulf of St. Lawrence have experienced a statistically significant increase in salinity.¹⁰² Comparing the average annual surface salinity from 2005 to 2017 to the climate normal average salinity shows that many regions have recently experienced reduced salinity levels (Map 3.11 and Table 3.7). The Strait of Georgia, Arctic Basin and Gulf of St. Lawrence have experienced the largest departures from the climate normal, with summer months experiencing the largest departure for the Strait of Georgia and autumn and winter months having the largest departures for the Gulf of St. Lawrence. Increases in salinity in Atlantic offshelf waters are consistent with northward shifts of subtropical waters.¹⁰³

¹⁰¹ Greenan, B.J.W., et al., 2019.102 Greenan, B.J.W., et al., 2019.103 Greenan, B.J.W., et al., 2019.

Map 3.11

Sea surface salinity departures (2005 to 2017) from the climate normal reference period, by depth class, marine ecoregion and season

Notes: The climate normal is the three decade average of climatological variables from 1981 to 2010. Winter data are from January to March with other seasons following sequentially. Data are reported using the unitless Practical Salinity Scale (PSS), for more information please see http:// salinometry.com/pss-78/. Data for salinity in the Arctic Ocean are sparser than in other regions. In particular, winter salinity data are more scarce and the modelling methods used could result in artificially high salinities for this season in some regions of the Arctic Ocean. Source: Zweng, M. M., et al., 2018, *World Ocean Atlas 2018, Volume 2: Salinity*, A. Mishonov Technical Ed., NOAA Atlas NESDIS 82, 50 pp.

Other abiotic condition characteristics

The level of dissolved oxygen in water is another important abiotic indicator of ocean water condition. Low oxygen levels are detrimental to marine life as they are associated with reduced growth rates, lower reproductive success and higher mortality.¹⁰⁴ Surface waters are normally oxygen rich, though intense algal blooms resulting from excess nutrients in the water can deplete oxygen levels and create dead zones where no marine life can survive.¹⁰⁵ Hypoxic—or low oxygen level—waters are a more normal occurrence in deeper water. There are several hypoxic areas in Canadian waters—some such as northern Pacific fjord inlets have had low levels for centuries. Others, such as deeper waters in the Gulf of St. Lawrence have shown a clear decline in oxygen levels over the past century. There are serious concerns that further oxygen depletion in some of these regions, particularly Queen Charlotte Sound, Hecate Strait and Dixon Entrance, could have serious impacts on biodiversity and on fisheries in the regions.¹⁰⁶

Ocean acidification—the reduction of ocean pH levels—is well known for its damaging effects on tropical coral reefs; however, it is also an issue in Canadian waters. Increased acidity impacts cold water corals, shellfish and certain types of calcifying plankton by reducing their ability to build and maintain shells and calcium carbonate skeletal structures.¹⁰⁷ Arctic waters are expected to undergo rapid acidification in future years because of increasing carbon dioxide uptake from the atmosphere.¹⁰⁸

Plastic pollution is also a concern for oceans globally, famously the marine debris circulating in the North Pacific Ocean, known as the Great Pacific Garbage Patch.¹⁰⁹ Coastlines and beaches worldwide are littered with washed up plastic from the sea, while lost or discarded fisheries nets, trawls, pots, traps and other derelict fishing gear continue to ghost fish at the ocean bottom. Beach litter surveys in Canada have found a high proportion of litter to be plastic, with one study on Fogo Beach in Newfoundland finding 67% of plastic litter was smaller than 1 cm^{3,110} Microplastic particles (i.e., those less than 5 mm long)¹¹¹ are also a pollution concern. These particles—a large proportion of which are polyester fibres from laundering clothing and other textiles—may be mistaken for food by animals low on the food chain and therefore concentrate in predator species. Studies of stomach contents of the Northern Fulmar, a type of seabird that feeds at the ocean surface, show that since 2000, between 28% and 63% of birds studied had at least 0.1 gram of plastic in their stomachs.¹¹²

Fish and marine mammal stocks

Biotic indicators such as species abundance, diversity and average size are also of high importance for measuring ocean condition. Phytoplankton, microscopic aquatic plants, are at the foundation of the marine food web. Phytoplankton are consumed by zooplankton—animal plankton—that are essential food for many fish and marine mammals.¹¹³ The main phytoplankton blooms occur in spring and fall.¹¹⁴ The abundance, composition, timing and duration of these blooms can have significant effects on marine food webs. Satellite measurements of chlorophyll in surface waters are often used to estimate phytoplankton production, but they will miss production at deeper levels. In the Atlantic Ocean the

106 Fisheries and Oceans Canada, 2012.

110 Environment and Climate change Canada and Health Canada, 2020, Draft science assessment of plastic pollution, https://www.canada.ca/en/environment-climate-change/services/ evaluating-existing-substances/draft-science-assessment-plastic-pollution.html (accessed February 20, 2020).

111 National Oceanic and Atmospheric Administration, 2020, "What are microplastics," Ocean Facts, https://oceanservice.noaa.gov/facts/microplastics.html (accessed March 30 2020).

113 Fisheries and Oceans Canada, 2019, "Phytoplankton," Canada's Oceans Now: Atlantic Ecosystems 2018, https://www.dfo-mpo.gc.ca/oceans/publications/soto-rceo/2018/atlanticecosystems-ecosystemes-atlantiques/index-eng.html#phytoplankton (accessed June 8th, 2020).

114 Fisheries and Oceans Canada, 2019.

¹⁰⁴ Fisheries and Oceans Canada, 2012, "Hypoxia," Canada's State of the Oceans Report, 2012, https://www.dfo-mpo.gc.ca/oceans/publications/soto-rceo/2012/page03-eng.html (accessed February 25, 2020).

¹⁰⁵ United States Environmental Protection Agency, 2017, "The effects: Dead zones and harmful algal blooms," Nutrient Pollution, https://www.epa.gov/nutrientpollution/effects-dead-zones-and-harmful-algal-blooms, "Nutrient Pollution, https://www.epa.gov/nutrientpollution/effects-dead-zones-and-harmful-algal-blooms, "Nutrient Pollution, https://www.epa.gov/nutrientpollution/effects-dead-zones-and-harmful-algal-blooms, "Auto-Armful-algal-blooms", "Auto-Armful-Armful-algal-blooms", "Auto-Armful-Ar

¹⁰⁷ Fox. L., et al., 2020, "Quantifying the effect of anthropogenic climate change on calcifying plankton," *Scientific Reports*, Vol. 10, https://doi.org/10.1038/s41598-020-58501-w (accessed March 27, 2020).

¹⁰⁸ Qi, D., et al., 2017, "Increase in acidifying water in the western Arctic Ocean," Nature Climate Change, Vol. 7, https://doi.org/10.1038/nclimate3228 (accessed May 12, 2020).

¹⁰⁹ Lebreton, L., et al., 2018, "Evidence that the Great Pacific Garbage Patch is rapidly accumulating plastic," *Scientific Reports*, Vol. 8, article no. 4666, https://www.nature.com/articles/s41598-018-22939-w (accessed November 9, 2020)

¹¹² Environment and Climate Change Canada, 2020, Plastic Particles in the Northern Fulmar, https://www.canada.ca/en/environment-climate-change/services/environmental-indicators/ plastic-particles-northern-fulmar.html, (accessed April 15, 2021).

magnitude of the spring bloom increased from 1999 to 2011 while the duration decreased with both returning to an average state in 2016.¹¹⁵ On the Pacific Coast, a recent study suggests there is no long-term trend in chlorophyll levels in the Strait of Georgia over the last 100 years, although other research has found significant increases in chlorophyll levels between 1997 and 2010.¹¹⁶

In 2019, only 52 of 176 fish and marine mammal stocks managed by Fisheries and Oceans Canada and deemed economically, culturally, or environmentally important were considered to be healthy (Table 3.8), while the status of 29 stocks was assessed as cautious and 25 critical.¹¹⁷ Data were insufficient to assess the status of 70 stocks, with over a third of these uncertain stocks potentially facing conservation risks. The Arctic Ocean has the highest proportion (76%) of marine stocks with an uncertain status, while the Atlantic Ocean has the highest proportion (51%) of stocks with a status assessed as cautious, critical, or uncertain with risk of serious harm possible or likely (Table 3.9). Of the 25 stocks in the critical zone, 13 are groundfish stocks including 6 cod stocks. In December 2020, Canada committed to sustainably manage 100% of the oceans under its jurisdiction by 2025, as one of 14 members of the High Level panel for Sustainable Ocean Economy.¹¹⁸

Species listed under the Species at Risk Act (SARA) can be found in all areas of the Canadian Atlantic and Pacific.¹¹⁹ In all, 225 aquatic species (both marine and freshwater) are listed as having at least one population at risk due to their status under SARA or the Committee on the Status of Endangered Wildlife in Canada (COSEWIC).¹²⁰

Sea ice extent

Sea ice is a defining characteristic of marine and coastal ecosystems in the Arctic and also occurs in northern areas of the Atlantic in winter. The extent of sea ice varies by season and between years; however, a widespread, long-term decline in sea ice has been observed, driven by a warming arctic climate.¹²¹ In particular, over the last 50 years, a decline in summer sea ice extent and an increase in seasonal ice free periods has occurred. As ice melts, the Arctic reflects less sunlight¹²² allowing more solar energy to enter the ocean. Sea ice change can directly and indirectly affect all components of the marine ecosystem and surrounding environments. For example, sea ice loss and wave action can trigger erosion of coastlines and ice shelves. In 2020, large parts of the Milne ice shelf on Ellesmere Island broke off.¹²³ As multi-year ice disappears it is also easier for vessels to travel through the Arctic, resulting in increased human activity and shipping traffic.

Decreases in sea ice can have rippling effects throughout the entire food chain, for example, starting with changes affecting sea ice algae, which provide critical early energy for arctic marine food webs.¹²⁴ Changes in sea ice may also trigger changes in the territory and hunting methods of species such as polar bears.¹²⁵ As waters warm, southern species may migrate northwards potentially changing population interactions and impacting species with nowhere

119 Fisheries and Oceans Canada, 2019, Aquatic Species at Risk Map, https://www.dfo-mpo.gc.ca/species-especes/sara-lep/map-carte/index-eng.html (accessed May 15, 2020).

¹¹⁵ Bernier, R.Y., R.E. Jamieson, and A.M. Moore, 2018, "State of the Atlantic Ocean Synthesis Report," *Canadian Technical Report of Fisheries and Aquatic Sciences*, Fisheries and Oceans Canada, no. 3167, https://waves-vagues.dfo-mpo.gc.ca/Library/40801755.pdf (accessed March 25, 2020).

¹¹⁶ Johannessen, S.C., R.W. Macdonald and J.E. Stivens, 2021, "Has primary production declined in the Salish Sea", *Canadian Journal of Fisheries and Aquatic Sciences*, Vol. 78, no. 3, https://cdnsciencepub.com/doi/full/10.1139/cjfas-2020-0115&af=R (accessed April 27, 2021); Jackson, J. M., et al., 2015, "Satellite chlorophyll off the British Columbia Coast, 1997-2010," *Journal of Geophysical Research*, Vol. 120, no. 7, https://doi.org/10.1002/2014JC010496 (accessed May 10, 2020).

¹¹⁷ The Canadian Sustainability Survey for Fisheries includes fish stocks, as well as stocks of a number of marine mammals, selected as a result of their importance for economic, cultural and environmental reasons. These stocks cover the majority of landings from managed fisheries. Fisheries and Oceans Canada, 2019, Sustainability Survey for Fisheries, https://www.dfo-mpo.gc.ca/reports-rapports/regs/sff-cpd/survey-sondage/index-en.html (accessed February 26, 2020).

¹¹⁸ Parker, L., 2020,"In rare show of solidarity, 14 key nations commit to protect oceans," *National Geographic*, <u>https://www.nationalgeographic.com/environment/article/in-rare-show-of-solidarity-14-key-nations-commit-to-protect-oceans</u> (accessed December 9, 2020).

¹²⁰ Fisheries and Oceans Canada, 2019, Aquatic Species at Risk Found in Canadian Waters, http://www.dfo-mpo.gc.ca/species-especes/sara-lep/identify-eng.html?sara=Endangered (accessed May 15, 2020).

¹²¹ Derksen, C., et al., 2019.

¹²² National Snow and Ice Data Center, 2020, Thermodynamics: Albedo, https://nsidc.org/cryosphere/seaice/processes/albedo.html (accessed February 12, 2020).

¹²³ National Oceanic and Atmospheric Administration, 2020, Canada's Milne Ice Shelf Collapses, https://www.nesdis.noaa.gov/news/canadas-milne-ice-shelf-collapses (accessed September 30, 2020).

¹²⁴ Heffernan, 0., 2019, "Melting ice may be a boon for some Arctic whales—then a bust," *National Geographic*, June 2019, <u>https://www.nationalgeographic.com/environment/article/melting-sea-ice-brings-boom-and-then-bust-for-arctic-iconic-whales</u> (accessed February 12, 2020).

¹²⁵ Regehr, E. V., et al., 2009, "Survival and breeding of polar bears in the southern Beaufort Sea in relation to sea ice," *Journal of Animal Ecology*, Vol. 79, no. 1, <u>https://doi.org/10.1111/j.1365-2656.2009.01603.x</u> (accessed May 8, 2020).

left to migrate. Killer whales are already increasingly being found in arctic waters, resulting in impacts on narwhal and bowhead whale behaviour and distribution.¹²⁶ Inuit are experiencing impacts on harvesting activities as access to hunting areas becomes more difficult and the abundance and distribution of species change.¹²⁷

Arctic sea ice reaches minimum levels in September and maximum levels in late February to early March. The record for minimum circumpolar arctic ice extent was set in the summer of 2012, followed by 2020 and 2019 with the second and third lowest summer sea ice area.¹²⁸ Canadian waters also experienced the smallest extent of sea ice in 2012, but 2011 and 1998 followed with the second and third smallest ice areas. Across the Canadian Arctic, all five marine ecoregions show significant drops in ice extent for September ice over the last four decades (Chart 3.5 and Table 3.10).

Multi-year ice is important in the Arctic,¹²⁹ as it reflects more light than first year ice and is also thicker, stabilizing the ice pack, providing more protection against coastal erosion and limiting the use of icebreakers. The rapid loss of multi-year ice in the central Arctic Ocean allows ice to move more freely, facilitating the loss of sea ice across other areas of the Arctic.¹³⁰ Northern Canadian waters have experienced summer season declines in multi-year sea ice area of 7.4% per decade from 1968 to 2018 and decadal decreases of 7.0% in total sea ice area; however, multi-year ice in the western Canadian Arctic Archipelago has remained stable.¹³¹

The maximum ice extent occurring in the three Atlantic marine ecoregions has also decreased (Chart 3.6 and Table 3.11). Sea ice begins forming starting in December on the coast of southern Labrador and by January in the northern Gulf of St. Lawrence. By the end of January, the western and northern parts of the Gulf of St. Lawrence are ice-covered. From January to March, pack ice spreads southwards from Labrador along the eastern coast of Newfoundland with distribution dependent on the severity of winter conditions and wind direction. Sea ice break up begins in mid–March, with ice retreating to the northern end of the Strait of Belle Isle by May, allowing icebergs to drift towards the Grand Banks on the East Coast, transported by the Labrador Current.¹³²

¹²⁶ Breed, G.A., et al., 2017, "Sustained disruption of narwhal habitat use and behaviour in the presence of Arctic killer whales," *Proceedings of the National Academy of Sciences of the United States of America*, <u>https://www.pnas.org/content/114/10/2628</u> (accessed May 8, 2020); Dunmall, K., and C. Mathews, 2019, "Range Expansions and New Species Occurrences," *Canada's Ocean Now: Case Studies from State of Canada's Arctic Seas Report*, Niemi, A. (ed.), <u>https://waves-vagues.dfo-mpo.gc.ca/Library/40833872.pdf</u> (accessed May 19, 2020).

¹²⁷ Kumar, M. et al., 2019, "Harvesting activities among First Nations people living off reserve, Métis and Inuit: Time trends, barriers and associated factors," *Aboriginal Peoples Survey*, https://www150.statcan.gc.ca/n1/pub/89-653-x2019001-eng.htm (accessed July 14, 2020).

¹²⁸ Ramsayer, K., 2020, "2020 Arctic Sea Ice Minimum at Second Lowest on Record," NASA global Climate Change Vital Signs of the Planet, https://climate.nasa.gov/news/3023/2020-arctic-sea-ice-minimum-at-second-lowest-on-record/ (accessed September 30, 2020).

¹²⁹ National Snow and Ice Data Center, 2020, Multiyear ice, https://nsidc.org/cryosphere/seaice/characteristics/multiyear.html (accessed July 14, 2020).

¹³⁰ Babb, D.G., et al, 2015, "Physical processes contributing to an ice free Beaufort Sea during September 2012," JGR Oceans, Vol. 121, no. 1, https://doi.org/10.1002/2015JC010756 (accessed April 27, 2021)

¹³¹ Note: this estimate includes waters outside the Canadian marine ecoregions. Environment and Climate Change Canada, 2019, Canadian Environmental Sustainability Indicators: Sea ice in Canada, https://www.canada.ca/en/environmental-indicators/sea-ice.html (accessed July 14, 2020); Howell, Stephen, et al., 2008, "Multi-Year Sea-Ice Conditions in the Western Canadian arctic Archipelago Region of the Northwest Passage: 1968-2006", Atmosphere-Ocean, Vol. 46, no. 2, pp. 229-242, https://www.canada.ca/content/dam/eccc/migration/main/glaces-ice/0f9e03b9-1146-4ad4-a13b-ae9e07c9f72b/howell-20et-20al-202008-20-20myi-20in-20the-20nwp.pdf (accessed April 26, 2021).

¹³² Environment and Climate Change Canada, 2015, Where sea ice is found, https://www.canada.ca/en/environment-climate-change/services/ice-forecasts-observations/latest-conditions/ educational-resources/sea/where-sea-ice-is-found.html (accessed April 29, 2021)

Chart 3.5

Chart 3.6

Sea ice extent, average decadal minimums, by Arctic marine ecoregion, 1980 to 2020

Notes: Seasonal minimums occur in September. 2020 data are included in the latest decade. Source: Fetterer, F., K. Knowles, W.N. Meier, M. Savoie and A.K. Windnagel, 2017, Sea Ice Index, Version 3, Northern Shapefiles, February, March and September, National Snow and Ice Data Center (NSIDC), Boulder, Colorado, USA, https://doi.org/10.7265/N5K072F8 (accessed July 13, 2020).

Sea ice extent, average decadal maximums, by Atlantic marine ecoregion, 1980 to 2020

Notes: Seasonal minimums occur in September. 2020 data are included in the latest decade.

Source: Fetterer, F., K. Knowles, W.N. Meier, M. Savoie and A.K. Windnagel, 2017, Sea Ice Index, Version 3, Northern Shapefiles, February, March and September, National Snow and Ice Data Center (NSIDC), Boulder, Colorado, USA, https://doi.org/10.7265/N5K072F8 (accessed July 13, 2020).

Human modifications

Although the ocean seafloor is a relatively unexplored region of Earth,¹³³ humans have had great impact in some areas, especially in shallower waters. Fisheries, especially with the use of bottom trawlers and ghost nets, can have a huge impact on the seafloor.¹³⁴ Bottom trawlers destroy coral beds and vegetative cover, while ghost nets and lost trawls can trap animals.¹³⁵ Aquaculture sites, which are located on approximately 400 km² of Canadian coastal area (Map 3.12 and Table 3.12), can potentially have a large impact on coastal areas and biodiversity.¹³⁶ Studies in Canada,¹³⁷ Norway¹³⁸ and Scotland¹³⁹ have investigated the spread of sea lice from fish farms to wild salmon. There is also concern that escaped Atlantic salmon populations could establish breeding populations, with some evidence of spawning in three streams in British Columbia.¹⁴⁰ Shellfish aquaculture creates additional habitat in the water column, which can have a positive impact on pelagic biomass and productivity. However, it can also be linked to reductions in local phytoplankton biomass and the establishment of non-native species.¹⁴¹

Areas licensed for offshore oil and gas production include 1,018 km², located in the Newfoundland and Labrador Shelves and Scotian Shelf. Discovery area licenses that indicate where production could be permitted in the future cover a total of 7,534 km² and licenses for exploration cover 51,491 km². Canada has had a moratorium on oil and gas activities on the West Coast since 1972 and on new activities in the Arctic Ocean since 2016. As of 2019, all oil and gas activity is prohibited in Canadian Arctic offshore waters.¹⁴² Oil and gas exploration disrupts the ocean floor and creates pollution risks from oil leaks and spills, though old rigs can also provide shelter and habitat to species such as coral,¹⁴³ cod, flatfish and even porpoises.¹⁴⁴

Harbours, manmade islands and infrastructure such as the Confederation Bridge joining Prince Edward Island and New Brunswick, disrupt the ocean floor and bring new sources of anthropogenic noise. The rise in ambient noise levels can have impacts on many species, such as whales, and may even impact fish egg and larvae development.¹⁴⁵ Marine shipping routes have large impacts on migratory species and recently slow-downs of traffic have been required to reduce noise impacting southern resident killer whales and reduce the chance of ship strikes to protect species such as the North Atlantic right whale.¹⁴⁶

¹³³ Copley, J., 2014, "Just How Little Do We Know about the Ocean Floor," *The Conversation UK*, October 9, 2014, <u>https://theconversation.com/just-how-little-do-we-know-about-the-ocean-floor-32751</u> (accessed March 30, 2020).

¹³⁴ Science Communication Unit – University of the West of England, 2013, "Seafloor damage," Science for Environmental Policy, no. 45, https://ec.europa.eu/environment/integration/research/newsalert/pdf/45si en.pdf (accessed June 24, 2020).

¹³⁵ Food and Agriculture Organisation of the United Nations, n. d., Ghost nets hurting marine environment, http://www.fao.org/news/story/en/item/19353/icode/ (accessed May 17, 2020).

¹³⁶ Primavera, J.H., 2006, "Overcoming the impacts of aquaculture on the coastal zone," Ocean and Coastal Management, Vol. 49, no. 9-10, https://doi.org/10.1016/j.ocecoaman.2006.06.018 (accessed May 17,2020).

¹³⁷ Krkošek, M., et al., 2011, "Effects of parasites from salmon farms on productivity of wild salmon," Proceedings of the National Academy of Sciences of the United States of America, Vol. 108, no. 35, <u>https://doi.org/10.1073/pnas.1101845108</u> (accessed June 24, 2020).

¹³⁸ Skaröhamer, J., et al., 2018, "Modelled salmon lice dispersion and infestation patterns in a sub-arctic fjord," *ICES Journal of Marine Science*, Vol. 75, no. 5, https://doi.org/10.1093/icesjms/fsy035 (accessed June 24, 2020).

¹³⁹ Amundrud, T.L. and A.G. Murray, 2009, "Modelling sea lice dispersion under varying environmental forcing in a Scottish sea loch," *Journal of Fish Diseases*, Vol. 32, no. 1, https://doi.org/10.1111/j.1365-2761.2008.00980.x (accessed June 24, 2020).

¹⁴⁰ Thorstad, E.B., et al., 2008, Incidence and Impacts of Escaped Farmed Atlantic salmon Salmo salar in Nature. NINA Special Report 36, http://www.fao.org/3/a-aj272e.pdf (accessed June 24, 2020).

¹⁴¹ Landry, T., et al., 2006, "A scientific review of bivalve aquaculture : interaction between wild and cultured species," A Scientific Review of the Potential Environmental Effects of Aquaculture in Aquatic Ecosystems, Fisheries and Oceans Canada, Vol.5, https://waves-vagues.dfo-mpo.gc.ca/Library/365656.pdf (accessed June 24, 2020).

¹⁴² The Canada Gazette, Part II, Vol. 153, no. 17 (21, August, 2019), Order Prohibiting Certain activities in Arctic Offshore Waters: SOR/2019-280, August 21, 2019, https://gazette.gc.ca/rp-pr/ p2/2019/2019-08-21/html/sor-dors280-eng.html (accessed June 9, 2021).

¹⁴³ Bell, N., and J. Smith, 1999, "Coral growing on North Sea oil rigs," Nature, Vol. 402, https://doi.org/10.1038/45127 (accessed February 3, 2020).

¹⁴⁴ Bull, A.S., and S.M. Love, 2019, "Worldwide oil and gas platform decommissioning: A review of practices and reefing options," *Ocean & Coastal Management*, Vol. 168, https://doi.org/10.1016/j.ocecoaman.2018.10.024 (accessed June 24, 2020); Zeldovich, L., 2018, "Can oil rigs grow into ocean reefs?," *JTSOR Daily*, https://daily.jstor.org/can-oil-rigsgrow-into-ocean-reefs/ (accessed June 24, 2020); Fowler, A., et al., 2018, "Environmental benefits of leaving offshore infrastructure in the ocean," *Frontiers in Ecology and the Environment*, Vol. 16, no. 10, https://doi.org/10.1002/fee.1827 (accessed June 20, 2020).

¹⁴⁵ Fakan, E.P. and M.I. McCormick, 2019, "Boat noise affects the early life history of two damselfishes," *Marine Pollution Bulletin*, Volume 141, https://doi.org/10.1016/j.marpolbul.2019.02.054 (accessed August 10 2019). Nolet, V., 2017, *Understanding Anthropogenic Underwater Noise*, Prepared for Transport Canada, TP 15348 E, https://tc.canada.ca/en/initiatives/oceans-protection-plan/understanding-anthropogenic-underwater-noise (accessed August 10, 2019).

¹⁴⁶ Vancouver Port Authority, 2015, ECHO Program projects and initiatives, https://www.portvancouver.com/environmental-protection-at-the-port-of-vancouver/maintaining-healthy-ecosystemsthroughout-our-jurisdiction/echo-program/projects/ (accessed April 7, 2020); Transport Canada, 2020, Protecting North Atlantic right whales from collisions with ships in the Gulf of St. Lawrence, https://tc.canada.ca/en/marine-transportation/navigation-marine-conditions/protecting-north-atlantic-right-whales-collisions-ships-gulf-st-lawrence (accessed November 9, 2020).

Marine and coastal modifications: aquaculture sites and oil licences, circa 2016 to 2020

Map 3.12

Note: There has been a moratorium on oil exploration on the Pacific Coast of Canada since 1972 and on the Arctic Coast since 2016. As of 2019, all oil and gas activity is prohibited in Canadian Arctic offshore waters.

Sources: Newfoundland Aquaculture Industry Association, 2016, Industry by the Numbers; Newfoundland and Labrador Aquaculture, Fisheries and Land Resources, n.d., Licensed aquaculture sites, 2015; Nova Scotia Fisheries and Aquaculture, 2020, Nova Scotia Marine Aquaculture Leases; Mills, D., 2014, PEI Aquaculture Licenses; Ministère de l'Agriculture, des Pécheries et de l'Alimentation du Québec, 2019, Portrait-diagnostic sectoriel de l'industrie de la mariculture au Québec; New Brunswick Department of Agriculture, Aquaculture and Fisheries, 2019, Marine Aquaculture Site Mapping Program (MASMP); British Columbia Ministry of Forests, Lands, Natural Resource Operations and Rural Development, 2011, Saltwater Finfish Tenures – Coastal Resource Information Management System (CRIMS), GeoBC; Fisheries and Oceans Canada, 2017, Shellfish Integrated Management of Aquaculture Plan, Version 2.1; Fisheries and Oceans Canada, 2017, Current valid British Columbia aquaculture licence holders; Canada-Newfoundland and Labrador Offshore Petroleum Board, n.d., Mapping Information and Shapefiles; Canada-Nova Scotia Offshore Petroleum Board, Oil 2019, Maps and Coordinates, Canada-Nova Scotia Offshore Petroleum Board, 2019, GIS Information, Crown-Indigenous Relations and Northern Affairs Canada, 2015, Oil and Gas Rights.

Textbox: Biodiversity conservation

Protected areas play an important role in conserving nature and biodiversity. The first target of the 2020 Biodiversity Goals and Targets for Canada—related to the global Aichi Biodiversity Target I I —was to conserve 17% of terrestrial areas and inland water and 10% of coastal and marine areas by 2020 through protected areas and other effective area-based conservation measures.¹⁴⁷ The objectives of protected areas are to prevent the degradation of natural areas from increasing pressures and threats and to conserve biodiversity, natural conditions and related values and services. While the primary objective of areas conserved under other effective areabased conservation measures also result in the protection of biodiversity.¹⁴⁸

In Canada, federally protected¹⁴⁹ or conserved areas include National Parks, National Marine Conservation Areas, National Wildlife Areas, Migratory Bird Sanctuaries and Marine Protected Areas (MPA). Provincial and territorial designations for protected or conserved areas include, among others, Provincial Park, Territorial Park, Marine Park, Wilderness Park Wildlife Refuge, Nature Reserve, Biodiversity Reserve, Wilderness Area and Habitat Protected Area. Other areas are protected or conserved by Indigenous peoples, by collaborative governance and by non-profit organizations such as the Nature Conservancy of Canada, Ducks Unlimited or land trust organizations.

In December 2020, 12.5% of Canada's terrestrial and inland water area was conserved, mostly in parks or migratory bird sanctuaries (Map 3.13 and Table 3.13). These areas fall under different categories of protection and management and some face threats including climate change, fragmentation, invasive species and incompatible land uses or activities in areas adjacent to conserved areas, among others.¹⁵⁰ The Wrangel Mountains, almost entirely protected and conserved, is the ecoprovince with the greatest percentage of protected areas. In most ecoprovinces, however, the percentage of conserved terrestrial area is below the target.

In August 2019, Canada surpassed its target for the conservation of marine and coastal areas, with 13.8 % of the EEZ conserved, after the addition of Tuvaijuittuq Marine Protected Area in the Arctic Basin (Table 3.14).¹⁵¹ Canada has recently committed to conserving 25% of its EEZ by 2025, working toward 30% by 2030.¹⁵² Marine protected and conserved areas vary in their regulations and in the types of activities that are allowed. While a range of activities and management levels are permitted, new standards introduced in 2019 will prohibit oil and gas activities, mining, dumping and bottom trawling in federal marine protected areas.¹⁵³ The Laurentian Channel MPA, designated in 2019, was the first to follow these new protection standards.¹⁵⁴ These types of economic activities may occur in areas protected through other conservation measures, such as marine refuges; however, areas where oil and gas extraction occurs do not contribute towards the marine conservation target.

¹⁴⁷ Federal, Provincial and Territorial Working Group on Biodiversity, n. d., Canada Target 1, https://biodivcanada.chm-cbd.net/canada-target-1 (accessed August 7, 2020).

¹⁴⁸ Canadian Parks Council, 2019, Decision Support Tool: For Assessing Areas Against Pan-Canadian Standards for Protected Areas and Other Effective Area-based Conservation Measures (OECMS) for Terrestrial and Inland Waters, https://www.conservation2020canada.ca/accounting (accessed August 5, 2020).

¹⁴⁹ A protected area is defined by the International Union for the Conservation of Nature (IUCN) as "a clearly geographical space, recognized, dedicated and managed, through legal or other effective means, to achieve the long-term conservation of nature with associated ecosystem services and cultural values." Protected areas can be classed into seven IUCN management categories that allow range of activities from Class 1a – Strict Nature Reserve to Class VI – Protected Area with Sustainable Use of Natural Resources.

¹⁵⁰ Environment and Climate Change Canada, 2016.

¹⁵¹ Fisheries and Oceans Canada, 2020, Canada's marine protected and conserved areas, https://www.dfo-mpo.gc.ca/oceans/conservation/areas-zones/index-eng.html (accessed July 15, 2020).

¹⁵² Fisheries and Oceans Canada, 2020, Canada's Oceans Agenda: Protecting our oceans, https://www.dfo-mpo.gc.ca/oceans/conservation/plan/MCT-0CM-eng.html (accessed April 15, 2021)

¹⁵³ Fisheries and Oceans Canada, 2019, "Canada announces new standards for protecting our oceans," News Release, April 25, 2019, https://www.canada.ca/en/fisheries-oceans/news/2019/04/ canada-announces-new-standards-for-protecting-our-oceans.html (accessed October 18, 2020)

¹⁵⁴ Fisheries and Oceans Canada, 2019, Backgrounder: Laurentian Channel marine protected area, https://www.canada.ca/en/fisheries-oceans/news/2019/04/backgrounder-laurentianchannel-marine-protected-area.html (accessed February 26, 2019).

Table 3.1

Total water storage change and water yield, by ecoprovince

		Cumulative total water storage change, 2002 to 2016	Annual total water storage change, 2002 to 2016	Average annual water yield, 1971 to 2014	Average annual water yield per area, 1971 to 2014	Water yield variability
Ecoprovince	Code	km ^a	mm/y	r km³	mm	CV
Canada				3,514	350	
Northern Arctic Cordillera	1.1	-170*	-105*			
Southern Arctic Cordillera	1.2	-171*	-103*			
Sverdrup Islands	2.1					
Ellesmere Basin	2.2	-165*	-96*			
Victoria Lowlands	2.3	33**	6**	•		
Parry Channel Plateau	2.4	-66*	-41*			
Boothia–Foxe Shield	2.5	-62*	-9*			
Baffin Uplands	2.6	-91*	-50*			
Foxe–Boothia Lowlands	2.7					
Amundsen Lowlands	3.1	8 ^E	2 ^E	36	117	1.78
Keewatin Lowlands	3.2	0 ^E	0 ^E	66	171	1.79
Ungava–Belcher	3.3	-31*	-15*	66	417	1.71
Mackenzie Foothills	4.1			16	184	1.76
Great Bear Lowlands	4.2	-20*	-5*	41	120	1.76
Hay–Slave Lowlands	4.3	-17*	-5*	26	111	1.80
Western Taiga Shield	5.1	-36**	-4*	[•] 91	143	1.70
Eastern Taiga	5.2	23**	4**	231	585	1.67
Labrador Uplands	5.3	6 ^E	2 ^E	189	754	1.69
Whale River Lowland	5.4	-1 ^E	-1 ^E	66	580	1.71
Western Boreal Shield	6.1	-2 ^E	0 ^E	103	196	1.65
Mid-Boreal Shield	6.2	19 ^E	3 ^E	197	393	1.66
Eastern Boreal Shield	6.3	35*	7*	281	793	1.67
Newfoundland	6.4	11*	7*	128	1,147	1.62
Lake of the Woods	6.5			13	188	1.73
Southern Boreal Shield	6.6	27 ^E	6 ^E	165	517	1.65
Appalachian–Acadian Highlands	7.1	19*	15*	66	698	1.68
Northumberland Lowlands	7.2			26	735	1.66
Fundy Uplands	7.3			70	986	1.63
Great Lakes-St. Lawrence Lowlands	8.1	7*	6*	63	713	1.68
Huron–Erie Plains	8.2			15	595	1.74
Boreal Foothills	9.1	3 ^E	2 ^E	17	137	1.76
Central Boreal Plains	9.2	3 ^E	0 ^e	40	83	1.78
Eastern Boreal Plains	9.3	29*	19*	17	127	1.81
Eastern Prairies	10.1			2	68	2.29
Parkland Prairies	10.2			- 7	42	2.45
Central Grassland	10.3	45*	12*	5	20	2.35
Northern Yukon Mountains	11.1			4	153	1.78
Old Crow–Eagle Plains	11.2			3	165	1.79

Table 3.1

Total water storage change and water yield, by ecoprovince

		Cumulative total water storage change, 2002 to 2016	Annual total water storage change, 2002 to 2016	Average annual water yield, 1971 to 2014	Average annual water yield per area, 1971 to 2014	Water yield variability
Ecoprovince	Code	km ³	mm/y	r km³	mm	CV
Ogilvie Mountains	11.3			12	200	1.75
Mackenzie–Selwyn Mountains	11.4	21*	10*	42	266	1.78
Wrangel Mountains	12.1			10	412	1.70
Northern Boreal Cordillera	12.2	-89*	-27*	69	289	1.69
Southern Boreal Cordillera	12.3	-97*	-41*	97	580	1.70
Western Boreal Cordillera	12.4			9	244	1.70
Georgia Depression	13.1			33	1,696	1.67
Southern Coastal Mountains	13.2	-43 ^E	-22 ^E	366	2,308	1.61
Northern Coastal Mountains	13.3			53	1,652	1.67
Northern Montane Cordillera	14.1	-37*	-19*	83	590	1.70
Central Montane Cordillera	14.2	-38**	-25*	* 29	274	1.70
Southern Montane Cordillera	14.3			20	342	1.74
Columbia Montane Cordillera	14.4	-13*	-5*	136	757	1.69
Hudson Bay Coastal Plains	15.1			17	272	1.69
Hudson–James Lowlands	15.2	26**	6*	* 105	337	1.68

. not available for any reference period

.. not available for a specific reference period

... not applicable

^E use with caution

 * significantly different from reference category (p < 0.05)

** significantly different from reference category (p < 0.10)

Notes: Total water storage change is an estimate of the change in water stored in the environment as groundwater, soil moisture, surface water, snow and ice. Caution must be used in interpreting total water storage change results because of the level of uncertainty in the models, the short length of the time series, and the coarse resolution of the data. Data were suppressed for smaller ecoprovinces using a threshold of approximately 90,000 km². Statistically significant linear trends are presented at the 90% confidence interval or above. Water yield is an estimate of freshwater runoff. Water yield data was suppressed at the ecoprovince level for the North, but these areas are included in the Canada estimate. Water yield variability is measured by using a coefficient of variation (CV) that allows the comparison of all months in all years of the 43-year time period. The CV of the data is a measure of the dispersion or variation in the monthly values over the period 1971 to 2014. It is defined as the ratio of the standard deviation of the monthly values to the mean. A higher CV indicates that the monthly data are more variable.

Sources: Statistics Canada, Environment and Energy Statistics Division, 2021, special tabulation based on Wang, S., et al., 2014, "Assessment of water budget for sixteen large drainage basins in Canada," *Journal of Hydrology*, Vol. 512, pp. 1-15, https://doi.org/10.1016/.jhydrol.2014.02.058 (accessed December 11, 2020); Wang, S. and J. Li, 2016, "Terrestrial water storage climatology for Canada from GRACE satellite observations in 2002-2014," Canadian *Journal of Remote Sensing*, Vol. 42, no. 3, pp. 190-202, https://doi.org/10.1080/07038992.201 6.1171132 (accessed December 17, 2020); Li, J., S. Wang and F. Zhou, 2016, "Time series analysis of long-term terrestrial water storage over Canada from GRACE satellites using principal component analysis," Canadian *Journal of Remote Sensing*, Vol. 42, no. 3, pp. 161-170, https://doi.org/10.1080/07038992.2016.1166042 (accessed March 23, 2021); Statistics Canada, Table 38-10-0091-01, https://www150.statcan.gc.ca/t1/btl/en/tv.action?pid=3810009101 (accessed December 17, 2020); Spence, C. and A. Burke, 2008, "Estimates of Canadian Arctic Archipelago runoff from observed hydrometric data," *Journal of Hydrology*, Vol. 362, pp. 247-259.

Table 3.2

Average ambient air	r quality, by region	and selected urban	areas, 2002 and 2016
---------------------	----------------------	--------------------	----------------------

	PM ₂₅	PM ₂₅			NO	2	SO ₂		VOCs	
	2002	2016	2002	2016	2002	2016	2002	2016	2002	2016
	micrograms per cub	oic metre			parts pei	r billion			parts per billion carbo	
National	7.3	6.4	32.8	32.5	13.7	7.8	2.8	1.0	91.3	58.4
Atlantic Canada	4.8	5.6	33.7	31.9	6.9	3.1	5.7	0.6	103.6	65.5
Fredericton, N.B.		5.8	33.8	30.2	3.9	2.4				
St. John's, N.L.	4.8	5.1	34.0	33.0		3.5				
Halifax, N.S.	4.1	5.0	31.0	29.0		5.0				
Southern Quebec	9.8	6.3	33.6	33.1	14.9	8.4	4.3	1.7	74.4	35.2
Montréal, Que.	10.0	7.1	30.6	32.5	16.1	8.9				
Gatineau, Que.		5.6	35.5	35.0	11.1	5.9				
Sherbrooke, Que.		5.0	39.0	34.0						
Québec, Que.	7.8	8.2	33.2	32.0	14.1	6.6				
Southern Ontario	8.5	6.6	37.8	37.5	18.5	8.7	6.0	1.5	68.3	37.1
Windsor, Ont.		9.0	35.5	39.5	19.4	11.0				
Hamilton, Ont.	11.2	7.8	36.7	37.3	19.4	10.5				
Kitchener, Ont.		7.3	39.0	39.0		6.2				
Toronto, Ont.	8.6	7.0	36.9	36.0	20.0	11.2				
St. Catharines – Niagara, Ont.		6.9	36.0	40.0		6.6				
London, Ont.		6.8	38.0	41.5		4.1				
Oshawa, Ont.	9.1	5.9	35.0	36.0	17.2	6.3				
Ottawa, Ont.	7.5	5.8	34.0	34.0	27.1	6.3				
Prairies and northern Ontario	5.8	7.7	31.8	31.5	10.6	6.8	1.7	0.8	150.6	93.8
Regina, Sask.	7.3	8.1	18.0	34.0	13.9	7.3				
Saskatoon, Sask.		6.8	28.0	29.0	11.7	8.9				
Edmonton, Alta.	6.3	6.4	32.2	30.6	17.2	7.8				
Winnipeg, Man.	6.0	5.8	28.0	24.5	12.1	8.0				
British Columbia1	6.6	5.3	25.7	26.6	14.3	9.2	2.0	1.0	114.9	85.4
Vancouver, B.C.	5.5	4.5	23.5	25.8	16.2	10.6				
Victoria, B.C.	6.1	4.3	25.0	30.0	10.4	6.7				
Whitehorse, Y.T.	2.4	3.4	36.0	30.0	0.7					
Yellowknife, N.W.T.		7.8		30.0		1.9				
2020 annual CAAQS standard numerical value ²	8.8	8.8			17.0	17.0	5.0	5.0		

. not available for any reference period

.. not available for a specific reference period

1. Only stations from Metro Vancouver were available for VOCs.

2. The Canadian Ambient Air Quality Standards (CAAQS) consist of an averaging time, numerical value and a statistical form for each pollutant, including fine particulate matter (PM_{2.2}), ground-level ozone (O_g), nitrogen dioxide (NO_g) and sulphur dioxide (SO_g). The CAAQS standard for O_g is for the peak value, not the annual average. The standards are reviewed periodically. The numerical values of the annual 2020 CAAQS are provided here for reference purposes only and not for assessing the achievement status of the standard.

Notes: National, regional and urban ambient air quality concentrations are averaged from monitoring station data. These stations are spread across the country, but are more concentrated in urban areas. Selected urban areas include 25 census metropolitan areas and census agglomerations, representing some of the most populated municpalities in Canada including provincial and territorial capitals, for which sufficient data was available for reporting. For more information about the methodology and included stations, see the CESI Air Quality Indicator. Sources: Environment and Climate Change Canada, 2018, "Air Quality," *Canadian Environmental Sustainability Indicators*, https://www.canada.ca/en/environment-climate-change/services/ environmental-indicators/air-quality.html (accessed May 11, 2020), based on data from the National Air Pollutant Surveillance Program, https://www.canada.ca/en/environment-climate-change/services/air-quality-indicators. data/national-air-pollution-program.html; Canadian Council of Ministers of the Environment, 2017, Canada's Air, https://ccme.ca/en/air-quality-report (accessed February 14, 2020).

Table 3.3

Forest fire and	harvesting	area, by	ecoprov	ince, 198	36 to	2019

		1986 to	1995	1996 to	2005	2006 to	2015	2016 to	2019	Total ¹	
	-	Fire	Harvest	Fire	Harvest	Fire	Harvest	Fire	Harvest	Fire	Harvest
Ecoprovince	Code					km ²					
Canada		260,903	77,443	188,120	99,984	234,395	80,994	78,092		761,510	258,422
Northern Arctic Cordillera	1.1	0	0	0	0	0	0	0		0	0
Southern Arctic Cordillera	1.2	0	0	0	0	0	0	0		0	0
Sverdrup Islands	2.1	0	0	0	0	0	0	0		0	0
Ellesmere Basin	2.2	0	0	0	0	0	0	0		0	0
Victoria Lowlands	2.3	0	0	0	0	0	0	0		0	0
Parry Channel Plateau	2.4	0	0	0	0	0	0	0		0	0
Boothia–Foxe Shield	2.5	0	0	0	0	0	0	0		0	0
Baffin Uplands	2.6	0	0	0	0	0	0	0		0	0
Foxe–Boothia Lowlands	2.7	0	0	0	0	0	0	0		0	0
Amundsen Lowlands	3.1	140	0	19	0	124	0	3		286	0
Keewatin Lowlands	3.2	0	0	0	0	27	0	0		28	1
Ungava–Belcher	3.3	0	0	0	0	0	0	0		0	0
Mackenzie Foothills	4.1	6,569	8	3,605	9	2,683	19	1,435		14,292	37
Great Bear Lowlands	4.2	42,506	24	10,851	28	15,919	103	2,864		72,140	155
Hay–Slave Lowlands	4.3	3,943	825	6,314	1,188	17,063	1,167	3,024		30,344	3,180
Western Taiga Shield	5.1	43,593	10	28,715	31	41,986	74	9,853		124,147	114
Eastern Taiga	5.2	23,723	16	14,890	4	3,413	30	722		42,748	50
Labrador Uplands	5.3	1,951	10	2,602	2	4,327	24	109		8,990	36
Whale River Lowland	5.4	72	1	3	0	262	0	31		367	1
Western Boreal Shield	6.1	62,596	649	29,849	1,915	62,716	922	9,216		164,378	3,486
Mid-Boreal Shield	6.2	16,478	16,162	17,329	19,399	13,631	10,724	6,277		53,716	46,285
Eastern Boreal Shield	6.3	6,043	5,989	10,584	9,724	11,603	6,252	361		28,591	21,965
Newfoundland	6.4	908	1,528	114	1,906	5	1,106	0		1,026	4,540
Lake of the Woods	6.5	901	2,287	498	3,021	620	2,516	147		2,166	7,824
Southern Boreal Shield	6.6	1,482	9,631	880	12,503	2,706	9,409	473		5,542	31,543
Appalachian–Acadian Highlands	7.1	414	6,448	33	6,759	4	5,232	2		453	18,439
Northumberland Lowlands	7.2	438	2,249	10	3,129	1	2,365	7		457	7,743
Fundy Uplands	7.3	32	3,701	18	5,376	39	4,426	17		106	13,503
Great Lakes–St. Lawrence											
Lowlands	8.1	1	320	34	373	5	342	3		42	1,035
Huron–Erie Plains	8.2	0	52	8	70	1	39	0		8	161
Boreal Foothills	9.1	618	3,533	2,614	5,421	1,431	6,059	1,571		6,235	15,013
Central Boreal Plains	9.2	15,158	4,039	16,974	8,215	26,194	7,440	13,150		71,476	19,694
Eastern Boreal Plains	9.3	7,147	681	810	718	1,192	734	625		9,775	2,132
Eastern Prairies	10.1	86	70	57	104	35	61	2		179	235
Parkland Prairies	10.2	76	157	92	488	32	376	15		215	1,021
Central Grassland	10.3	14	54	230	294	131	319	126		502	668
Northern Yukon Mountains	11.1	83	0	72	0	197	0	6		358	0
Old Crow–Eagle Plains	11.2	557	0	230	0	116	0	429		1,332	0

Table 3.3	
Forest fire and harvesting area, by ecoprovince,	1986 to 2019

		1986 to	1995	1996 to	2005	2006 to	2015	2016 to	2019	Tota	1 1
		Fire	Harvest	Fire	Harvest	Fire	Harvest	Fire	Harvest	Fire	Harvest
Ecoprovince	Code					km ²					
Ogilvie Mountains	11.3	1,210	0	6,544	1	854	1	1,883		10,492	2
Mackenzie–Selwyn Mountains	11.4	1,150	6	1,671	5	460	3	236		3,517	15
Wrangel Mountains	12.1	0	0	23	0	0	0	0		23	0
Northern Boreal Cordillera	12.2	9,516	123	10,286	139	6,738	77	4,024		30,564	339
Southern Boreal Cordillera	12.3	772	161	1,123	155	1,549	43	1,742		5,186	359
Western Boreal Cordillera	12.4	1,986	18	4,976	16	1,918	5	1,006		9,886	39
Georgia Depression	13.1	5	846	1	1,218	20	1,406	9		35	3,470
Southern Coastal Mountains	13.2	179	3,695	78	2,476	378	2,382	370		1,006	8,553
Northern Coastal Mountains	13.3	9	17	37	9	0	9	1		48	35
Northern Montane Cordillera	14.1	238	4,089	20	4,121	1,459	4,705	1,069		2,786	12,914
Central Montane Cordillera	14.2	162	4,296	865	5,243	5,095	5,446	12,507		18,628	14,985
Southern Montane Cordillera	14.3	220	2,222	1,232	2,601	964	3,574	1,563		3,979	8,397
Columbia Montane Cordillera	14.4	255	3,436	2,065	3,254	1,079	3,508	2,226		5,624	10,198
Hudson Bay Coastal Plains	15.1	248	0	1,086	0	438	0	116		1,888	1
Hudson–James Lowlands	15.2	9,424	90	10,677	68	6,980	95	870		27,951	253

.. not available for a specific reference period

... not applicable

1. Spatial data on harvesting from the Canada Landsat Disturbance dataset are not yet available for the years subsequent to 2015. See the National Forestry Database (https://nfdp.ccfm.org/ en/data/harvest.php) for annual data on forest area harvested by province and territory.

Notes: Harvest data are identified by 30 m Landsat remote sensing. Fire data are taken from the National Burned Area Composite, part of the Fire Monitoring, Accounting and Reporting System, based on the integration of data from fine and coarse resolution satellite data from Natural Resources Canada and Provincial, Territorial and Parks Canada Agencies. These data differ from the harvesting and burned area totals reported in the National Forestry Database, which are based on different methodologies.

Sources: Natural Resources Canada, Canadian Forest Service, 2020, National Burned Area Composite (NBAC), http://cwfis.cfs.nrcan.gc.ca/datamart (accessed October 26, 2020); Guindon, L., et al., 2017, Canada Landsat Disturbance (CanLaD): a Canada-wide Landsat-based 30-m resolution product of fire and harvest detection and attribution since 1984, https://doi.org/10.23687/ add1346b-f632-4eb9-a83d-a662b38655ad (accessed July 20, 2020); Data file downloaded from https://opendata.nfis.org/mapserver/nfis-change_eng.html (accessed July 20, 2020).

Table 3.4Average urban greenness, by population centre size class and region, 2001, 2011 and 2019

		Average urban greenness				Type of greenness change				
	Population				20	01 to 2011	2001 to 2019			
	centres	2001	2011	2019	Decrease	Stable	Increase	Decrease	Stable	Increase
	number	percer	ntage of area			perce	ntage of po	oulation centre	es	
Total population centres	996	80.3	80.3	75.7	27.0	35.2	37.8	38.8	30.1	31.1
Size classes										
Large urban	31	75.8	75.4	69.6	29.0	16.1	54.8	77.4	0.0	22.6
Medium	58	82.0	81.6	77.7	46.6	12.1	41.4	70.7	8.6	20.7
Small	907	88.3	89.1	87.0	25.7	37.4	36.9	35.4	32.5	32.1
Regions										
Atlantic	101	94.3	95.6	93.9	6.9	55.4	37.6	20.8	50.5	28.7
Québec	268	86.0	87.2	82.8	13.1	51.1	35.8	30.6	43.7	25.7
Ontario	286	81.8	81.4	78.7	26.6	37.1	36.4	38.1	33.6	28.3
Prairies	234	61.5	62.6	55.5	41.9	9.8	48.3	43.6	8.1	48.3
British Columbia	107	84.0	80.6	72.9	49.5	27.1	23.4	67.3	15.9	16.8

Notes: Estimates of population centre greenness are based on the normalized difference vegetation index (NDVI) from MODIS. Water areas have been excluded. Includes population centres south of 60° latitude based on the 2016 population centre boundaries for all years to ensure consistency. Change in greenness compares the point in time to 2001 and does not represent a trend over time. For more information, see Appendix A.

Source: Statistics Canada, 2020, Corrected representation of the NDVI using historical MODIS satellite images (250 m resolution) from 2000 to 2019, https://open.canada.ca/data/en/dataset/ dc700f75-19d8-4913-9846-78615ca93784 (accessed April 29 2020).

Table 3.5

Landscape condition indicators, by ecoprovince

			Average distance to			
		Average patch size	patch of natural and			Human landscape
		of natural and semi- natural land, 2016	semi-natural land, 2016	Linear feature density, 2016	Water crossing density, 2011	modification index, 2011
Ecoprovince	Code	km²	m	m/km ²	crossings/km ²	Score (0 to 100)
Canada		436.0	24.8	194.5	0.09	7.9
Northern Arctic Cordillera	1.1	1,457.3	0.0	0.0	0.00	0.0
Southern Arctic Cordillera	1.2	186.7	0.0	0.4	0.00	0.2
Sverdrup Islands	2.1	155.6	0.0	0.0	0.00	0.5
Ellesmere Basin	2.2	514.4	0.0	0.1	0.00	0.3
Victoria Lowlands	2.3	210.0	0.0	0.4	0.00	0.2
Parry Channel Plateau	2.4	1,018.3	0.0	0.7	0.00	0.2
Boothia–Foxe Shield	2.5	69.8	0.0	0.5	0.00	0.2
Baffin Uplands	2.6	6,913.2	0.0	0.0	0.00	0.2
Foxe–Boothia Lowlands	2.7	179.0	0.0	1.4	0.00	0.3
Amundsen Lowlands	3.1	317.9	0.0	7.4	0.01	1.1
Keewatin Lowlands	3.2	140.4	0.0	0.5	0.00	0.1
Ungava–Belcher	3.3	94.6	0.0	1.2	0.00	0.1
Mackenzie Foothills	4.1	187.8	0.0	82.8	0.06	4.0
Great Bear Lowlands	4.2	136.2	0.0	116.0	0.05	5.1
Hay–Slave Lowlands	4.3	4.4	0.4	606.3	0.23	6.2
Western Taiga Shield	5.1	1,267.8	0.0	2.8	0.00	0.7
Eastern Taiga	5.2	1,210.4	0.0	7.5	0.00	0.9
Labrador Uplands	5.3	359.1	0.0	12.6	0.01	1.3
Whale River Lowland	5.4	1,662.1	0.0	2.0	0.00	0.2
Western Boreal Shield	6.1	85.4	0.2	29.2	0.01	3.5
Mid-Boreal Shield	6.2	9.0	2.8	111.9	0.05	8.1
Eastern Boreal Shield	6.3	8.6	3.0	59.1	0.04	4.8
Newfoundland	6.4	5.1	1.9	309.5	0.16	11.6
Lake of the Woods	6.5	3.9	12.7	339.1	0.12	14.9
Southern Boreal Shield	6.6	4.7	5.2	372.7	0.27	15.5
Appalachian–Acadian Highlands	7.1	2.4	12.9	555.9	0.39	20.5
Northumberland Lowlands	7.2	1.7	20.7	849.0	0.34	23.8
Fundy Uplands	7.3	1.8	13.0	825.8	0.36	21.1
Great Lakes–St. Lawrence Lowlands	8.1	1.3	154.1	1,815.4	0.85	43.8
Huron–Erie Plains	8.2	1.1	330.7	2,769.4	1.24	57.2
Boreal Foothills	9.1	2.1	8.3	1,132.0	0.47	15.0
Central Boreal Plains	9.2	2.4	47.6	588.4	0.15	19.2
Eastern Boreal Plains	9.3	6.8	18.2	285.0	0.03	12.0
Eastern Prairies	10.1	1.8	508.0	1,249.9	0.23	43.5
Parkland Prairies	10.2	1.1	203.6	1,032.8	0.41	50.5
Central Grassland	10.3	1.0	515.4	833.5	0.33	53.3
Northern Yukon Mountains	11.1	506.5	0.0	4.4	0.01	1.9
Old Crow–Eagle Plains	11.2	1,869.3	0.0	16.7	0.02	5.0

Table 3.5

Landscape condition indicators, by ecoprovince

		Average patch size of natural and semi- natural land, 2016	Average distance to patch of natural and semi-natural land, 2016	Linear feature density, 2016	Water crossing density, 2011	Human landscape modification index, 2011
Ecoprovince	Code	km ²	m	m/km ²	crossings/km ²	Score (0 to 100)
Ogilvie Mountains	11.3	78.4	0.0	97.2	0.09	6.1
Mackenzie–Selwyn Mountains	11.4	454.0	0.0	4.5	0.01	2.2
Wrangel Mountains	12.1	24,469.5	0.0	2.7	0.00	1.3
Northern Boreal Cordillera	12.2	57.7	0.1	37.8	0.04	5.6
Southern Boreal Cordillera	12.3	366.9	0.0	14.5	0.02	3.2
Western Boreal Cordillera	12.4	50.4	0.0	44.7	0.04	6.7
Georgia Depression	13.1	1.8	56.0	1,692.3	0.79	26.4
Southern Coastal Mountains	13.2	15.0	1.1	88.7	0.17	8.9
Northern Coastal Mountains	13.3	304.6	0.0	8.4	0.01	1.9
Northern Montane Cordillera	14.1	5.0	3.4	118.2	0.11	8.8
Central Montane Cordillera	14.2	2.8	8.2	193.7	0.17	14.2
Southern Montane Cordillera	14.3	1.9	17.7	551.4	0.57	18.7
Columbia Montane Cordillera	14.4	7.5	2.6	219.3	0.21	11.7
Hudson Bay Coastal Plains	15.1	455.3	0.0	14.1	0.01	0.7
Hudson–James Lowlands	15.2	486.8	0.0	8.5	0.00	0.8

^{...} not applicable

Notes: Linear features include roads, rail lines, cutlines and electrical transmission lines that fragment landscapes. Water crossings include, for example, road crossings of bridges and culverts. The human landscape modification index is a measure of direct human modifications to the landscape. For more information, see Appendix A.

Sources: Statistics Canada, Environment and Energy Statistics Division, 2021, special tabulation based on Agriculture and Agri-Food Canada (AAFC), 2015, *Land Use, 2010*, https://open. canada.ca/data/en/dataset/18e3ef1a-497c-40c6-8326-aac1a34a0dec (accessed June 1, 2020); AAFC, 2020, *Land Use, 2015* (beta version); Natural Resources Canada, 2017, *Topographic Data of Canada* - CanVec Series, https://open.canada.ca/data/en/dataset/8ba2aa2a-Tbb9-4448-b4d7-1164409fe056 (accessed December 21, 2020); Statistics Canada, 2017, *Road Network File, 2016*, https://www150.statcan.gc.ca/n1/en/catalogue/92-500-X (accessed December 21, 2020); AAFC, 2016, *Interpolated Census of Agriculture*, https://open.canada.ca/ data/en/dataset/1dee8513-5c73-43b6-9446-25f7b985cd00 (accessed December 3, 2020); Guindon, L., et al., 2017, *Canada Landsat Disturbance (CanLaD): a Canada-wide Landsat-based 30-m resolution product of fire and harvest detection and attribution since 1984*, https://doi.org/10.2867/add1346b-f632-4eb9-a83d-a662b38655ad (accessed July 20, 2020); data file downloaded from https://opendata.nfis.org/mapserver/nfis-change_eng.html (accessed July 20, 2020).

Table 3.6

Sea surface temperature departures (2005 to 2017) from the climate normal, by depth class, marine ecoregion and season

	Anr	ual	Spr	ing	Sum	mer	Auti	umn	Win	ter
Marine	Average temperature, 1981 to 2010 climate normal	Temperature departure of the 2005 to 2017 average from the climate normal	Average temperature, 1981 to 2010 climate normal	Temperature departure of the 2005 to 2017 average from the climate normal	Average temperature, 1981 to 2010 climate normal	Temperature departure of the 2005 to 2017 average from the climate normal	Average temperature, 1981 to 2010 climate normal	Temperature departure of the 2005 to 2017 average from the climate normal	Average temperature, 1981 to 2010 climate normal	Temperature departure of the 2005 to 2017 average from the climate normal
depth class					°()				
Strait of Georgia										
Coastal	10.75	-0.18	11.67	-0.44	14.44	0.15	9.28	-0.09	7.60	-0.32
Epipelagic	10.77	-0.17	11.72	-0.44	14.51	0.16	9.27	-0.10	7.57	-0.32
Mesopelagic	10.86	-0.17	11.73	-0.46	14.80	0.19	9.38	-0.11	7.51	-0.31
Bathypelagic	10.72	-0.16	11.94	-0.32	14.14	0.17	9.13	-0.10	7.7	-0.40
Southern Shelf										
Coastal	10.75	-0.06	10.89	-0.10	13.21	0.08	10.46	0.00	8.44	-0.24
Epipelagic	10.86	-0.08	10.96	-0.11	13.36	0.12	10.58	-0.07	8.53	-0.26
Mesopelagic	11.02	-0.01	10.86	-0.10	13.79	0.14	10.92	0.08	8.51	-0.17
Bathypelagic	11.16	0.02	10.84	-0.13	14.17	0.19	11.14	0.15	8.48	-0.12
Offshore Pacific										
Coastal	9.85	0.06	8.74	0.09	13.83	0.29	9.99	0.03	6.84	-0.18
Epipelagic	9.85	0.06	8.74	0.09	13.83	0.29	9.99	0.03	6.84	-0.18
Mesopelagic	10.09	0.06	8.92	0.08	14.10	0.25	10.28	0.05	7.06	-0.13
Bathypelagic	10.61	0.11	9.39	0.03	14.58	0.25	10.88	0.14	7.60	0.02

Table 3.6

Sea surface temperature departures (2005 to 2017) from the climate normal, by depth class, marine ecoregion and season

	Ann	ual	Spri	ing	Sum	mer	Autumn		Winter	
		Temperature								
		departure								
	Average	of the 2005								
	temperature,	to 2017								
	1981 to 2010	average from								
Marine	climate	the climate								
ecoregion and	IIUIIIdi	normal	normai	normai		normai	normai	normai	normai	normai
depth class					Ĺ	,				
Northern Shelf										
Coastal	10.07	0.09	9.77	0.15	13.13	0.09	9.89	0.00	7.47	0.13
Epipelagic	10.17	0.08	9.82	0.21	13.29	-0.02	9.95	-0.02	7.61	0.13
Mesopelagic	10.12	0.05	9.67	0.13	13.41	0.01	9.92	-0.02	7.48	0.09
Bathypelagic	10.25	0.07	9.53	-0.02	13.67	0.22	10.20	0.11	7.61	-0.03
Arctic Basin										
Coastal	-0.91	-0.02	-1.34	-0.01	-0.41	-0.12	-0.72	0.00	-1.65	0.02
Epipelagic	-0.86	0.04	-1.34	0.09	0.17	-0.03	-0.94	0.04	-1.54	0.04
Mesopelagic	-1.07	0.04	-1.44	0.09	0.00	0.05	-1.33	0.01	-1.52	0.03
Bathypelagic	-1.29	0.04	-1.47	0.05	-0.76	0.06	-1.42	0.05	-1.48	-0.01
Western Arctic										
Coastal	-0.22	0.06	-0.55	0.08	2.15	0.18	-1.12	0.01	-1.39	-0.01
Epipelagic	-0.50	0.15	-0.80	0.19	1.38	0.40	-1.22	0.02	-1.42	0.00
Mesopelagic	-0.60	0.21	-1.23	0.37	1.47	0.48	-1.22	-0.01	-1.44	0.00
Arctic										
Archipelago	1.07	0.00	1.00	0.00	0.10	0.04	4 45	0.01	1.00	0.04
Coastal	-1.07	0.02	-1.36	0.02	-0.13	0.04	-1.45	0.01	-1.28	0.04
Epipelagic	-1.09	0.01	-1.40	0.01	-0.19	0.01	-1.39	0.01	-1.38	0.03
Niesopelagic	-1.13	0.00	-1.47	0.01	-0.16	-0.01	-1.50	0.00	-1.39	0.03
	0.49	0.10	0.50	0.00	1 15	0.40	0.00	0.01	1.00	0.02
Eninologio	-0.40	0.12	-0.36	0.00	1.10	0.42	-0.92	-0.01	-1.30	-0.03
Epipelayic	-0.37	0.12	-0.01	0.10	0.95	0.30	-1.14	0.01	-1.30	-0.04
Rathypologic	0.04	0.00	-0.32	0.05	2.34	0.31	-0.00	0.05	-1.43	0.00
	0.03	0.10	0.42	-0.11	5.05	0.54	-0.05	0.00	-1.51	0.05
Complex										
Coastal	0.98	-0.11	-0.34	-0.08	4 21	-0.35	1 32	-0.01	-1.03	0.01
Eninelagic	1 30	-0.16	-0.08	-0.05	5.61	-0.45	1 19	-0.13	-0.72	-0.03
Mesonelagic	0.30	-0.12	-0.54	-0.05	2.96	-0.13	0.14	-0.31	-0.11	0.05
Newfoundland-	0.00	0.12	0.01	0.00	2.00	0.10	0.11	0.01	0.11	0.00
Labrador Shelves	;									
Coastal	3.46	0.40	1.38	0.14	9.36	0.74	3.45	0.50	-0.29	0.22
Epipelagic	4.76	0.40	2.43	0.19	11.01	0.49	5.28	0.40	0.25	0.49
Mesopelagic	3.54	0.33	1.79	0.04	9.30	0.63	3.32	0.37	-0.24	0.28
Bathypelagic	4.96	0.44	3.76	0.15	9.15	0.56	5.05	0.46	2.04	0.66
Abyssalpelagic	12.99	0.89	10.28	0.24	19.49	0.25	14.47	1.34	7.72	1.72
Scotian Shelf										
Coastal	8.02	0.62	5.54	0.56	14.79	0.60	9.63	1.01	2.14	0.28
Epipelagic	8.27	0.76	5.53	0.64	15.54	0.79	9.79	1.17	2.23	0.44
Mesopelagic	8.90	0.84	6.25	0.79	15.95	0.85	10.37	1.22	3.11	0.49
Bathypelagic	11.28	1.31	9.00	1.33	18.79	1.14	13.10	1.53	6.03	1.11
Abyssalpelagic	15.06	1.22	14.18	0.90	22.09	0.53	17.56	0.72	11.14	1.92
Gulf of St.										
Lawrence										
Coastal	6.30	0.26	5.09	-0.14	14.71	0.68	6.02	0.77	-0.61	-0.28
Epipelagic	5.69	0.27	4.18	0.11	13.88	0.88	5.37	0.36	-0.68	-0.25
Mesopelagic	5.55	0.27	4.04	0.26	13.54	0.84	5.15	0.13	-0.54	-0.15

Notes: The climate normal is the three-decade average of climatological variables from 1981 to 2010. Winter data are from January to March with other seasons following sequentially. Areas classed as coastal have a maximum depth of 50 m, the epipelagic class has depths from 50 m to 200 m, the mesopelagic class has depths from 200 m to 1,000 m, the bathypelagic class has depths of 1 km to 4 km and the abyssalpelagic class includes all areas with depths of more than 4 km.

Source: Locarnini, R. A., et al., 2018, World Ocean Atlas 2018: Volume 1: Temperature, A. Mishonov (Technical Ed.), NOAA Atlas NESDIS 81, https://www.nodc.noaa.gov/OC5/SELECT/ woaselect/woaselect.html (accessed November 15, 2019).

Table 3.7

Sea surface salinity departures (2005 to 2017) from the climate normal reference period, by depth class, marine ecoregion and season

Salinity <th colspan="</th> <th></th> <th>An</th> <th>inual</th> <th>Spri</th> <th>ng</th> <th>Sumr</th> <th>ner</th> <th>Autu</th> <th>mn</th> <th>Win</th> <th>ter</th>		An	inual	Spri	ng	Sumr	ner	Autu	mn	Win	ter
Martine Bodregion and depth class Instruct		Average salinity, 1981 to 2010 climate normal	Salinity departure of the 2005 to 2017 average from the 19 climate pormal	Average salinity, 81 to 2010 climate normal	Salinity departure of the 2005 to 2017 average from the 1 climate normal	Average salinity, 981 to 2010 climate normal	Salinity departure of the 2005 to 2017 average from the climate normal	Average salinity, 1981 to 2010 climate normal	Salinity departure of the 2005 to 2017 average from the 19 climate pormal	Average salinity, 81 to 2010 climate normal	Salinity departure of the 2005 to 2017 average from the climate normal
Decision of Complain Constraining Construction of Constraining Constraini	Marine ecoregion and		norma	norma	normai	nractical sali	nity scale (PSS)	norma	norma	norma
Start of beorgia Coastal 26.7 -0.44 26.0 -0.45 26.1 -1.56 28.1 -0.24 28.0 0.38 Epipelagic 26.6 -0.46 26.0 -0.45 26.1 -1.57 28.1 -0.24 28.0 0.38 Bathynelagic 27.3 -0.56 27.0 -0.54 27.2 -1.52 28.7 -0.39 28.4 0.22 Southern Sheft Coastal 31.2 -0.09 30.8 -0.07 31.3 -0.34 31.5 -0.12 31.0 0.07 Bespelagic 31.7 -0.08 31.6 -0.02 32.1 -0.16 32.0 -0.12 31.7 0.00 Bathynelagic 32.3 0.02 32.3 0.07 32.1 0.08 32.3 -0.02 32.5 -0.02 Bespelagic 32.3 0.02 32.3 -0.02 32.3 -0.02 32.4 -0.02 31.7 0.01 Depleagic 31.5 0.01	Strait of Coorgia					praotiour our		/			
Clossian 20.0 -0.41 20.0 -0.41 20.1 -1.02 20.1 -0.21 20.0 0.21 Dipelagia 26.6 -0.46 26.0 -0.45 26.1 -1.57 28.1 -0.24 27.9 0.38 Mesopelagic 27.3 -0.56 27.0 -0.54 27.2 -1.52 28.7 -0.39 28.4 0.22 Southern Sheif	Coastal	26.7	0.44	26.0	0.41	26.1	1 56	29.1	0.21	28.0	0.20
Experiance 20.0 0.040 20.0 0.043 20.0 1.043 20.1 1.044 20.0 1.044 20.0 0.044 20.0 0.044 20.0 20.0 20.	Cuasia	20.7	-0.44	20.0	-0.41	20.1	-1.50	20.1	-0.21	20.0	0.39
Mesopleraju 26.3 -0.46 23.7 -1.032 23.7 -1.052 23.7 -0.24 27.3 0.24 27.3 0.55 Southern Sheft	Epipeiagic	20.0	-0.40	20.0	-0.45	20.1	-1.37	20.1	-0.24	20.0	0.30
Bathypelagic 27.3 -0.36 27.2 -1.32 26.7 -0.39 26.4 0.22 Coastal 31.2 -0.09 30.8 -0.07 31.3 -0.30 31.5 -0.09 31.1 0.07 Epipelagic 31.7 -0.08 31.6 -0.05 32.0 -0.12 32.1 -0.012 31.7 0.00 Bathypelagic 31.9 -0.07 31.9 -0.04 32.0 -0.12 32.1 -0.01 32.1 -0.01 32.2 -0.01 32.5 -0.02 Pipelagic 32.3 0.02 32.3 0.03 32.1 0.08 32.3 -0.05 32.5 -0.02 Bathypelagic 32.3 -0.02 32.3 -0.03 32.1 0.00 32.3 -0.05 32.4 -0.02 Bathypelagic 31.4 -0.09 31.1 0.03 31.5 0.02 31.7 0.01 State -0.01 31.4 -0.06 31.2 0.05	Nesoperagic	20.3	-0.46	20.7	-0.52	20.7	-1.00	27.9	-0.24	27.9	0.43
Southern Sheir Coastal 31.2 -0.09 30.8 -0.07 31.3 -0.12 31.0 0.07 Pipelagic 31.1 -0.07 31.3 -0.01 31.1 0.07 Bathypelagic 31.9 -0.04 32.0 -0.11 31.9 -0.01 Offsome Pacific Coastal 32.3 0.01 32.3 -0.02 32.3 -0.02 32.3 -0.02 32.4 -0.02 Bathypelagic 32.3 -0.03 32.1 -0.04 32.4 -0.02 Bathypelagic 32.3 -0.03 32.1 -0.03 32.1 -0.05 31.7 -0.02 Coastat	Bathypelagic	27.3	-0.56	27.0	-0.54	21.2	-1.52	28.7	-0.39	28.4	0.22
Codestal 31.2 -0.09 30.8 -0.07 31.3 -0.34 31.5 -0.12 31.0 0.07 Mesopelagic 31.7 -0.08 31.6 -0.05 32.0 -0.16 32.0 -0.11 31.9 -0.00 Bathypelagic 31.9 -0.07 31.9 -0.04 32.0 -0.16 32.0 -0.11 31.9 -0.01 Ofshore Pacific	Southern Shelf	01.0	0.00	00.0	0.07	01.0	0.04	01 5	0.10	01.0	0.07
Epipelagic 31.3 -0.07 30.8 -0.08 31.3 -0.03 31.3 -0.09 31.1 0.01 Bathypelagic 31.7 -0.08 31.6 -0.05 32.0 -0.12 32.1 -0.11 31.9 -0.01 Offshore Pacific	Coastal	31.2	-0.09	30.8	-0.07	31.3	-0.34	31.5	-0.12	31.0	0.07
Mesopelagic 31.7 -0.08 31.6 -0.05 32.0 -0.16 32.0 -0.11 31.9 -0.01 Disthypelagic 31.9 -0.07 31.9 -0.04 32.0 -0.16 32.1 -0.11 31.9 -0.01 Coastal 32.3 0.02 32.3 0.07 32.1 0.08 32.3 -0.04 32.5 -0.02 Besopelagic 32.3 -0.02 32.3 0.03 32.3 -0.04 32.5 -0.02 Mesopelagic 32.3 -0.02 32.3 -0.03 32.3 -0.05 32.4 -0.02 Mesopelagic 31.4 -0.01 31.4 -0.06 31.2 0.03 31.5 0.02 31.7 -0.03 Mesopelagic 32.0 0.01 31.4 -0.06 31.2 0.05 31.7 0.02 31.7 0.01 Mesopelagic 32.0 0.01 31.3 0.05 21.1 0.03 32.1 -0.03	Epipelagic	31.3	-0.07	30.8	-0.08	31.3	-0.30	31.5	-0.09	31.1	0.07
Bathypelagic 31.9 -0.0/ 31.9 -0.04 32.0 -0.12 32.1 -0.11 31.9 -0.01 Offshore Pacific Coastal 32.3 0.02 32.3 0.07 32.1 0.08 32.3 -0.04 32.5 -0.02 Epipelagic 32.3 0.00 32.3 0.03 32.1 0.08 32.3 -0.04 32.5 -0.02 Bathypelagic 32.3 -0.02 32.3 -0.03 32.1 0.00 32.3 -0.05 32.4 -0.02 Northern Sheft Coastal 31.4 -0.01 31.4 -0.09 31.1 0.03 31.5 0.02 31.7 0.01 Epipelagic 31.5 -0.01 31.4 -0.09 31.1 0.03 31.5 0.02 31.7 -0.03 Mesopelagic 31.6 0.02 31.6 -0.02 31.3 0.05 31.5 0.02 31.7 -0.03 Mesopelagic 31.6 0.02 31.6 -0.02 31.3 0.05 31.7 0.02 31.9 0.02 Arctic Basin' Coastal 26.6 0.09 31.3 -0.01 27.1 0.30 16.2 0.05 31.7 0.00 Arctic Basin' Coastal 26.6 0.09 31.3 -0.01 27.1 0.30 16.2 0.05 31.7 0.00 Arctic Basin' Coastal 26.6 0.09 31.3 -0.01 27.1 0.30 16.2 0.05 31.7 0.00 Epipelagic 28.2 -0.14 28.5 -0.25 27.8 -0.11 28.5 0.07 28.8 -0.10 Bathypelagic 28.3 0.25 30.4 0.20 25.3 0.41 27.4 0.34 30.0 0.07 Arctic Coastal 26.5 0.35 26.6 0.19 23.3 0.67 27.2 0.53 28.8 0.00 Mesopelagic 28.3 0.25 30.4 0.20 25.3 0.41 27.4 0.34 30.0 0.07 Arctic Archipelagi Coastal 29.7 -0.03 31.4 0.01 28.3 -0.08 28.4 0.00 30.7 -0.02 Epipelagic 30.0 -0.02 31.5 0.00 28.8 -0.08 28.8 0.01 30.8 0.00 Mesopelagic 30.0 -0.02 31.5 0.00 28.8 -0.08 28.8 0.01 30.8 0.00 Mesopelagic 30.0 -0.02 31.5 0.00 28.8 -0.08 28.8 0.01 30.8 0.00 Mesopelagic 30.0 -0.02 31.5 0.00 28.8 -0.08 28.8 0.01 30.8 0.00 Mesopelagic 30.0 -0.02 31.5 0.00 28.8 -0.08 28.8 0.01 30.8 0.00 Mesopelagic 30.0 -0.02 31.5 0.00 28.8 -0.08 28.8 0.01 30.8 0.00 Mesopelagic 30.0 -0.02 31.5 0.00 28.8 -0.08 28.8 0.01 30.8 0.00 Mesopelagic 30.0 -0.02 31.5 0.00 29.7 0.05 31.1 -0.01 32.1 -0.02 Epipelagic 30.0 -0.02 31.5 0.00 28.8 -0.08 28.8 0.01 30.8 0.00 Mesopelagic 32.1 -0.03 32.7 -0.05 31.3 -0.03 31.1 -0.01 32.1 -0.02 Epipelagic 32.1 -0.03 32.7 -0.05 31.3 -0.03 31.1 -0.01 32.1 -0.02 Epipelagic 32.1 -0.03 32.7 -0.05 31.3 -0.03 31.1 -0.01 32.1 -0.02 Epipelagic 32.1 -0.03 32.7 -0.05 31.3 -0.03 31.1 -0.01 32.1 -0.02 Epipelagic 32.5 -0.03 32.9 -0.04 31.4 -0.07 32.3 0.00 33.3 -0.03 Mudesopela	Mesopelagic	31.7	-0.08	31.6	-0.05	32.0	-0.16	32.0	-0.12	31.7	0.00
Offshore Pacific Coastal 32.3 0.02 32.3 0.07 32.1 0.08 32.3 -0.04 32.5 -0.02 Epipelagic 32.3 0.00 32.3 0.03 32.1 0.03 32.3 -0.05 32.5 -0.02 Bathypelagic 32.3 -0.02 32.3 -0.03 32.1 0.00 32.3 -0.05 32.4 -0.02 Northern Sheft Coastal 31.4 -0.01 31.4 -0.06 31.2 0.05 31.5 0.02 31.7 -0.03 Mesopelagic 31.6 0.02 31.6 -0.02 31.3 0.05 31.7 0.02 31.9 0.02 Bathypelagic 32.0 0.00 32.0 -0.01 31.8 0.05 32.1 -0.03 32.1 0.00 32.1 0.00 32.1 0.00 32.1 0.00 32.1 0.00 32.1 0.00 32.1 0.00 32.1 0	Bathypelagic	31.9	-0.07	31.9	-0.04	32.0	-0.12	32.1	-0.11	31.9	-0.01
Coastal 32.3 0.02 32.3 0.07 32.1 0.08 32.3 -0.04 32.5 -0.02 Mesopelagic 32.3 0.00 32.3 0.03 32.1 0.08 32.3 -0.05 32.5 -0.02 Mesopelagic 32.3 -0.02 32.3 0.03 32.1 0.03 32.3 -0.05 32.5 -0.02 Mesopelagic 32.3 -0.01 31.4 -0.09 31.1 0.03 31.5 0.02 31.7 0.01 Properation 31.6 -0.02 31.3 0.05 31.7 0.02 31.9 0.02 Bathypelagic 32.0 0.00 32.0 -0.01 31.8 0.05 32.1 -0.03 32.1 0.00 Coastal 26.6 0.09 31.3 -0.01 27.1 0.30 16.2 0.05 31.7 0.00 Epipelagic 27.5 -0.01 30.1 -0.32 27.1 0.25 22.4 0	Uttshore Pacific										
Epipelagic 32.3 0.02 32.3 0.07 32.1 0.08 32.3 -0.04 32.5 -0.02 Bathypelagic 32.3 -0.02 32.3 -0.03 32.1 0.03 32.3 -0.05 32.4 -0.02 Northern Shelf - - - - - - - - 0.03 31.4 0.00 32.3 -0.05 32.4 -0.02 Northern Shelf - - - - - - 0.02 31.7 -0.03 Coastal 31.6 -0.02 31.3 0.05 31.7 -0.03 32.1 0.03 Arctic Basin' - - - - - 0.02 31.7 0.03 32.1 -0.03 32.1 0.00 32.1 0.00 32.1 0.00 32.1 0.00 32.1 0.00 32.1 0.00 32.1 0.00 32.1 0.00 32.1 0.00 32.1 0.00	Coastal	32.3	0.02	32.3	0.07	32.1	0.08	32.3	-0.04	32.5	-0.02
Mesopelagic 32.3 0.00 32.3 0.03 32.1 0.03 32.3 -0.05 32.5 -0.02 Bathypelagic 32.3 -0.01 31.4 -0.09 31.1 0.03 32.3 -0.05 32.4 -0.02 Coastal 31.4 -0.01 31.4 -0.06 31.2 0.05 31.5 0.02 31.7 -0.01 Besopelagic 31.6 -0.02 31.3 0.05 31.7 0.02 31.9 0.02 Bathypelagic 32.0 0.00 32.0 -0.01 31.8 0.05 32.1 -0.03 32.1 0.00 Bathypelagic 32.0 0.00 32.0 -0.01 31.8 0.05 32.1 -0.03 32.1 0.00 Coastal 26.6 0.09 31.3 -0.01 27.1 0.30 16.2 0.05 31.7 0.00 Epipelagic 28.1 -0.06 29.9 -0.22 28.2 -0.01 28.5	Epipelagic	32.3	0.02	32.3	0.07	32.1	0.08	32.3	-0.04	32.5	-0.02
Bathypelagic 32.3 -0.02 32.3 -0.03 32.1 0.00 32.3 -0.05 32.4 -0.02 Northern Sheft Coastal 31.4 -0.01 31.4 -0.06 31.2 0.03 31.5 0.02 31.7 -0.03 Mesopelagic 31.6 0.02 31.6 0.02 31.3 0.05 31.5 0.02 31.7 -0.03 Bathypelagic 32.0 0.00 32.0 -0.01 31.8 0.05 32.1 -0.03 32.1 0.00 Arctic Basin' C C Coastal 26.6 0.09 31.3 -0.01 27.1 0.30 16.2 0.05 31.7 0.00 Bathypelagic 28.2 -0.14 28.5 -0.22 28.2 -0.01 28.5 0.07 29.8 -0.10 Bathypelagic 28.2 -0.14 28.5 -0.25 27.8 -0.11 28.5 0.07 29.8 -0.10 20.5 29.4 -0.05<	Mesopelagic	32.3	0.00	32.3	0.03	32.1	0.03	32.3	-0.05	32.5	-0.02
Northern Shelf Coastal 31.4 -0.01 31.4 -0.09 31.1 0.03 31.5 0.02 31.7 -0.03 Mesopelagic 31.6 0.02 31.6 -0.02 31.3 0.05 31.7 0.02 31.9 0.02 Bathypelagic 32.0 0.00 32.0 -0.01 31.8 0.05 31.7 0.02 31.9 0.02 Arctic Basin'	Bathypelagic	32.3	-0.02	32.3	-0.03	32.1	0.00	32.3	-0.05	32.4	-0.02
Coastal 31.4 -0.01 31.4 -0.09 31.1 0.03 31.5 0.02 31.7 -0.01 Epipelagic 31.6 0.01 31.4 -0.06 31.2 0.05 31.5 0.02 31.7 -0.03 Mesopelagic 31.6 0.02 31.3 0.05 31.7 -0.03 32.1 -0.03 Bathypelagic 32.0 0.00 32.0 -0.01 31.8 0.05 32.1 -0.03 32.1 0.00 Arctic Basin' - - - - - 0.05 31.7 0.00 Epipelagic 27.5 -0.01 30.1 -0.32 27.1 0.25 22.4 0.01 30.0 -0.10 Bathypelagic 28.2 -0.14 28.5 -0.25 27.8 -0.11 28.2 -0.04 28.4 -0.16 Coastal 26.5 0.35 26.6 0.19 23.3 0.67 27.5 0.25 29.4 -0.05	Northern Shelf										
Epipelagic 31.5 -0.01 31.4 -0.06 31.2 0.05 31.5 0.02 31.7 -0.03 Mesopelagic 31.6 0.02 31.6 -0.02 31.3 0.05 31.7 0.02 31.9 0.02 Arctic Basin' - - 0.01 31.8 0.05 32.1 -0.03 32.1 0.00 Epipelagic 27.5 -0.01 30.1 -0.32 27.1 0.25 22.4 0.16 30.5 -0.14 Mesopelagic 28.1 -0.01 30.1 -0.32 27.1 0.25 22.4 0.16 30.5 -0.10 Bathypelagic 28.2 -0.14 28.5 -0.25 27.8 -0.11 28.2 -0.04 28.4 -0.16 Western Arctic' - - - - - -0.02 25.3 0.41 27.4 0.34 30.0 0.07 Actic Archipelagic 27.5 0.13 28.8 0.00	Coastal	31.4	-0.01	31.4	-0.09	31.1	0.03	31.5	0.02	31.7	0.01
Mesopelagic 31.6 0.02 31.6 -0.02 31.3 0.05 31.7 0.02 31.9 0.02 Bathypelagic 32.0 0.00 32.0 -0.01 31.8 0.05 32.1 -0.03 32.1 0.00 Arctic Basin' Coastal 26.6 0.09 31.3 -0.01 27.1 0.30 16.2 0.05 31.7 0.00 Epipelagic 27.5 -0.01 30.1 -0.32 27.1 0.25 22.4 0.16 30.5 -0.14 Mesopelagic 28.2 -0.14 28.5 -0.25 27.8 -0.11 28.2 -0.04 28.4 -0.16 Bathypelagic 28.2 -0.14 28.5 -0.25 27.8 -0.11 28.2 -0.04 28.4 -0.06 29.4 -0.05 Mesopelagic 28.3 0.25 30.4 0.20 25.3 0.41 27.4 0.34 30.0 0.07 Coastal 29.7 -0.03	Epipelagic	31.5	-0.01	31.4	-0.06	31.2	0.05	31.5	0.02	31.7	-0.03
Bathypelagic 32.0 0.00 32.0 -0.01 31.8 0.05 32.1 -0.03 32.1 0.00 Arctic Basin' Coastal 26.6 0.09 31.3 -0.01 27.1 0.30 16.2 0.05 31.7 0.00 Depipelagic 27.5 -0.01 30.1 -0.32 27.1 0.25 22.4 0.16 30.5 -0.14 Mesopelagic 29.1 -0.06 29.9 -0.22 28.2 -0.01 28.5 0.07 29.8 -0.10 Bathypelagic 28.2 -0.14 28.5 -0.25 27.8 -0.11 28.2 -0.04 28.4 -0.16 Western Arctic' Coastal 26.5 0.35 26.6 0.19 23.3 0.67 27.2 0.53 28.8 0.00 28.4 0.05 37.5 0.25 29.4 -0.05 Mesopelagic 27.5 0.13 28.8 0.00 24.4 0.35 27.5 0.25 29.4	Mesopelagic	31.6	0.02	31.6	-0.02	31.3	0.05	31.7	0.02	31.9	0.02
Arctic Basin' Coastal 26.6 0.09 31.3 -0.01 27.1 0.30 16.2 0.05 31.7 0.00 Epipelagic 27.5 -0.01 30.1 -0.32 27.1 0.25 22.4 0.16 30.5 -0.14 Mesopelagic 28.2 -0.01 28.5 -0.22 28.2 -0.01 28.5 0.07 29.8 -0.10 Bathypelagic 28.2 -0.14 28.5 -0.25 27.8 -0.11 28.2 -0.04 28.4 -0.16 Western Arctic' 0.67 27.2 0.53 28.8 0.00 Epipelagic 27.5 0.13 28.8 0.00 24.4 0.35 27.5 0.25 29.4 -0.05 Mesopelagic 28.3 0.25 30.4 0.20 25.3 0.41 27.4 0.34 30.0 0.07 Arctic Archipelago' 0.20 25.5 0.00 </td <td>Bathypelagic</td> <td>32.0</td> <td>0.00</td> <td>32.0</td> <td>-0.01</td> <td>31.8</td> <td>0.05</td> <td>32.1</td> <td>-0.03</td> <td>32.1</td> <td>0.00</td>	Bathypelagic	32.0	0.00	32.0	-0.01	31.8	0.05	32.1	-0.03	32.1	0.00
Coastal 26.6 0.09 31.3 -0.01 27.1 0.30 16.2 0.05 31.7 0.00 Epipelagic 27.5 -0.01 30.1 -0.32 27.1 0.25 22.4 0.16 30.5 -0.14 Mesopelagic 29.1 -0.06 29.9 -0.22 28.2 -0.01 28.5 0.07 29.8 -0.10 Bathypelagic 28.2 -0.14 28.5 -0.25 27.8 -0.11 28.2 -0.04 28.4 -0.10 Western Arctic'	Arctic Basin ¹										
Epipelagic 27.5 -0.01 30.1 -0.32 27.1 0.25 22.4 0.16 30.5 -0.14 Mesopelagic 29.1 -0.06 29.9 -0.22 28.2 -0.01 28.5 0.07 29.8 -0.10 Bathypelagic 28.2 -0.14 28.5 -0.25 27.8 -0.11 28.2 -0.04 28.4 -0.16 Western Arctic ¹ Coastal 26.5 0.35 26.6 0.19 23.3 0.67 27.2 0.53 28.8 0.00 Epipelagic 27.5 0.13 28.8 0.00 24.4 0.35 27.5 0.25 29.4 -0.05 Mesopelagic 28.3 0.25 30.4 0.20 25.3 0.41 27.4 0.34 30.0 0.07 Arctic Archipelago' U U U U U U U U U U U U U U U U U U	Coastal	26.6	0.09	31.3	-0.01	27.1	0.30	16.2	0.05	31.7	0.00
Mesopelagic 29.1 -0.06 29.9 -0.22 28.2 -0.01 28.5 0.07 29.8 -0.10 Bathypelagic 28.2 -0.14 28.5 -0.25 27.8 -0.11 28.2 -0.04 28.4 -0.16 Western Arctic' <td>Epipelagic</td> <td>27.5</td> <td>-0.01</td> <td>30.1</td> <td>-0.32</td> <td>27.1</td> <td>0.25</td> <td>22.4</td> <td>0.16</td> <td>30.5</td> <td>-0.14</td>	Epipelagic	27.5	-0.01	30.1	-0.32	27.1	0.25	22.4	0.16	30.5	-0.14
Bathypelagic 28.2 -0.14 28.5 -0.25 27.8 -0.11 28.2 -0.04 28.4 -0.16 Western Arctic'	Mesopelagic	29.1	-0.06	29.9	-0.22	28.2	-0.01	28.5	0.07	29.8	-0.10
Western Arctic ¹ Coastal 26.5 0.35 26.6 0.19 23.3 0.67 27.2 0.53 28.8 0.00 Epipelagic 27.5 0.13 28.8 0.00 24.4 0.35 27.5 0.25 29.4 -0.05 Mesopelagic 28.3 0.25 30.4 0.20 25.3 0.41 27.4 0.34 30.0 0.07 Arctic Archipelago' 0.03 31.4 -0.01 28.3 -0.08 28.4 0.00 30.7 -0.02 Epipelagic 30.0 -0.02 31.5 0.00 28.8 -0.08 28.8 0.01 30.8 0.00 Mesopelagic 30.3 -0.01 31.6 0.01 29.2 -0.06 29.5 0.00 30.7 -0.02 Eastern Arctic ¹ 0.01 29.7 -0.03 31.1 -0.01 31.9 -0.04 Mesopelagic 32.1 -0.02 <t< td=""><td>Bathypelagic</td><td>28.2</td><td>-0.14</td><td>28.5</td><td>-0.25</td><td>27.8</td><td>-0.11</td><td>28.2</td><td>-0.04</td><td>28.4</td><td>-0.16</td></t<>	Bathypelagic	28.2	-0.14	28.5	-0.25	27.8	-0.11	28.2	-0.04	28.4	-0.16
Coastal 26.5 0.35 26.6 0.19 23.3 0.67 27.2 0.53 28.8 0.00 Epipelagic 27.5 0.13 28.8 0.00 24.4 0.35 27.5 0.25 29.4 -0.05 Mesopelagic 28.3 0.25 30.4 0.20 25.3 0.41 27.4 0.34 30.0 0.07 Arctic Archipelago ¹ Coastal 29.7 -0.03 31.4 -0.01 28.3 -0.08 28.4 0.00 30.7 -0.02 Epipelagic 30.0 -0.02 31.5 0.00 28.8 -0.08 28.8 0.01 30.8 0.00 Mesopelagic 30.3 -0.01 31.6 0.01 29.2 -0.06 29.5 0.00 30.7 -0.01 Eastern Arctic ¹ - - - - - - - - - - - - 0.02 - 0.01 31.1 -0.01 31.9<	Western Arctic ¹										
Epipelagic27.50.1328.80.0024.40.3527.50.2529.4-0.05Mesopelagic28.30.2530.40.2025.30.4127.40.3430.00.07Arctic Archipelago'Coastal29.7-0.0331.4-0.0128.3-0.0828.40.0030.7-0.02Epipelagic30.0-0.0231.50.0028.8-0.0828.80.0130.80.00Mesopelagic30.3-0.0131.60.0129.2-0.0629.50.0030.7-0.01Estern Arctic'	Coastal	26.5	0.35	26.6	0.19	23.3	0.67	27.2	0.53	28.8	0.00
Mesopelagic 28.3 0.25 30.4 0.20 25.3 0.41 27.4 0.34 30.0 0.07 Arctic Archipelago¹ Coastal 29.7 -0.03 31.4 -0.01 28.3 -0.08 28.4 0.00 30.7 -0.02 Epipelagic 30.0 -0.02 31.5 0.00 28.8 -0.08 28.8 0.01 30.8 0.00 Mesopelagic 30.3 -0.01 31.6 0.01 29.2 -0.06 29.5 0.00 30.7 -0.01 Eastern Arctic¹ U U U 20.01 32.0 0.00 29.7 0.05 31.1 -0.01 32.1 -0.02 Epipelagic 31.2 -0.02 31.9 0.01 29.7 -0.03 31.1 -0.01 31.9 -0.04 Mesopelagic 32.1 -0.03 32.7 -0.05 31.3 -0.03 31.7 0.03 32.7 -0.07 Bathypelagic 32.5 -0.03	Epipelagic	27.5	0.13	28.8	0.00	24.4	0.35	27.5	0.25	29.4	-0.05
Arctic Archipelago¹ Coastal 29.7 -0.03 31.4 -0.01 28.3 -0.08 28.4 0.00 30.7 -0.02 Epipelagic 30.0 -0.02 31.5 0.00 28.8 -0.08 28.8 0.01 30.8 0.00 Mesopelagic 30.3 -0.01 31.6 0.01 29.2 -0.06 29.5 0.00 30.7 -0.01 Eastern Arctic¹	Mesopelagic	28.3	0.25	30.4	0.20	25.3	0.41	27.4	0.34	30.0	0.07
Coastal 29.7 -0.03 31.4 -0.01 28.3 -0.08 28.4 0.00 30.7 -0.02 Epipelagic 30.0 -0.02 31.5 0.00 28.8 -0.08 28.8 0.01 30.8 0.00 Mesopelagic 30.3 -0.01 31.6 0.01 29.2 -0.06 29.5 0.00 30.7 -0.01 Eastern Arctic' - - - - - - - - - - - - - - - 0.01 32.1 - - - - - 0.01 32.1 - - - - 0.02 Epipelagic 31.1 - 0.01 31.9 - 0.04 Mesopelagic 32.1 - 0.02 31.3 - 0.03 31.7 0.03 32.7 - 0.07 32.3 0.00 33.3 - 0.03 33.3 - 0.03 32.7 -	Arctic Archipelago ¹										
Epipelagic 30.0 -0.02 31.5 0.00 28.8 -0.08 28.8 0.01 30.8 0.00 Mesopelagic 30.3 -0.01 31.6 0.01 29.2 -0.06 29.5 0.00 30.7 -0.01 Eastern Arctic ¹ - - - - - - - - - - - 0.01 32.1 -0.02 - - - - - 0.01 32.1 - 0.02 - - 0.01 32.1 - 0.02 31.1 - 0.01 32.1 - 0.02 31.1 - 0.01 31.9 - 0.04 31.3 - 0.03 31.7 0.03 32.7 - 0.07 32.3 0.00 33.3 - 0.03 32.7 - 0.07 32.3 0.00 33.3 -0.03 33.4 -0.07 32.3 0.00 33.3 -0.03 33.4 -0.07 32.3	Coastal	29.7	-0.03	31.4	-0.01	28.3	-0.08	28.4	0.00	30.7	-0.02
Mesopelagic 30.3 -0.01 31.6 0.01 29.2 -0.06 29.5 0.00 30.7 -0.01 Eastern Arctic ¹ - - - - - - - - - - - - - - - 0.01 30.7 - - - - - - 0.01 Eastern Arctic ¹ - - 0.01 32.1 - 0.02 31.9 0.01 29.7 - 0.03 31.1 - 0.01 31.9 - 0.04 31.3 - 0.03 32.7 - 0.05 31.3 - 0.03 32.7 - 0.07 32.3 0.00 33.3 - 0.03 33.4 - 0.07 32.3 0.00 33.3 - 0.03 33.2 - 0.07 32.3 0.00 33.3 - 0.03 33.4 - 0.07 32.3 0.00 33.3 - 0.03	Epipelagic	30.0	-0.02	31.5	0.00	28.8	-0.08	28.8	0.01	30.8	0.00
Eastern Arctic ¹ Coastal 31.2 0.01 32.0 0.00 29.7 0.05 31.1 -0.01 32.1 -0.02 Epipelagic 31.2 -0.02 31.9 0.01 29.7 -0.03 31.1 -0.01 32.1 -0.02 Mesopelagic 32.1 -0.03 32.7 -0.05 31.3 -0.03 31.7 0.03 32.7 -0.07 Bathypelagic 32.5 -0.03 32.9 -0.04 31.4 -0.07 32.3 0.00 33.3 -0.03 Hudson Bay Complex ¹ Coastal 29.3 0.09 28.8 0.00 28.2 0.36 29.7 0.01 30.4 0.00 Epipelagic 29.2 0.10 28.9 0.00 27.8 0.41 29.3 -0.01 30.8 0.00 Mesopelagic 31.6 -0.02 32.0 -0.01 30.8 -0.03 31.4 -0.03 32.2 -0.01	Mesopelagic	30.3	-0.01	31.6	0.01	29.2	-0.06	29.5	0.00	30.7	-0.01
Coastal 31.2 0.01 32.0 0.00 29.7 0.05 31.1 -0.01 32.1 -0.02 Epipelagic 31.2 -0.02 31.9 0.01 29.7 -0.03 31.1 -0.01 32.1 -0.02 Mesopelagic 32.1 -0.03 32.7 -0.05 31.3 -0.03 31.7 0.03 32.7 -0.07 Bathypelagic 32.5 -0.03 32.9 -0.04 31.4 -0.07 32.3 0.00 33.3 -0.03 Hudson Bay Complex ¹ Coastal 29.3 0.09 28.8 0.00 28.2 0.36 29.7 0.01 30.4 0.00 Epipelagic 29.2 0.10 28.9 0.00 27.8 0.41 29.3 -0.01 30.8 0.00 Epipelagic 31.6 -0.02 32.0 -0.01 30.8 -0.03 31.4 -0.03 32.2 -0.01	Eastern Arctic1										
Epipelagic 31.2 -0.02 31.9 0.01 29.7 -0.03 31.1 -0.01 31.9 -0.04 Mesopelagic 32.1 -0.03 32.7 -0.05 31.3 -0.03 31.7 0.03 32.7 -0.07 Bathypelagic 32.5 -0.03 32.9 -0.04 31.4 -0.07 32.3 0.00 33.3 -0.03 Hudson Bay Complex ¹ Coastal 29.3 0.09 28.8 0.00 28.2 0.36 29.7 0.01 30.4 0.00 Epipelagic 29.2 0.10 28.9 0.00 27.8 0.41 29.3 -0.01 30.8 0.00 Mesopelagic 31.6 -0.02 32.0 -0.01 30.8 -0.03 31.4 -0.03 32.2 -0.01	Coastal	31.2	0.01	32.0	0.00	29.7	0.05	31.1	-0.01	32.1	-0.02
Mesopelagic 32.1 -0.03 32.7 -0.05 31.3 -0.03 31.7 0.03 32.7 -0.07 Bathypelagic 32.5 -0.03 32.9 -0.04 31.4 -0.07 32.3 0.00 33.3 -0.03 Hudson Bay Complex ¹ Coastal 29.2 0.10 28.8 0.00 28.2 0.36 29.7 0.01 30.4 0.00 Epipelagic 29.2 0.10 28.9 0.00 27.8 0.41 29.3 -0.01 30.8 0.00 Mesopelagic 31.6 -0.02 32.0 -0.01 30.8 -0.03 31.4 -0.03 32.2 -0.01	Enipelagic	31.2	-0.02	31.9	0.01	29.7	-0.03	31.1	-0.01	31.9	-0.04
Bathypelagic 32.5 -0.03 32.9 -0.04 31.4 -0.07 32.3 0.00 33.3 -0.03 Hudson Bay Complex ¹ Coastal 29.3 0.09 28.8 0.00 28.2 0.36 29.7 0.01 30.4 0.00 Epipelagic 29.2 0.10 28.9 0.00 27.8 0.41 29.3 -0.01 30.8 0.00 Mesonelagic 31.6 -0.02 32.0 -0.01 30.8 -0.03 31.4 -0.03 32.2 -0.01	Mesopelagic	32.1	-0.03	32.7	-0.05	31.3	-0.03	31.7	0.03	32.7	-0.07
Hudson Bay Complex ¹ O.00 O.01 O.01 O.00 O.03 Coastal 29.2 0.10 28.9 0.00 27.8 0.41 29.3 -0.01 30.4 0.00 Epipelagic 31.6 -0.02 32.0 -0.01 30.8 -0.03 31.4 -0.03 32.2 -0.01	Bathynelagic	32.5	-0.03	32.0	-0.04	31.4	-0.07	32.3	0.00	33.3	-0.03
Coastal 29.3 0.09 28.8 0.00 28.2 0.36 29.7 0.01 30.4 0.00 Epipelagic 29.2 0.10 28.9 0.00 27.8 0.41 29.3 -0.01 30.8 0.00 Mesonelagic 31.6 -0.02 32.0 -0.01 30.8 -0.03 31.4 -0.03 32.2 -0.01	Hudson Bay Compley ¹	52.5	0.00	52.5	0.04	01.4	0.07	52.5	0.00	00.0	0.00
Epipelagic 29.2 0.10 28.9 0.00 27.8 0.41 29.3 -0.01 30.8 0.00 Mesonelagic 31.6 -0.02 32.0 -0.01 30.8 -0.03 32.2 -0.01	Coastal	20.3	0.00	28.8	0.00	28.2	0.36	20.7	0.01	30.4	0.00
Mesonelaric 31.6 -0.02 32.0 -0.01 30.8 -0.03 31.4 -0.02 32.9 -0.01	Eninelagic	20.0	0.05	20.0	0.00	20.2 27 g	0.50 0 /1	20.7	_0.01	30.4 30.8	0.00
	Mesonelanic	20.2	_0.10	20.9 22 N	_0.00	27.0 20.8	-0.41	20.0	-0.01	30.0	_0.00

Table 3.7

Sea surface salinity departures (2005 to 2017) from the climate normal reference period, by depth class, marine ecoregion and season

	An	inual	Spri	ng	Sumr	ner	Autu	mn	Win	ter
Marine ecoregion and	Average salinity, 1981 to 2010 climate normal	Salinity departure of the 2005 to 2017 average from the 19 climate normal	Average salinity, 381 to 2010 climate normal	Salinity departure of the 2005 to 2017 average from the climate normal	Average salinity, 1981 to 2010 climate normal	Salinity departure of the 2005 to 2017 average from the climate normal	Average salinity, 1981 to 2010 climate normal	Salinity departure of the 2005 to 2017 average from the 1 climate normal	Average salinity, 981 to 2010 a climate normal	Salinity departure of the 2005 to 2017 average from the climate normal
depth class					practical sail	nity scale (PSS)			
Newfoundland- Labrador Shelves										
Coastal	32.0	-0.04	32.5	-0.09	31.2	-0.04	31.9	-0.07	32.6	0.03
Epipelagic	32.3	-0.01	32.6	-0.09	31.7	0.02	32.1	-0.02	32.7	0.04
Mesopelagic	32.6	0.01	32.8	-0.05	31.9	0.02	32.5	0.01	33.1	0.05
Bathypelagic	33.9	0.04	34.0	0.03	33.6	-0.04	33.8	0.07	34.2	0.11
Abyssalpelagic Scotian Shelf	33.8	-0.01	33.7	0.10	33.6	-0.51	33.8	0.28	34.1	0.08
Coastal	31.3	-0.08	31.4	-0.12	31.1	-0.03	31.3	-0.16	31.6	-0.01
Epipelagic	31.5	0.03	31.6	0.04	31.1	0.04	31.4	-0.06	31.7	0.08
Mesopelagic	31.9	0.08	32.0	0.12	31.6	0.08	31.9	0.01	32.0	0.10
Bathypelagic	32.9	0.35	33.0	0.46	32.6	0.21	33.0	0.47	33.1	0.25
Abyssalpelagic	34.4	0.30	34.5	0.52	34.0	-0.05	34.3	0.47	34.7	0.26
Gulf of St. Lawrence										
Coastal	29.7	-0.23	29.6	-0.23	28.7	-0.08	30.0	-0.30	30.6	-0.29
Epipelagic	30.5	-0.13	30.4	-0.02	29.5	-0.05	30.7	-0.25	31.2	-0.20
Mesopelagic	30.6	-0.05	30.5	0.12	29.7	0.09	31.0	-0.26	31.3	-0.12

1. Data for salinity in the Arctic Ocean are sparser than in other regions. In particular, winter salinity data are more scarce and thus modelled winter salinity values in some regions of the Arctic Ocean may be artificially high, resulting in less robust change values.

Notes: The climate normal is the three-decade average of climatological variables from 1981 to 2010. Winter data are from January to March with other seasons following sequentially. Areas classed as coastal have a maximum depth of 50 m, the epipelagic class has depths from 50 m to 200 m, the mesopelagic class has depths from 200 m to 1,000 m to 1,000 m, the bathypelagic class has depths of 1 km to 4 km and the abyssalpelagic class includes all areas with depths of more than 4 km. Salinity is a unitless measure related to a ratio of electrical conductivity between a seawater sample at temperature 15°C and pressure of one standard atmosphere to that of a potassium chloride solution in which the mass fraction of KCI is 32.4356E-3 at the same temperature and pressure. For more information, see http://salinometry.com/pss-78/.

Source: Zweng, M. M., et al., 2018, World Ocean Atlas 2018: Volume 2: Salinity, A. Mishonov (Technical Ed.), NOAA Atlas NESDIS 82, https://www.nodc.noaa.gov/0C5/SELECT/woaselect/woaselect.html (accessed May 31, 2020).

Table 3.8Status of major stocks of fish and marine mammals, 2011 to 2019

			Stock status								
				Uncertain							
	Healthy	Cautious	Critical	Conservation risk likely or possible	Total	Total stocks					
		number of stocks									
2011	72	31	17		35	155					
2012	75	37	15		28	155					
2013	74	41	16		24	155					
2014	75	40	15		24	154					
2015	78	28	19	10	34	159					
2016	76	31	21	14	42	170					
2017	63	25	18	22	73	179					
2018	58	27	19	25	73	177					
2019	52	29	25	26	70	176					

.. not available for a specific reference period

Notes: The Canadian Sustainability Survey for Fisheries includes fish stocks, as well as stocks of a number of marine mammals, selected as a result of their importance for cultural, economic and environmental reasons. These stocks cover the majority of landings from managed fisheries. Two Great Slave Lake fish stocks are included in the survey. For more information on the stocks covered in this survey, see Fisheries and Oceans Canada, 2019.

Source: Fisheries and Oceans Canada, 2019, Sustainability Survey for Fisheries, https://www.dfo-mpo.gc.ca/reports-rapports/regs/sff-cpd/survey-sondage/comparison-comparaison-en.html (accessed April 1, 2021).

Table 3.9

Status of major stocks of fish and marine mammals, by region and species group, 2019

	Stock status							
	-				Uncert	ain		
	Healthy	Cautious	Critical	Serious harm unlikely	Serious harm possible	Serious harm likely	Total	Total stocks
Region and species gr	oup			numbe	er of stocks			
Arctic	4	2	0	14	4	1	19	25
Crustaceans	2	1	0	0	2	0	2	5
Groundfish	1	0	0	1	0	0	1	2
Marine mammals	0	0	0	12	2	1	15	15
Salmonids	1	1	0	1	0	0	1	3
Atlantic	28	16	16	18	15	1	34	94
Crustaceans	13	4	2	6	6	0	12	31
Groundfish	7	9	10	4	0	0	4	30
Large pelagics	1	0	0	1	0	0	1	2
Marine mammals	2	0	0	0	0	0	0	2
Molluscs	5	1	0	2	4	0	6	12
Other	0	0	0	0	3	0	3	3
Salmonids	0	0	0	0	1	1	2	2
Small pelagics	0	2	4	5	1	0	6	12
Pacific	20	11	9	11	3	1	15	55
Crustaceans	3	1	0	1	0	0	1	5
Groundfish	8	2	3	4	0	0	4	17
Molluscs	1	0	1	4	0	0	4	6
Other	3	0	0	0	0	0	0	3
Salmonids	3	5	4	2	2	0	4	16
Small pelagics	2	3	1	0	1	1	2	8
Great Slave Lake ¹	0	0	0	1	1	0	2	2
Groundfish	0	0	0	1	0	0	1	1
Salmonids	0	0	0	0	1	0	1	1
Total	52	29	25	44	23	3	70	176

1. The survey includes stocks of Lake Trout and Lake Whitefish in Great Slave Lake.

Notes: The Canadian Sustainability Survey for Fisheries includes fish stocks, as well as stocks of a number of marine mammals, selected as a result of their importance for cultural, economic and environmental reasons. These stocks cover the majority of landings from managed fisheries. For more information on the stocks covered in this survey, see Fisheries and Oceans Canada, 2019.

Source: Fisheries and Ocean Canadas, 2019, Sustainability Survey for Fisheries, https://www.dfo-mpo.gc.ca/reports-rapports/regs/sff-cpd/survey-sondage/comparison-comparaison-en.html (accessed April 1, 2021).

Table 3.10

Sea ice extent, average decadal minimums, by Arctic marine ecoregion, 1980 to 2020

	Decrease from 1980 to 1989						
	1980 to 1989	1990 to 1999	2000 to 2009	2010 to 20202	decade to 2010 to 2020 decade		
Marine ecoregion		thousand km ²					
Arctic Basin	728.8	712.6	696.0	639.4	12.3		
Western Arctic	267.8	265.7	219.1	173.5	35.2		
Arctic Archipelago	222.1	219.3	225.4	214.4	3.5		
Eastern Arctic	116.4	119.1	80.8	63.9	45.1		
Hudson Bay Complex	25.9	19.5	10.5	11.8	54.3		

Notes: Seasonal minimums occur in September. 2020 data are included in the latest decade.

Source: Fetterer, F., K. Knowles, W. N. Meier, M. Savoie and A. K. Windnagel, 2017, Sea Ice Index, Version 3, Northern Shapefiles, updated daily, February, March and September, Boulder, Colorado USA, NSIDC: National Snow and Ice Data Center, https://doi.org/10.7265/N5K072F8 (accessed July 13, 2020).

Table 3.11

Sea ice extent, average decadal maximum, by Atlantic marine ecoregion, 1980 to 2020

		Decrease from 1980 to 1989			
	1980 to 1989	1990 to 1999	2000 to 2009	2010 to 2020	decade to 2010 to 2020 decade
Marine ecoregion		percentage			
Newfoundland-Labrador Shelves	430.9	465.9	335.3	326.7	24.2
Scotian Shelf	16.5	20.8	16.0	13.2	19.8
Gulf of Saint Lawrence	216.2	219.5	185.1	153.8	28.9

Notes: Seasonal maximums occur in February-March. 2020 data are included in the latest decade.

Source: Fetterer, F., K. Knowles, W. N. Meier, M. Savoie and A. K. Windnagel, 2017, Sea Ice Index, Version 3, Northern Shapefiles, updated daily, February, March and September, Boulder, Colorado USA, NSIDC: National Snow and Ice Data Center, https://doi.org/10.7265/N5K072F8 (accessed July 13, 2020).

Table 3.12

Selected human modifications of marine and coastal areas, by marine ecoregion, circa 2016 to 2020

			Human modifica	ation		
	Aqua	culture sites		0	il licenses ¹	
	Shellfish	Finfish	Combined	Production	Discovery	Exploration
Marine ecoregion			km ²			
Canada EEZ	320.41	92.84	0.15	1,018	7,534	51,491
Strait of Georgia	33.28	8.62	0.00	0	0	0
Southern Shelf	5.89	17.63	0.00	0	0	0
Offshore Pacific	0.00	0.00	0.00	0	0	0
Northern Shelf	1.41	18.49	0.00	0	0	0
Arctic Basin	0.00	0.00	0.00	0	90	8,009
Western Arctic	0.00	0.00	0.00	0	2,154	10,677
Arctic Archipelago	0.00	0.00	0.00	0	2,825	0
Eastern Arctic	0.00	0.00	0.00	0	112	0
Hudson Bay Complex	0.00	0.00	0.00	0	0	0
Newfoundland-						
Labrador Shelves	41.54	24.15	0.00	638	1,442	17,794
Scotian Shelf	43.42	22.65	0.08	380	762	13,515
Gulf of St. Lawrence	194.86	1.30	0.07	0	149	1,496

1. There has been a moratorium on oil exploration on the Pacific Coast of Canada since 1972 and on the Arctic Coast since 2016. As of 2019, all oil and gas activity is prohibited in Canadian Arctic offshore waters.

Sources: Newfoundland Aquaculture Industry Association, 2016, Industry by the Numbers, https://naia.ca/index.php/aquaculture-nl/production-stats (accessed July 20, 2020); Newfoundland and Labrador Aquaculture, Fisheries and Land Resources, n.d., Licensed aquaculture sites, 2015, https://www.fishaq.gov.nl.ca/pdf/aquaculture_2015_year.pdf (accessed February 14, 2019); Nova Scotia Fisheries and Aquaculture, 2020, Nova Scotia Marine Aquaculture Leases, https://data.novascotia.ca/Fishing-and-Aquaculture/Aquaculture-License-and-Lease-GIS-Database/ h57h-p9mm (accessed December 16, 2020); Mills, D., 2014, PEI Aquaculture Licenses, http://www.arcgis.com/home/webmap/viewer.html?webmap=16aa8830c7084a8a92ce066b52597 8b4 (accessed December 16, 2020); Ministère de l'Agriculture, des Pêcheries et de l'Alimentation du Québec, 2019, Portrait-diagnostic sectoriel de l'industrie de la mariculture au Québec, https://www.mapaq.gouv.qc.ca/fr/Publications/Portrait-diagnostic_mariculture.pdf (accessed October 20, 2019) and https://catalogue.ogsl.ca/data/mapaq/f9558184-92d8-4925-b280bcfbd75ea20f/mariculture_mapaq_2017.xlsx (accessed July 20, 2020); New Brunswick Department of Agriculture, Aquaculture and Fisheries, 2019, Marine Aquaculture Site Mapping Program (MASMP), https://nbdnr.maps.arcgis.com/apps/webappviewer/index.html?id=24c65e8718724c5db1de77899172630d (accessed October 20, 2019); British Columbia Ministry of Forests, Lands, Natural Resource Operations and Rural Development, 2011, Saltwater Finfish Tenures – Coastal Resource Information Management System (CRIMS), GeoBC, https:// catalogue.data.gov.bc.ca/dataset/saltwater-finfish-tenures-coastal-resource-information-management-system (accessed November 10, 2019); Fisheries and Oceans Canada, 2017, Shellfish Integrated Management of Aquaculture Plan, Version 2.1, https://www.pac.dfo-mpo.gc.ca/aquaculture/management-gestion/shellfish-mollusques/background-contexte-eng.html (accessed April 25, 2019); Fisheries and Oceans Canada, 2017, Current Valid British Columbia Aquaculture Licence Holders, https://open.canada.ca/data/en/dataset/522d1b67-30d8-4a34-9b62-5da99b1035e6 (accessed July 20, 2020); Canada-Newfoundland and Labrador Offshore Petroleum Board, n.d., Mapping Information and Shapefiles, https://www.cnlopb.ca/information/ shapefiles/ (accessed February 26, 2019); Canada-Nova Scotia Offshore Petroleum Board, 2019, Maps and Coordinates, https://www.cnsopb.ns.ca/what-we-do/lands-management/ maps-and-coordinates (accessed November 30, 2020), Canada-Nova Scotia Offshore Petroleum Board, 2019, GIS Information, https://callforbids.cnsopb.ns.ca/2011/01/gis_information.html (accessed November 30, 2020); Crown-Indigenous Relations and Northern Affairs Canada, 2015, Oil and Gas Rights, https://open.canada.ca/data/en/dataset/208ddd6d-dea8-4d1c-bf62-5b49e8983a51#wb-auto-6 (accessed May 20, 2020).

Table 3.13

Protected and conserved area, by ecoprovince, 2020

	Total area	Protected and	Share of ecoprovince	Share of protected and
			protected and conserved	e conserveu area
Canada total	9.978.923	1.249.497	12.5	100.0
Ecoprovince	0,010,020	-,,		10010
Northern Arctic Cordillera	113 667	14 119	12.4	11
Southern Arctic Cordillera	129 758	41 849	32.3	3.3
Sverdrun Islands	65 520	0	0.0	0.0
Fllesmere Basin	129 117	21 690	16.8	17
Victoria Lowlands	429 668	43 780	10.2	3.5
Parry Channel Plateau	134 422	11 893	8.8	1.0
Boothia–Foxe Shield	546 492	30,032	5.5	24
Baffin Unlands	131,350	1 898	1 4	0.2
Foxe–Boothia Lowlands	80 387	6 587	8.2	0.2
Amundsen Lowlands	308.466	24 263	7.9	1.0
Keewatin Lowlands	383 480	107 852	28.1	8.6
Lingava_Belcher	158 527	25 020	15.8	2.0
Maakanzia Easthilla	96 570	23,029	10.0	2.0
Mackenzie Fourinis Creat Boar Lowlands	240,006	20,729	12.0	2.3
Hey Slove Lewlands	340,200	43,004	12.9	3.3
Magtern Toigo Shield	233,307	20,737	11.4	2.1
Footorn Toigo	000,079	75,402	14.0	5.9
Labradar Uplanda	394,473	12 051	14.0	4.4
Labrauor Opianus Whale Diver Leveland	230,132	13,001	5.2	1.0
Whater Derect Chiefd	114,041	20,522	17.9	1.0
Western Boreal Shield	524,821	23,959	4.0	1.9
Mid-Boreal Shield	500,600	83,776	16.7	6.7
Eastern Boreal Shield	354,666	33,848	9.5	2.7
Newfoundiand	111,239	7,443	6.7	0.6
Lake of the woods	/1,646	9,691	13.5	0.8
Southern Boreal Shield	319,993	29,237	9.1	2.3
Appaiachian–Acadian Highlands	94,951	4,088	4.3	0.3
Northumberland Lowlands	35,629	1,339	3.8	0.1
Fundy Uplands	/1,086	7,992	11.2	0.6
Great Lakes–St. Lawrence Lowlands	88,174	1,905	2.2	0.2
Huron–Erie Plains	24,724	190	0.8	0.0
Boreal Foothills	124,690	2,838	2.3	0.2
Central Boreal Plains	483,992	68,846	14.2	5.5
Eastern Boreal Plains	130,770	8,232	6.3	0.7
Eastern Prairies	32,872	369	1.1	0.0
Parkland Prairies	177,448	7,416	4.2	0.6
Central Grassland	254,376	20,380	8.0	1.6
Northern Yukon Mountains	26,893	9,184	34.2	0.7
Old Crow–Eagle Plains	20,760	9,210	44.4	0.7
Ogilvie Mountains	60,089	5,901	9.8	0.5
Mackenzie–Selwyn Mountains	159,487	22,066	13.8	1.8
Wrangel Mountains	24,471	21,967	89.8	1.8
Northern Boreal Cordillera	239,038	10,728	4.5	0.9
Southern Boreal Cordillera	168,162	53,700	31.9	4.3
Western Boreal Cordillera	38,797	0	0.0	0.0
Georgia Depression	19,470	2,501	12.8	0.2

Table 3.13

Protected and conserved area, by ecoprovince, 2020

	Total area	Protected and conserved area	Share of ecoprovince protected and conserved	Share of protected and conserved area
	k	m ²	percentage	9
Southern Coastal Mountains	158,751	41,609	26.2	3.3
Northern Coastal Mountains	31,881	7,604	23.8	0.6
Northern Montane Cordillera	141,283	13,570	9.6	1.1
Central Montane Cordillera	106,009	24,163	22.8	1.9
Southern Montane Cordillera	59,034	7,451	12.6	0.6
Columbia Montane Cordillera	180,331	60,653	33.6	4.9
Hudson Bay Coastal Plains	64,090	27,729	43.3	2.2
Hudson–James Lowlands	311,730	17,916	5.7	1.4
Great Lakes	88,379	11,516	13.0	0.9

Notes: This table includes only the terrestrial portion of protected and conserved areas with both terrestrial and marine regions. Any overlap between areas has been removed to avoid double counting. The total area for Canada includes the Canadian portion of the Great Lakes and residual areas along shorelines not included in the ecoprovince areas. These data may differ from other published tabulations. Only public data were used in this compilation.

Source: Environment and Climate Change Canada, 2020, Canadian Protected and Conserved Areas Database, December 2020, https://www.canada.ca/en/environment-climate-change/ services/national-wildlife-areas/protected-conserved-areas-database.html (accessed September 22, 2021).

Table 3.14Protected and conserved area, by marine ecoregion and depth class, 2020

			Share of marine ecoregion protected	Share of protected and	
	Total area Protec	cted and conserved area	or conserved by depth class	conserved area	
Marine ecoregion and depth class		km ²	percentage		
Total exclusive economic zone	5,746,894	794,594	13.8	100.0	
Strait of Georgia	8,970	458	5.1	0.1	
Coastal	3,273	392	12.1	0.0	
Epipelagic	3,173	62	1.9	0.0	
Mesopelagic	2,522	3	0.1	0.0	
Bathypelagic	2	0	0.0	0.0	
Southern Shelf	28,158	786	2.8	0.1	
Coastal	4,132	642	16.0	0.1	
Epipelagic	11,176	141	1.3	0.0	
Mesopelagic	4,583	3	0.1	0.0	
Bathypelagic	8,267	0	0.0	0.0	
Offshore Pacific	315,724	92,977	29.4	11.7	
Coastal	3	3	100.0	0.0	
Epipelagic	15	15	100.0	0.0	
Mesopelagic	211	205	97.2	0.0	
Bathypelagic	315,495	92,754	29.4	11.7	
Northern Shelf	101,328	16,668	16.4	2.1	
Coastal	23,423	3,993	17.1	0.5	
Epipelagic	39,737	7,644	19.2	1.0	
Mesopelagic	25,109	3,427	13.6	0.4	
Bathypelagic	13,060	1,603	12.3	0.2	
Arctic Basin	752,053	284,091	37.8	35.8	
Coastal	142	101	72.0	0.0	
Epipelagic	13,117	9,853	75.1	1.2	
Mesopelagic	224,802	115,044	51.2	14.5	
Bathypelagic	513,992	159,094	31.0	20.0	
Western Arctic	539,793	12,085	2.2	1.5	
Coastal	177,824	10,877	6.1	1.4	
Epipelagic	189,473	1,148	0.6	0.1	
Mesopelagic	172,497	60	0.0	0.0	
Arctic Archipelago	268,797	38,923	14.5	4.9	
Coastal	43,739	7,347	16.8	0.9	
Epipelagic	91,959	15,723	17.1	2.0	
Mesopelagic	133,099	15,853	11.9	2.0	

Table 3.14

	Total and Ducks ded		Share of marine ecoregion protected	Share of protected and
	Total area Protected and conserved area km ²		or conserved by depth class	conserved area
Marine ecoregion and depth class			percentage	
Eastern Arctic	782,639	174,061	22.2	21.9
Coastal	77,149	12,112	15.8	1.5
Epipelagic	154,899	25,731	16.6	3.2
Mesopelagic	362,773	119,538	32.9	15.0
Bathypelagic	187,819	16,680	8.9	2.1
Hudson Bay Complex	1,244,644	8,684	0.7	1.1
Coastal	343,386	8,507	2.5	1.1
Epipelagic	759,653	177	0.0	0.0
Mesopelagic	141,606	0	0.0	0.0
Newfoundland-Labrador Shelves	1,041,656	118,425	11.4	14.9
Coastal	49,994	364	0.8	0.0
Epipelagic	350,532	1,783	0.5	0.2
Mesopelagic	287,743	39,662	13.8	5.0
Bathypelagic	344,977	76,616	22.2	9.6
Abyssalpelagic	8,410	0	0.0	0.0
Scotian Shelf	416,485	25,736	6.2	3.2
Coastal	25,964	741	2.9	0.1
Epipelagic	145,984	13,368	9.2	1.7
Mesopelagic	28,277	1,763	6.2	0.2
Bathypelagic	102,137	6,301	6.2	0.8
Abyssalpelagic	114,123	3,563	3.1	0.4
Gulf of St. Lawrence	246,646	21,700	8.8	2.7
Coastal	63,504	11,373	18.5	1.4
Epipelagic	107,183	3,633	3.4	0.5
Mesopelagic	75,959	6,695	8.8	0.8

Notes: This table includes only the marine portion of protected and conserved areas with both terrestrial and marine regions. Any overlap between areas has been removed to avoid double counting. Areas classed as coastal have a maximum depth of 50 m, the epipelagic class has depths from 50 m to 200 m, the mesopelagic class has depths from 200 m to 1,000 m, the bathypelagic class has depths of 1 km to 4 km and the abyssalpelagic class includes all areas with depths of more than 4 km. These data may differ from other published tabulations. Only public data were used in this compilation. **Source:** Environment and Climate Change Canada, 2020, *Canadian Protected and Conserved Areas Database*, December 2020, https://www.canada.ca/en/environment-climate-change/

services/national-wildlife-areas/protected-conserved-areas-database.html (accessed September 22, 2021).

4.0 Supply and use of ecosystem services

People benefit from ecosystem contributions such as food, clean air and water, as well as the physical space for recreational activities and enjoyment of nature. These ecosystem services can be classified as provisioning services, regulating services and cultural services.¹⁵⁵

Some ecosystem services provide benefits locally, while others contribute to services enjoyed globally. For example, trees and vegetation in urban areas can help regulate local temperature and reduce local heat island effects, while carbon sequestration and storage provide global climate regulation benefits that are enjoyed by people around the world.

The development of preliminary ecosystem service accounts, which compile information on the services provided by ecosystems and their use by people, is largely experimental and methods are still being developed. A better understanding of the various services provided and how they are used may lead to decision making that reflects a more comprehensive assessment of tradeoffs and impacts on human well-being.

4.1 Provisioning services

Provisioning services include flows of biomass including food, fuel, fibre and timber, as well as environmental flows, such as water, from ecosystems to people. Many of these goods are the product of ecosystems and economic activities. For example, crop production relies on water, energy from the sun, nutrients from soil, genetic material from seeds and pollination from wind and insects, but is also the result of labour, fuel use, fertilizer and pesticide inputs. Data are available for many of these products because they are valued by markets. However, it is difficult to disentangle the contribution that ecosystems make towards the service from the economic contribution.¹⁵⁶

Over 141 million tonnes of timber were harvested from forest ecosystems in 2019, down from 196 million tonnes in 2002 (Table 4.1). In 2019, the largest proportion of the timber harvest occurred in British Columbia (39%), followed by Quebec (20%) and Alberta (17%).¹⁵⁷ The most commonly harvested species included spruce, pine and fir, while other harvested species used for lumber production included Douglas-fir, western larch, hemlock and western red cedar.¹⁵⁸ The forest sector, including pulp and paper and wood product manufacturing, contributed \$29.2 billion (1.4%) towards Canada's GDP and provided 210,600 jobs in 2018.¹⁵⁹ The number and population of communities that are heavily based on the forest sector for employment income has decreased in recent decades.¹⁶⁰

In 2020, Canada's agricultural ecosystems produced an estimated 137 million tonnes of crops, honey and maple products used for food, animal feed and industrial use, as well as an estimated 12 million tonnes of forage for grazing livestock.¹⁶¹ Field crops, such as wheat, tame hay, corn, canola, barley and soybean, accounted for the majority of this total estimated production (87%) (Table 4.2). Most (71%) of this production occurred in the Prairie provinces, followed by Ontario (17%) and Quebec (8%). Crop production—particularly of field crops—has increased since 2002 while estimates of forage production for grazing livestock on pasture have decreased since 2001 (Chart 4.1). In 2018, the primary agriculture sector, excluding aquaculture, contributed \$28.1 billion (1.4%) towards Canada's GDP and 314,700 jobs.¹⁶²

¹⁵⁵ European Environment Agency, 2020, CICES: Towards a common classification of ecosystem services, https://cices.eu (accessed January 6, 2020).

¹⁵⁶ The provisioning services table reports production as a proxy for the ecosystem service since it is difficult to disentangle the contribution of ecosystems from economic contributions (Table 4.1).

¹⁵⁷ National Forestry Database, 2021, Table 5.1 Net merchantable volume of roundwood harvested by jurisdiction, tenure, category and species group, http://nfdp.ccfm.org/en/index.php (accessed July 14, 2021); FAO, ITTO and United Nations, 2020, Forest Product Conversion Factors, Rome, Italy, https://doi.org/10.4060/ca7952en (accessed July 14, 2021); FAO, ITTO and United Nations, 2020, Forest Product Conversion Factors, Rome, Italy, https://doi.org/10.4060/ca7952en (accessed July 14, 2021); FAO, ITTO and United Nations, 2020, Forest Product Conversion Factors, Rome, Italy, https://doi.org/10.4060/ca7952en (accessed June 3, 2021).

¹⁵⁸ Statistics Canada, Table 16-10-0017-01, <u>https://doi.org/10.25318/1610001701-eng</u> (accessed January 6, 2020).

¹⁵⁹ Statistics Canada, Table 36-10-0401-01, https://doi.org/10.25318/3610040101-eng (accessed January 7, 2022); Statistics Canada, Table 36-10-0489-01, https://doi.org/10.25318/3610040101-eng (accessed January 7, 2022); Statistics Canada, Table 36-10-0489-01, https://doi.org/10.25318/3610040101-eng (accessed January 7, 2022); Statistics Canada, Table 36-10-0489-01, https://doi.org/10.25318/3610048901-eng (accessed January 7, 2022).

¹⁶⁰ Statistics Canada, 2018, "Forests in Canada," Human Activity and the Environment, Catalogue no. 16-201-X, https://www150.statcan.gc.ca/n1/pub/16-201-x/16-201-x2018001-eng.htm (accessed July 15, 2021).

¹⁶¹ Feed and forage crop production and an estimate of grazing based on pasture areas reported on the 2016 Census of Agriculture are included. Estimates of the ecosystem service exclude production of meat, dairy, eggs, wool, pelts and other products from animal agriculture other than honey.

¹⁶² Statistics Canada, Table 36-10-0401-01, https://doi.org/10.25318/3610040101-eng (accessed January 7, 2022); Statistics Canada, Table 36-10-0489-01, https://doi.org/10.25318/3610040101-eng (accessed January 7, 2022); Statistics Canada, Table 36-10-0489-01, https://doi.org/10.25318/3610040101-eng (accessed January 7, 2022); Statistics Canada, Table 36-10-0489-01, https://doi.org/10.25318/3610048901-eng (accessed January 7, 2022).

Provisioning services, agricultural ecosystems, by type of product, Canada, 2002 to 2020

Chart 4.1

Notes: Agricultural production is reported as a proxy of the provisioning service provided by agricultural ecosystems. Provincial data that are unavailable or data that are suppressed to meet confidentiality or data quality standards are not included in total. For more information on definitions, sources and methods, see Appendix A. Sources: Statistics Canada, *Tables 32-10-0359-01, 32-10-0364-01, 32-10-0365-01, 32-10-0358-01 and 32-10-0406-01* (accessed March 16, 2021); Statistics Canada, 2007, *Census of Agriculture, 2006: Farm data and farm operator data tables*, https://www150.statcan.gc.ca/n1/pub/95-629-x/2007000/4123856-eng.htm (accessed January 14, 2020); Yungblut, D., 2012, National Forage and Grassland Assessment, http://www.canadianfga.ca/wp-content/uploads/2011/04/V1-Final-June-2012-Report-National-Forage-and-Grassland-Assessment-formatted.pdf (accessed December 3, 2019).

Freshwater, coastal and marine ecosystems produced the 808 thousand tonnes of shellfish, wild fish and marine plants harvested in 2019 by commercial fisheries or produced through aquaculture activities, down 30% from 1.1 million tonnes in 2002 (Table 4.1).¹⁶³ In 2019, 68% of this biomass was landed or farmed in the Atlantic provinces, followed by 24% in British Columbia and 6% in Quebec.¹⁶⁴

In addition to commercial harvests of timber, crops and fish, Canada's terrestrial and aquatic ecosystems support other harvests of flora and fauna, including firewood, mushrooms, berries, foliage, fish and game for commercial, recreational, cultural and subsistence use. Comprehensive harvest statistics are not available for all foraging, trapping and recreational fishing and hunting activities. In 2018, hunters harvested an estimated 1.9 million migratory game birds including ducks, geese, woodcocks and other hunted species.¹⁶⁵ Canadian commercial harp seal landings in Atlantic Canada and Quebec totalled 32,223, while grey seal landings totalled 1,234 in 2019.¹⁶⁶ Recreational anglers caught over 194 million fish in 2015, of which 30% were kept and the remainder released.¹⁶⁷ The most commonly caught species include walleye, trout, pike, perch and bass. Many provinces track statistics on hunting and trapping activities, including harvests of caribou, deer, moose, elk, pronghorn antelope, big horn sheep, bear, turkey, grouse, pheasant,

¹⁶³ Estimates of the ecosystem service exclude finfish production from aquaculture. For data on fish aquaculture production see Statistics Canada, Table 32-10-0107-01, https://doi.org/10.25318/3210010701-eng (accessed January 31, 2019).

¹⁶⁴ Fisheries and Oceans Canada, 2021, Commercial fisheries: Landings, http://www.dfo-mpo.gc.ca/stats/commercial/land-debarq-eng.htm (accessed March 18, 2021).

¹⁶⁵ Gendron, M.H., and A.C. Smith, 2019, National Harvest Survey, Canadian Wildlife Service, Environment and Climate Change Canada, https://wildlife-species.canada.ca/harvest-survey (accessed December 11, 2019).

¹⁶⁶ Fisheries and Oceans Canada, Fisheries and Harbour Management Directorate, Commercial Sealing Statistics, Ottawa.

¹⁶⁷ Fisheries and Oceans Canada, 2019, Survey of Recreational Fishing in Canada, 2015, https://www.dfo-mpo.gc.ca/stats/rec/can/2015/index-eng.html#4-3 (accessed February 24, 2020).

partridge, hare, beaver, muskrat, wolf and other species.¹⁶⁸ In 2009, the latest year for which provincial data were compiled, a total of 730,915 wildlife pelts were produced by fur trappers including muskrat (36%), beaver (19%), marten (13%), coyote (6%) and squirrel (5%), among others.¹⁶⁹

The fishing, hunting and trapping, aquaculture and fish processing industries—which exclude recreational services industries—contributed \$4.5 billion (0.2%) to Canada's GDP and 34,800 jobs in 2018.¹⁷⁰ Despite the smaller size of these industries on a national scale, they can be of significant importance to regional economies, particularly in smaller coastal or remote communities. For example, the fishing and seafood sector provides a significant source of income for many coastal communities on the Atlantic and Pacific coasts. In 2015, these industries were an important economic driver for 150 coastal communities, the majority of which were located on the East Coast in proximity to current and historically abundant fishing grounds.¹⁷¹ These communities tend to be smaller, many with populations of 1,000 or less, with most experiencing a decline in population since 2001 (Map 4.1). Communities that experienced population increases tended to be in regions with aquaculture industry.

In 2017, Canadian households and industries used 36.8 billion m³ of water (Chart 4.2), excluding water used in hydroelectric generation.¹⁷² The electric power generation industry uses water for cooling in thermal power plants and is responsible for close to two-thirds of water use. Other large users include agriculture (10% of total water use), households (8%), pulp and paper manufacturing (4%) and petroleum and coal product, chemical and primary metal manufacturing (5%).

¹⁶⁸ For example, Prince Edward Island, n.d., 2019 Hunting and Trapping Summary, https://www.princeedwardisland.ca/sites/default/files/publications/2019-20_hunting_summary_updated_for_web.pdf (accessed December 11, 2019); New Brunswick Fish and Wildlife Branch, 2014, New Brunswick Furbearer Harvest Report 2013-2014, https://www2.gnb.ca/content/dam/gnb/Departments/nr-rn/pdf/en/Wildlife/FurbearerHarvestReport.pdf (accessed December 19, 2019); New Brunswick Fish and Wildlife Branch, 2019, New Brunswick Fish and Wildlife Branch, 2019, Big Game Harvest Reports, 2018, In progress, https://www2.gnb.ca/content/dam/gnb/Departments/nr-rn/pdf/en/Wildlife/2018 big_game_report.pdf (accessed December 19, 2019); Nova Scotia, 2018, Hunter and Trapper Harvest Statistics Index, https://www2.gnb.ca/content/dam/gnb/Departments/nr-rn/pdf/en/Wildlife/2018 big_game_report.pdf (accessed December 19, 2019); Nova Scotia, 2018, Hunter and Trapper Harvest Statistics Index, https://www2.gnb.ca/content/dam/gnb/Departments/nr-rn/pdf/en/Wildlife/2018 big_game_report.pdf (accessed December 19, 2019); Forêts, Faune et Parces Québec, 2020, Statistics on hunting and trapping in Québec, https://mffp.gouv.qc.ca/the-wildlife/hunting-fishing-trapping/statistics-on-hunting-and-trapping-in-quebec/?lang=en (accessed December 19, 2019); Saskatchewan, n.d., 2018 Hunter Harvest Survey Results, https://pubsaskey.blo.core.windows.net/pubsask-prod/11235/2018%252BHunter%252BHarvest%2 52BSurvey%252BResults.pdf (accessed December 19, 2019); Alberta, 2019, Hunter Harvest, https://mywildalberta.ca/hunting/hunters-harvest.aspx (accessed December 19, 2019).

¹⁶⁹ Statistics Canada, Table 32-10-0293-01, https://doi.org/10.25318/3210029301-eng (accessed December 11, 2019). Excludes seal pelts from the Atlantic provinces and Quebec, which are regulated under federal Marine Mammal Regulations.

¹⁷⁰ Statistics Canada, Table 36-10-0401-01, https://doi.org/10.25318/3610040101-eng (accessed January 7, 2022); Statistics Canada, Table 36-10-0489-01, https://doi.org/10.25318/3610040101-eng (accessed January 7, 2022); Statistics Canada, Table 36-10-0489-01, https://doi.org/10.25318/3610040101-eng (accessed January 7, 2022); Statistics Canada, Table 36-10-0489-01, https://doi.org/10.25318/3610048901-eng (accessed January 7, 2022).

¹⁷¹ Communities were considered to be fishing and seafood sector-based if the employment income earned by individuals working in the fishing, aquaculture or seafood processing industries represented at least 20% of the employment income of the CSD in 2015, according to the 2016 Census.

¹⁷² Statistics Canada, Table 38-10-0250-01, <u>https://doi.org/10.25318/3810025001-eng</u> (accessed January 24, 2020).

Map 4.1

Population size and variation of 2016 fishing and seafood sector-based communities, Pacific and Atlantic coasts, 2001 to 2016

Notes: This map displays population size and variation for census subdivisions (CSDs) for which the fishing and seafood sector is a major source of employment income—defined here as individuals working in these sectors earning 20% or more of total CSD employment income. Data from the 2016 Census of Population were used to identify the 150 coastal CSDs represented on this map. The reference period for income data is the calendar year prior to the census. The fishing and seafood sector, as defined for this map, includes North American Industry Classification Codes: 1141 – Fishing, 1125 – Aquaculture and 3117 Seafood product preparation and packaging.

Source: Statistics Canada, Environment and Energy Statistics Division, 2020, special tabulation from the 2001 and 2016 Census of Population.

Total, industries and households Electric power generation, transmission and distribution Agriculture Households Petroleum and coal product, chemical and primary metal manufacturing Paper manufacturing Natural gas distribution, water, sewage and other systems Mining, oil and gas All other industries Food manufacturing 0 5,000 10,000 15,000 20,000 25,000 30,000 35,000 40,000 million cubic metres

Chart 4.2

Water use, by industry and households, 2017

Note: Electric power generation does not include water used in hydropower production.

Source: Statistics Canada, Table 38-10-0250-01, https://www150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=3810025001 (accessed November 28, 2020).

4.2 Regulating services

Regulating services include filtration, sequestration, remediation, regulation and maintenance services provided by ecosystems. For example, they include services such as air filtration by urban trees, carbon retention in ecosystems, carbon sequestration by vegetation, and water flow regulation and flood control by vegetation, among many others.

The value of these types of services is often difficult to quantify even though they provide vital benefits to people. Models are often used to estimate the amount of pollutants filtered, waste material remediated, carbon sequestered, noise levels reduced, cooling provided, pest damage mitigated, or the frequency or magnitude of flood or fire events avoided. Estimates are subject to uncertainty and data and information from one area or time period cannot always be used elsewhere. Still, where estimates are available, they can provide useful information to support decision making.

Carbon retention or storage refers to the total stock of carbon held in living and dead biomass in ecosystems including forests, peatlands and agricultural and coastal areas. Carbon sequestration represents a flow of carbon and occurs when carbon is removed by plants through photosynthesis and stored in woody biomass or transferred to soils and sediment at a greater rate than it is released back to the atmosphere. Estimating carbon retention and sequestration services across the wide range of terrestrial, marine and coastal ecosystems relies on information from many different sources.

According to Natural Resources Canada's National Forest Carbon Monitoring, Accounting and Reporting System (NFCMARS), in 2018, an estimated 46 gigatonnes (Gt) of carbon was stored in Canada's managed forests¹⁷³—which represent about two-thirds of Canada's forest area.¹⁷⁴ Of this total stock, 40% of carbon was stored in soils, 27%

¹⁷³ Natural Resources Canada, 2020, *Carbon Accounting*, https://www.nrcan.gc.ca/climate-change/impacts-adaptations/climate-change-impacts-forests/carbon-accounting/13087 (accessed April 9, 2021); Stinson, G., et al., 2011, "An inventory–based analysis of Canada's managed forest carbon dynamics, 1990 to 2008," *Global Change Biology*, Vol. 17, pp. 2227–2244, https://doi.org/10.1111/j.1365-2486.2010.02369.x (accessed April 4, 2020); Kurz, W.A., et al., 2013, "Carbon in Canada's boreal forest — A synthesis," *Environmental Reviews*, Vol. 21, pp. 260-292, https://doi.org/10.1139/er-2013-0041 (February 2, 2020).

¹⁷⁴ Managed forests are those managed for timber and non-timber resources (including parks) or that are subject to fire protection. They represent approximately 65.7% of Canada's forest area. For more information, see: Ogle, S.M., et al., 2018, "Delineating managed land for reporting national greenhouse gas emissions and removals to the United Nations framework convention on climate change," *Carbon Balance and Management*, Vol. 13, no. 9, <u>https://doi.org/10.1186/s13021-018-0095-3</u> (accessed April 9, 2021).

in tree trunks, branches, leaves and roots (above ground and below ground biomass), 23% in litter and 10% in deadwood (Table 4.3). Managed forests stored on average 205 tonnes of carbon per hectare in 2018, though this varied widely from 424 tonnes per hectare in the Pacific Maritime ecozone to 133 tonnes per hectare for forests in the Boreal Shield West (Chart 4.3).

Chart 4.3 Managed forest carbon stock, by Intergovernmental Panel on Climate Change (IPCC) carbon pool and by reporting zone, 2018

Notes: The National Forest Carbon Monitoring, Accounting and Reporting System (NFCMARS) used by the Canadian Forest Service (CFS) to estimate greenhouse gas (GHG) sources and sinks for Canada's *National Inventory Report 1990-2018* submission to the United Nations Convention on Climate Change covers managed forest land only (excludes unmanaged forests). Data are reported by reporting zone, which are based on Canada's terrestrial ecozones with three exceptions: the Boreal Shield and the Taiga Shield ecozones are split into east and west components, the Prairie ecozone is split into sub-humid and semi-arid components and the Arctic Cordillera is excluded. For some regions, notably the Hudson Plains and Taiga Shield, only a very small proportion of forest area is considered managed. Managed boreal forest represents about half of Canada's boreal forest area. The Carbon Budget Model of the CFS (CBM-CFS3) at the core of NFCMARS is designed for use on non-frozen upland mineral soils (0 to 100 cm) and therefore excludes organic soils (peatland) and permafrost. **Source:** Natural Resources Canada. Canadian Forest Service, Carbon Accounting.

Trees in Canada's managed forests take up large amounts of carbon. In 2018, modeled net primary productivity (NPP) from these forests was 710,000 kilotonnes (kt) of carbon and net ecosystem productivity was 41,000 kt of carbon (Table 4.4). However, taking into account the emissions associated with harvested wood¹⁷⁵ and natural disturbances, such as forest fires and insect damage, these forests were a net emitter of carbon in 2018. Net biome productivity was estimated at -68,000 kt of carbon in 2018, a net loss of carbon from managed forest ecosystems. Estimates are not available for unmanaged forest areas in Canada's North.

The amount of carbon stored in soil varies considerably by region and soil type. Organic soils, which are composed of large amounts of organic matter in the form of peat or leaf litter, store large amounts of soil organic carbon.¹⁷⁶ Peatlands in boreal and subarctic regions contain an estimated 147 Gt of soil organic carbon, over half of the organic carbon stored in all Canadian soils.¹⁷⁷ Carbon dynamics are likely changing as a result of rising temperatures and

¹⁷⁵ Carbon transferred to harvested wood products is not emitted immediately—carbon can remain stored in lumber and other wood products used in construction and manufacturing for some time, while carbon in wood used for firewood or newsprint will more quickly become oxidized.

¹⁷⁶ Organic soils store at least 17% organic carbon (30% or more organic matter) by weight. Soil Classification Working Group, 1998, *The Canadian System of Soil Classification*, 3rd Ed., Agriculture and Agri-Food Canada, Publication 1646, http://sis.agr.gc.ca/cansis/publication, 3rd Ed., Agriculture and Agri-Food Canada, Publication 1646, http://sis.agr.gc.ca/cansis/publication, 3rd Ed., Agriculture and Agri-Food Canada, Publication 1646, http://sis.agr.gc.ca/cansis/publication, 3rd Ed., http://sis.agr.gc.ca/cansis/publications/manuals/1998-cssc-ed3/index.html (accessed June 25, 2020).

¹⁷⁷ Tarnocai, C., 2009, "The impact of climate change on Canadian peatlands," *Canadian Water Resources Journa*l, Vol. 34, no. 4, https://doi.org/10.4296/cwrj3404453 (accessed June 25, 2020).

changing water regimes.¹⁷⁸ For example, carbon sequestration will be affected by an increase in growing season length impacting vegetation productivity. Much of the carbon stock in these soils is frozen and will be affected by permafrost thaw, through increased emissions from respiration. Peatlands can also be vulnerable to fire, releasing large amounts of stored carbon into the atmosphere when burned. Past studies have estimated long-term rates of organic carbon accumulation of 9,800 kt per year for boreal peatlands and 30,000 kt per year for all Canadian peatlands; however, a more recent study indicates that Canadian peatlands may now be a source of carbon emissions to the atmosphere with estimated emissions of 151.8 Mt CO₂ equivalent (10,400 kt of C) per year for peatlands in Canada including carbon dioxide and methane.¹⁷⁹

An estimated 5.5 Gt of carbon are stored in soils used for agriculture.¹⁸⁰ Most of this carbon storage occurs in the Prairies, since soils that developed under prairie grassland—for example, the black chernozemic soils in the Aspen Parkland ecoregion—contain a relatively high percentage of soil organic matter.¹⁸¹ The amount of carbon stored in agricultural soils depends on many factors including climate, soil texture, vegetation type and land management practices such as tillage, cover cropping, crop rotation and inputs from fertilizers, manure and crop residues.¹⁸² Most agricultural crops are annual plants that do not provide long-term carbon storage in above ground biomass, though orchards, for example, which represent a small fraction of Canada's agricultural land, have above ground biomass in the range of 36 to 40 kilotonnes per hectare.¹⁸³ Environment and Climate Change Canada reports annual estimates of carbon emissions and removals to the United Nations Framework Convention on Climate Change (UNFCCC) in the *National Inventory Report*, Canada's official greenhouse gas inventory. In 2018, an estimated 2,400 kt of carbon was removed by cropland.¹⁸⁴

While urban areas occupy a small percentage of Canada's terrestrial extent, an estimated 27,000 kt of carbon are stored in trees in large urban and medium population centres.¹⁸⁵ On average, urban forests stored 62 tonnes per hectare of canopy cover, but this varies by ecozone from a low of 23 tonnes per hectare in the Montane Cordillera ecozone to 97 tonnes per hectare in the Pacific Maritime ecozone. In 2018, an estimated 1,100 kt of carbon was removed by trees in urban areas.

Ocean and coastal ecosystems also provide important carbon sequestration and carbon retention services. In fact, marine plants are responsible for about half of global NPP¹⁸⁶ and the world's oceans store more carbon overall than either soils or the atmosphere. Phytoplankton, which absorb CO₂ through photosynthesis, are the primary contributor to NPP in oceans (94%). Macroalgae, such as kelp or seaweed, as well as seagrasses, salt marsh plants, mangroves and other macrophytes are responsible for the remainder of marine NPP.¹⁸⁷ Much of the carbon absorbed by phytoplankton is recycled through the food web by zooplankton, fish and other marine species. However, a small proportion of this carbon sinks into the deep ocean for long-term storage. Another source of carbon in the deep sea includes deadfall carbon from the carcasses of whales and other large vertebrates as they sink to the ocean floor.¹⁸⁸

¹⁷⁸ Kurz, W.A. et al., 2013; Tarnocai, C., 2009; Webster, K.L., et al., 2018, "Spatially-integrated estimates of net ecosystem exchange and methane fluxes from Canadian peatlands," *Carbon Balance and Management*, https://doi.org/10.1186/s13021-018-0105-5 (accessed August 18, 2019); De Groot, W., 2012, "Peatland fires and carbon emissions," *Front Line Express*, Natural Resources Canada, Canadian Forest Service, Great Lakes Forestry Centre, https://cis.nrcan.gc.ca/publications?id=33351 (accessed June 25, 2020); Ogle, S.M., et al., 2018.

¹⁷⁹ Zoltai et al., 1998 and Gorham, 1988, as cited in Tarnocai, C., 2009, "The impact of climate change on Canadian peatlands," Canadian Water Resources Journal, Vol. 34, no. 4, https://doi. org/10.4296/cwri3404453 (accessed October 10, 2017); Webster, K.L., et al, 2018.

¹⁸⁰ Minasny, B., at al., 2017, "Soil carbon 4 per mille," Geoderma, Vol. 292, pp. 59-86, https://doi.org/10.1016/j.geoderma.2017.01.002 (accessed May 31, 2021).

¹⁸¹ Canadian Society of Soil Science, 2020, "Chernozemic," Soils of Canada, https://soilsofcanada.ca/orders/chernozemic-soils.php (accessed June 8, 2020).

¹⁸² Ontl, T.A. and L. A. Schulte, 2012, "Soil carbon storage," *Nature Education Knowledge, Vol. 3, no. 10, https://www.nature.com/scitable/knowledge/library/soil-carbon-storage-84223790/* (accessed March 30, 2020); Environment and Climate Change Canada, 2020, *National Inventory Report 1990 – 2018: Greenhouse gas sources and sinks in Canada, Part 2*, Catalogue no. EN81-4E-PDF, https://publications.gc.ca/site/eng/9.506002/publication.html (accessed July 20, 2020).

¹⁸³ McConkey, B., et al., 2007, cited in Environment and Climate Change Canada, 2020, National Inventory Report 1990 – 2018: Greenhouse gas sources and sinks in Canada, Part 2, Catalogue no. EN81-4E-PDF, https://publications.gc.ca/site/eng/9.506002/publication.html (accessed July 20, 2020);

¹⁸⁴ Excludes losses of carbon associated with the conversion of forest and grassland to settlements and cropland.

¹⁸⁵ Ristow, M., J. W. Steenberg and P. N. Duinker, 2019, "An updated approach for assessing Canada's urban forest carbon storage and sequestration," Report submitted to Environment and Climate Change Canada.

¹⁸⁶ Malone, T., et al., 2016, "Chapter 6. Primary production, cycling of nutrients, surface layer and plankton," *The First Global Integrated Marine Assessment: World Ocean Assessment 1*, United Nations, https://www.un.org/Depts/los/global_reporting/WOA_RPROC/Chapter_06.pdf (accessed April 4, 2020).

¹⁸⁷ Malone, T., et al., 2016.

¹⁸⁸ Hodson, H., 2018, "The mesopelagic: Cinderella of the ocean," *The Economist*, <u>https://www.economist.com/science-and-technology/2017/04/15/the-mesopelagic-cinderella-of-the-oceans</u> (accessed February 21, 2020).

Kelp forests, seagrass meadows and salt marshes in coastal areas have an important role in carbon cycling.¹⁸⁹ Carbon from this biomass can be stored in plant roots and in coastal and marine sediment once the seaweeds and plants decompose. Carbon from plankton, as well as carbon from wetlands, rivers and streams that discharge into the ocean also contribute to the carbon buried in these coastal ecosystems.¹⁹⁰ Studies in British Columbia and across the Pacific Northwest have found significant variability in organic carbon stocks in coastal sediment within eelgrass (a type of seagrass) meadows.¹⁹¹ One synthesis of studies on the Pacific Coast found average carbon accumulation rates of 25 g of organic carbon per m² of sediment per year. Carbon stocks in the top 1 m of sediment averaged 7,168 g of organic carbon per m².¹⁹² On a per hectare basis, these estimates suggest that seagrass meadows in British Columbia could store an estimated 72 tonnes of carbon.

Another important regulating service provided by ecosystems is air filtration. Exposure to air pollution has an important impact on human health.¹⁹³ In 2006, mean national residential exposure to ambient air concentrations of fine particulate matter ($PM_{2.5}$)—made up of aerosols, smoke and dust—was 7.05 μ g/m³.¹⁹⁴ However, exposure estimates were higher in parts of southern Ontario and in major cities, particularly within the urban cores. People living in rural areas had lower mean exposures to $PM_{2.5}$. Ambient nitrogen dioxide concentrations depend heavily on vehicular traffic and exposure to this pollutant has been shown to vary within cities, including by neighbourhood socio-economic status.¹⁹⁵ Exposure to ozone—a secondary air pollutant created by reactions between nitrogen oxides and volatile organic compounds —can differ geographically over larger regions.¹⁹⁶

Some research has focused on the extent to which urban trees provide an ecosystem service by removing air pollutants and supplying associated benefits for human health.¹⁹⁷ Trees can remove air pollution by taking up gaseous pollutants and by intercepting particulate matter on leaf surfaces. The average air pollutant removal per square metre of tree cover in 86 Canadian cities in 2010 was estimated to be 3.72 g/m²/year.¹⁹⁸ This removal resulted in small improvements in air quality. Total pollution removal for these cities was estimated at 16,500 tonnes of air pollutants (Table 4.5), with human health benefits valued at \$227.2 million, equivalent to \$511 per hectare of urban tree cover.

4.3 Cultural services

Cultural services can involve interaction with and appreciation of nature, including direct experiences in the outdoors through recreation, tourism and education. They can also involve the contribution of ecosystems and their biodiversity to social interaction and spiritual and mental well-being.

¹⁸⁹ Krause-Jensen, D., Duerte, C. M., 2016, "Substantial role of macroalgae in marine carbon sequestration," Nature Geoscience, Vol. 9, https://doi.org/10.1038/ngeo2790 (accessed March 30, 2020); Duarte, C. M., et al., 2013, "The role of coastal plant communities for climate change mitigation and adaptation," Nature Climate Change, Vol. 3, https://doi.org/10.1038/nclimate1970 (accessed April 4, 2020); Commission for Environmental Cooperation, 2016, North America's Blue Carbon: Assessing Seagrass, Salt Marsh and Mangrove Distribution and Carbon Sinks, Montréal, Canada, http://www3.cec.org/islandora/en/item/11664-north-america-s-blue-carbon-assessing-seagrass-salt-marsh-and-mangrove (accessed April 4, 2020).

¹⁹⁰ Bauer, J., et al., 2013, "The changing carbon cycle of the coastal ocean," *Nature*, Vol. 504, https://doi.org/10.1038/nature12857 (accessed March 30, 2020); Kennedy, H., et al., 2010, "Seagrass sediments as a global carbon sink: Isotopic constraints," *Global Biogeochemical Cycles*, https://doi.org/10.1029/2010GB003848 (accessed April 4, 2020).

¹⁹¹ Prentice, C., et al., 2019, "Reduced water motion enhances organic carbon stocks in temperate eelgrass meadows," *Limnology and Oceanography*, Vol. 64, no. 6, <u>https://doi.org/10.1002/ Ino.11191</u> (accessed April 4, 2020); Prentice, C., et al., 2020, "A synthesis of blue carbon stocks, sources and accumulation rates in eelgrass (*Zostera marina*) meadows in the Northeast Pacific," *Global Biogeochemical Cycles*, Vol. 34, no. 2, <u>https://doi.org/10.1029/20196B006345</u> (accessed April 4, 2020); Postlethwaite, V. R., 2018, "Low blue carbon storage in eelgrass (*Zostera marina*) meadows on the Pacific Coast of Canada," *Plos One*, Vol. 13, no. 6, <u>https://doi.org/10.1371/journal.pone.0198348</u> (accessed April 10, 2020).

¹⁹² Prentice, C., et al., 2020.

¹⁹³ Pappin, A., et al., 2019, "Nonlinear associations between low levels of fine particulate matter and mortality across three cycles of the Canadian Census Health and Environment Cohort," Environmental Epidemiology, Vol. 3, https://doi.org/10.1097/01.EE9.0000606600.36083.92 (accessed February 13, 2020).

¹⁹⁴ Pinault, L., A. van Donkelaar and R. Martin, 2017, "Exposure to fine particulate matter air pollution in Canada," Health Reports, Statistics Canada, Catalogue no. 82-003-X, https://www150. statcan.gc.ca/n1/pub/82-003-x/2017003/article/14781-eng.htm (accessed February 13, 2020).

¹⁹⁵ Pinault, L., et al., 2016, "Socioeconomic differences in nitrogen dioxide ambient air pollution exposure among children in the largest three Canadian cities," *Health Reports*, Statistics Canada, Catalogue no 82-003-X, https://www150.statcan.gc.ca/n1/pub/82-003-x/2016007/article/14644-eng.htm (accessed February 13, 2020).

¹⁹⁶ Cakmak, S., et al., 2018, "Associations between long-term PM_{2.5} and ozone exposure and mortality in the Canadian Census Health and Environment Cohort (CANCHEC), by spatial synoptic classification zone," *Environment International*, Vol. 111, pp. 200-211, <u>https://doi.org/10.1016/j.envint.2017.11.030</u> (accessed February 13, 2020).

¹⁹⁷ Nowak, D., 2018, "Air pollution removal by urban forests in Canada and its effect on air quality and human health," *Urban Forestry and Urban Greening*, Vol. 29. <u>https://doi.org/10.1016/j.ufug.2017.10.019</u> (accessed February 13, 2020); Baró, F., et al., 2014, "Contributions of ecosystem services to air quality and climate change mitigation policies: The case of urban forests in Barcelona, Spain," *Journal of the Human Environment*, Vol. 43, no. 4, <u>https://doi.org/10.1007/s13280-014-0507-x</u> (accessed February 13, 2020); Jones, L., et al., 2017, *Development Estimates for the Valuation of Air Pollution Removal in Ecosystem Accounts, Final report for Office of National Statistics*, <u>http://nora.nerc.ac.uk/id/eprint/524081/7/N524081RE.pdf</u> (accessed February 13, 2020).

¹⁹⁸ Nowak, D., 2018; Included estimates for carbon monoxide (CO), nitrogen dioxide (NO,), ozone (O,), fine particulate matter (PM, 2) and sulphur dioxide (SO,).

Natural areas such as forests, grasslands, lakes and other 'green' and 'blue' spaces, can play a positive role in human well-being.¹⁹⁹ One recent study of urban Canadians found increased amounts of residential greenness to be associated with reduced risk of dying from several common causes.²⁰⁰ Exposure to greenness varies spatially within cities and also by socio-economic characteristics such as income, immigrant status, ethnocultural identity and housing tenure.²⁰¹

Natural areas in both public and private areas can provide benefits, though public areas such as parks provide wider opportunities for recreation and enjoyment of nature. Urban areas are heavily modified, but can nevertheless include large and small areas of green and blue space such as parks, gardens, beaches and yards. They can also include green features like street trees, green walls or green roofs that provide aesthetic enjoyment for many people.

There are many different types of parks in Canada, ranging from pristine wilderness areas to heavily used urban parks. While comparable visitation statistics for urban, regional and provincial or territorial parks are not available across the country, Parks Canada reported 16.1 million person-visits at National Parks and 8.7 million person-visits at National Historic Sites in 2019 (Table 4.6). In 2019, 90% of households reported that they lived close to a park or public green space. Of these households, 85% indicated that they had visited a nearby park or green space. In addition, 73% of households indicated they had visited sites that were more distantly located. Reported proximity to public parks and green spaces was highest for households living in census metropolitan areas (CMAs) (93%) and lowest for households living in small towns and rural areas (78%).²⁰²

While public parks play a particularly important role in providing green space in cities, private green space, including lawns and gardens, also provide benefits. In 2019, 71% of households reported having a lawn and 62% reported having a garden.²⁰³ Households living in CMAs were less likely to have a lawn (65%) or garden (58%) compared to those in small towns and rural areas.

In 2019, over three-quarters of Canadian households participated in activities near their home that brought them outside and into nature (Table 4.7). The most popular activities include walking, going to the park and bicycling, but others include picnicking, swimming, hiking and other sports activities. Household proximity to parks, access to private green space such as lawns and gardens and participation in outdoor activities increased with income. Participation in some activities, including hiking, wildlife viewing, camping, fishing, canoeing, snowshoeing and others are likely higher than indicated in Table 4.7 since these activities frequently occur further away from home.²⁰⁴

In 2016, an estimated 22% of Canadians 15 years or older spent time fishing, 16% reported foraging and 6% hunting or trapping for employment or recreational purposes.²⁰⁵ These harvesting activities including fishing, hunting, trapping and gathering wild plants have been a foundational part of Indigenous peoples' lives for millennia and they still play an important role in providing food security and fostering cultural identity. In 2017, 33% of First Nations peoples living off reserve, 35% of Métis, and 65% of Inuit living in the Inuit Homeland of Inuit Nunangat, participated in fishing, hunting or trapping.²⁰⁶ Indigenous peoples also frequently participated in wild berry or plant gathering, with among 30% of First Nations living off reserve and 47% of Inuit engaging in this activity. The most common reasons for participating in these harvesting activities included subsistence use (own use / family's use), pleasure or leisure, sharing with others in the community and cultural reasons.

¹⁹⁹ Rugel, E., 2015, Green space and mental health: Pathways, Impacts, and Gaps, National Collaborating Centre for Environmental Health, British Columbia Centre for Disease Control, https://ncceh.ca/sites/default/files/Full_Review-Greenspace_Mental_Health_Mar_2015.pdf (accessed February 13, 2020); Crouse, D.L., et al., 2021, "Residential greenness and indicators of stress and mental well-being in a Canadian national-level survey," Environmental Research, Vol. 192, https://doi.org/10.1016/j.envres.2020.110267 (accessed December 14, 2020).

²⁰⁰ Crouse, D.L., et al., 2017, "Urban greenness and mortality in Canada's largest cities: a national cohort study," *Lancet Planetary Health*, <u>https://www.thelancet.com/journals/lanplh/article/</u> PIIS2542-5196(17)30118-3/fulltext (accessed March 14, 2021).

²⁰¹ Pinault, L., et al., 2021, "Ethnocultural and socioeconomic disparities in exposure to residential greenness within urban Canada," *Health Reports*, Catalogue no. 82-003-X, https://www150. statcan.gc.ca/n1/pub/82-003-x/2021005/article/00001-eng.htm (accessed May 20, 2021).

²⁰² Dewis, G. 2020, "Access and use of parks and greenspaces: The potential impact of COVID-19 on Canadian Households," *StatCan COVID-19: Data to Insights for a Better Canada*, Statistics Canada Catalogue no. 45-28-0001, https://www150.statcan.gc.ca/n1/pub/45-28-0001/2020001/article/00031-eng.htm (accessed December 14, 2020). Data updated to 2019.

²⁰³ Statistics Canada, Table 38-10-0282-01, https://www150.statcan.gc.ca/t1/tbl1/en/cv.action?pid=3810028201 (accessed October 21, 2021).

²⁰⁴ Statistics Canada, Table 45-10-0030-01, https://doi.org/10.25318/4510003001-eng (accessed January 22, 2020); Fisheries and Oceans Canada, 2019, Survey of Recreational Fishing in Canada, 2015, https://www.dfo-mpo.gc.ca/stats/rec/can/2015/index-eng.html#4-3 (accessed February 24, 2020).

²⁰⁵ Statistics Canada, Table 45-10-0030-01, https://doi.org/10.25318/4510003001-eng (accessed January 22, 2020). Note this includes participation for employment, self-employment and recreational purposes.

²⁰⁶ Kumar, M.B., et al., 2019, "Harvesting activities among First Nations people living off reserve, Métis and Inuit: Time trends, barriers and associated factors," *Aboriginal Peoples Survey,* Catalogue no. 89-653-X, https://www150.statcan.gc.ca/n1/en/catalogue/89-653-X2019001 (June 15, 2021).
Table 4.1

Biomass provisioning services supply, by ecosystem type, Canada, 2002 to 2020

					Other natural and				
		Agricultural eco		Forest	and freshwater	Coastal a	systems	Total supply	
	- Built- up and	Crop (includes hay), honey	Grazed forage				Shellfish	-	
	artificial surfaces	and maple production	production on pasture	Roundwood harvested	Freshwater fishery landings	Seafisheries landings	aquaculture production	Marine plants harvested	Biomass extraction
					kilotonnes				
2002		78,476		196,360	41	1,030	34	42	
2003		101,303		182,101	37	1,071	36	46	
2004		110,516		208,884	36	1,130	38	41	
2005		114,382		204,109	32	1,077	38	42	
2006		114,523	13,346	183,758	31	1,043	40	43	
2007		112,508		163,670	32	990	37	19	
2008		124,114		139,006	30	917	34	18	
2009		115,275		116,666	30	914	35	43	
2010		115,466		141,996	27	905	40	43	
2011		116,897	12,796	147,982	26	836	38	19	
2012		120,762		151,167	29	787	43	14	
2013		144,338		153,951	28	820	39	15	
2014		125,911		153,195	27	832	38	14	
2015		126,030		158,820	28	823	39	12	
2016		141,496	11,965	156,547	30	832	40	13	
2017		140,135		153,279	29	806	40	13	
2018		137,489		155,953	39	784	41	11	
2019		137,229		141,116	24	728	43	13	
2020		137,281							

. not available for any reference period

.. not available for a specific reference period

Notes: Production data are reported as a proxy value of provisioning ecosystem services provided by ecosystems and will include different moisture contents. Timber is reported in green weight. Provincial data that are unavailable or data that are suppressed to meet confidentiality or data quality standards are not included in total. Data exclude non-commercial harvests. For more information about definitions, sources and methods, see Appendix A.

Sources: Statistics Canada, Tables 32-10-0359-01, 32-10-0365-01, 32-10-0364-01, 32-10-0358-01, 32-10-0353-01, 32-10-0354-01, 32-10-0406-01 and 32-10-0107-01 (accessed March 16, 2021); Statistics Canada, 2007, Census of Agriculture, 2006, Farm data and farm operator data tables,

Table 4.2

Biomass provisioning services, agricultural ecosystems, by type of product and province

		202	20		2016				
	Field crops (excluding corn for silage and tame hay)	Corn for silage and tame hay	Fruit and vegetables	Honey and maple products	Grazed forage production on pasture	Total estimated production			
			tonne	S					
Total	100,236,400	29,130,800	7,790,717	123,529	11,965,330	149,246,776			
Newfoundland and									
Labrador	0	14,500	5,794		11,242	31,536			
Prince Edward Island	238,900	345,300	975,383	72	31,654	1,591,309			
Nova Scotia	80,900	419,200	130,737	513	61,482	692,832			
New Brunswick	75,600	260,700	553,898	3,452	45,985	939,635			
Quebec	5,062,300	4,691,700	1,479,409	81,001	341,846	11,656,257			
Ontario	16,158,300	6,510,700	1,883,164	6,676	734,490	25,293,330			
Manitoba	13,333,600	3,353,600	1,113,513	9,369	908,535	18,718,618			
Saskatchewan	39,064,300	3,394,900	67,517	7,123	3,888,253	46,422,094			
Alberta	25,928,200	8,397,500	1,115,719	13,578	5,132,279	40,587,276			
British Columbia	277,900	1,742,700	445,065	1,744	809,562	3,276,971			

. not available for any reference period

Notes: Agricultural production is reported as a proxy of the provisioning ecosystem service provided by agricultural ecosystems. Provincial data that are unavailable or data that are suppressed to meet confidentiality or data quality standards are not included in total. For more information about definitions, sources and methods, see Appendix A. Sources: Statistics Canada, *Tables 32-10-0359-01, 32-10-0365-01, 32-10-0368-01, 32-10-0358-01, 32-10-0354-01 and 32-10-0406-01* (accessed March 16, 2021); Yungblut, D. 2012, *National Forage and Grassland Assessment*, http://www.canadianfga.ca/wp-content/uploads/2011/04/V1-Final-June-2012-Report-National-Forage-and-Grassland-Assessment-formatted.pdf (accessed December 3, 2019).

Table 4.3

Managed forest carbon stocks, by Intergovernmental Panel on Climate Change (IPCC) carbon pool and reporting zone, 2018

		Forest carbon stock by IPCC pool									
	Above ground biomass	Below ground biomass	Deadwood	Litter	Soil	Total	Managed forest	Forest carbon stock			
			kilotonr	ies C			kilohectares	tonnes/hectare			
Total	9,940,000	2,470,000	4,500,000	10,700,000	18,600,000	46,200,000	225,706	205			
Atlantic Maritime	622,000	168,000	192,000	776,000	1,510,000	3,270,000	15,424	212			
Boreal Cordillera	817,000	193,000	375,000	942,000	1,410,000	3,740,000	14,774	253			
Boreal Plains	1,560,000	406,000	728,000	2,000,000	3,490,000	8,190,000	37,231	220			
Boreal Shield East	2,120,000	571,000	873,000	2,610,000	4,650,000	10,800,000	55,622	195			
Boreal Shield West	826,000	202,000	529,000	811,000	1,470,000	3,840,000	28,767	133			
Hudson Plains	14,600	3,750	6,900	12,200	22,400	59,900	302	198			
Mixedwood Plains	162,000	41,100	51,600	113,000	247,000	616,000	2,663	231			
Montane Cordillera	1,660,000	373,000	838,000	1,600,000	2,470,000	6,950,000	34,647	200			
Pacific Maritime	1,340,000	296,000	383,000	898,000	1,710,000	4,630,000	10,912	424			
Semi-arid Prairies	1,610	459	1,580	2,250	4,320	10,200	40	258			
Sub-humid Prairies	63,600	19,300	22,700	103,000	175,000	384,000	1,781	215			
Taiga Cordillera	17,200	4,580	17,400	27,900	36,900	104,000	412	252			
Taiga Plains	637,000	168,000	407,000	704,000	1,230,000	3,140,000	20,203	155			
Taiga Shield East	42,600	9,470	30,100	54,000	91,200	227,000	1,102	206			
Taiga Shield West	40,100	11,600	41,700	57,400	112,600	263,000	1,827	144			

Notes: The National Forest Carbon Monitoring, Accounting and Reporting System (NFCMARS) used by the Canadian Forest Service (CFS) to estimate greenhouse gas (GHG) sources and sinks for Canada's *National Inventory Report 1990 to 2018* submission to the United Nations Framework Convention on Climate Change covers managed forest land only (excludes unmanaged forests). Data are reported by reporting zone, which are based on Canada's terrestrial ecozones with three exceptions: the Boreal Shield and the Taiga Shield ecozones are split into east and west components, the Prairie ecozone is split into sub-humid and semi-arid components and the Arctic Cordillera is excluded. For some regions, notably the Hudson Plains and Taiga Shield, only a very small proportion of forest area is considered managed. Managed boreal forest represents about half of Canada's boreal forest area. The Carbon Budget Model of the CFS (CBM-CFS3) at the core of NFCMARS is designed for use on non-frozen upland mineral soils (0 to 100 cm) and therefore excludes organic soils (peatland) and permafrost. **Source:** Natural Resources Canada, Canadian Forest Service, Carbon Accounting.

Table 4.4

Carbon sequestration services, by ecosystem type, 2005 to 2018

					М	anaged forest	Other				
	Built-up and artificial surfaces	Arable	Grassland and natural pasture	Net primary productivity	Net ecosystem productivity	Disturbance emissions	Harvest transfers	Net biome productivity	natural and semi-natural land and freshwater	Coastal and marine ecosystems	Total
						kilotonnes C					
2005	1,100	4,100		730,000	47,000	18,000	56,000	-27,000			
2006	1,100	4,300		730,000	44,000	22,000	51,000	-29,000			
2007	1,100	4,300		730,000	42,000	23,000	46,000	-27,000			
2008	1,100	4,200		730,000	44,000	10,000	40,000	-6,600			
2009	1,100	4,200		730,000	47,000	16,000	34,000	-3,500			
2010	1,100	4,100		730,000	45,000	32,000	41,000	-29,000			
2011	1,100	4,100		725,000	46,000	38,000	43,000	-35,000			
2012	1,100	3,800		720,000	46,000	32,000	44,000	-29,000			
2013	1,100	3,600		720,000	47,000	16,000	44,000	-12,000			
2014	1,100	3,300		720,000	46,000	44,000	43,000	-41,000			
2015	1,100	3,100		720,000	43,000	61,000	45,000	-63,000			
2016	1,100	2,900		720,000	44,000	33,000	45,000	-34,000			
2017	1,100	2,600		710,000	43,000	56,000	45,000	-59,000			
2018	1,100	2,400		710,000	41,000	63,000	45,000	-68,000			

.. not available for a specific reference period

Notes: Modeling of carbon fluxes draws upon collaboration among scientists and experts in several disciplines and is used for reporting in Canada's *National Inventory Report 1990-2018* submission to the United Nations Framework Convention on Climate Change. For more information, see Appendix A.

Sources: Environment and Climate Change Canada, 2020, CRF Tables, Canada's National Inventory Submissions 2018 to the UNFCCC, https://unfccc.int/process-and-meetings/transparencyand-reporting/reporting-and-review-under-the-convention/greenhouse-gas-inventories-annex-i-parties/submissions/national-inventory-submissions-2018#fn1 (accessed April 30, 2020); Natural Resources Canada, Canadian Forest Service, Carbon Accounting.

Table 4.5 Air pollutant removal services by urban trees in selected population centres, 2010

	Area	Tree cover	Estimated removal of pollution	Average pollution removal per unit of tree cover	Population, 2011	Estimated monetary value associated with various health effects due to pollutant reduction from trees
Population centre	km ²	percentage	tonnes	g/m²	number	dollars/hectare
Calgary	722.8	9.3	203.3	3.0	1,095,404	1,074
Edmonton	872.6	13.0	304.6	2.7	960,015	1,206
Ottawa-Gatineau (Que.)	172.3	30.6	183.5	3.5	236,329	547
Halifax	291.4	51.8	547.0	3.6	297,943	547
Hamilton	394.8	21.6	458.7	5.4	670,580	1,016
Kitchener	319.4	20.5	300.7	4.6	444,681	1,564
London	225.7	20.3	199.0	4.3	366,191	804
Montréal	1,557.6	22.7	1,400.3	4.0	3,407,963	886
Ottawa-Gatineau (Ont.)	389.4	26.5	366.1	3.6	697,267	484
Québec	682.9	47.0	686.1	2.1	696,946	275
St. Catharines – Niagara	394.4	23.9	491.9	5.2	309,319	471
Toronto	1,763.4	18.2	1,472.2	4.6	5,132,794	792
Vancouver	1,206.6	40.0	1,744.6	3.6	2,135,201	336
Victoria	281.6	45.5	450.1	3.5	316,327	334
Winnipeg	460.1	16.5	244.6	3.2	671,551	938
Other population centres	6,578.8	30.2	7,467.6	3.8	5,564,040	371

Notes: This study covers 85 medium and large urban population centres (i.e. those with a population greater than 30,000). Population and area are reported for population centres as reported in the 2011 Census of Population. Ottawa-Gatineau has been split at the provincial boundary. The estimated monetary values associated with health effects due to pollutant reduction in Ottawa and Gatineau have been revised from the original article to adjust for the actual population in 2011.

Sources: Nowak, D., et al., 2018, "Air pollution removal by urban forests in Canada and its effect on air quality and human health," *Urban Forestry and Urban Greening*, Vol. 29, pp. 40-48, https://doi.org/10.1016/j.ufug.2017.10.019 (accessed March 4, 2020); Statistics Canada, 2012, 2011 *Census Profiles*, Catalogue no. 98-316-XWE, https://www12.statcan.gc.ca/census-recensement/2011/dp-pd/prof/index.cfm?Lang=E (accessed July 6, 2020); Statistics Canada, *Boundary Files, 2011 Census*, https://www12.statcan.gc.ca/census-recensement/2011/geo/bound-limit/2011/dp-pd/prof/index.cfm?Lang=E (accessed July 6, 2020); Statistics Canada, *Boundary Files, 2011 Census*, https://www12.statcan.gc.ca/census-recensement/2011/geo/bound-limit/2011-dp-pd/prof/index.cfm?Lang=E (accessed July 6, 2020); Statistics Canada, *Boundary Files, 2011 Census*, https://www12.statcan.gc.ca/census-recensement/2011/geo/bound-limit/2011-dp-pd/prof/index.cfm?Lang=E (accessed July 6, 2020); Statistics Canada, *Boundary Files, 2011 Census*, https://www12.statcan.gc.ca/census-recensement/2011/geo/bound-limit/2011-dp-pd/prof/index.cfm?Lang=E (accessed July 6, 2020); Statistics Canada, *Boundary Files, 2011 Census*, https://www12.statcan.gc.ca/census-recensement/2011/geo/bound-limit/2011-dp-g.fm (accessed July 6, 2020); Pasher, J., et al., 2014, "Assessing carbon storage and sequestration by Canada's urban forests using high resolution earth observation data," *Urban Forestry and Urban Greening*, Vol. 13, no. 3, p. 484-494, https://doi.org/10.1016/j.ufug.2014.05.001 (accessed June 15, 2015).

			Households	s that had a park or green space close to home ²	
	National parks	National historic sites	Total	Households that visited a park or greenspace close to home ²	Households that visited a park or green space not close to home ³
	pe	erson-visits ¹		percentage	
2011			86	84	70
2012					
2013			85	85	69
2014	13,520,886	8,255,118			
2015	14,469,008	8,853,089	87	87	72
2016	15,449,249	9,288,024			
2017	16,833,896	10,419,484	87	85	71
2018	15,898,110	9,198,126			
2019	16,146,557	8,741,684	90	85	73

Table 4.6 Use of recreational services, Canada, 2011 to 2019

.. not available for a specific reference period

1. Person visits represent each time a person enters the land or marine part of a reporting unit for recreational, educational or cultural purposes during business hours. Through, local and commercial traffic are excluded. Same day re-entries and re-entries by visitors staying overnight in the reporting unit do not constitute new person-visits. Reporting is per fiscal year starting April 1. In 2017, admission was free to all Parks Canada places to mark Canada's 150th birthday.

Survey-based reporting of whether households had a park or green space located close to home and whether or not they visited a park or green space close to not close to home. The
denominator of those visiting a park or green space close to home is households reporting having a park or green space close to home. Close to home is defined as within a 10-minute
journey of home.

3. As a percentage of all households.

Sources: Parks Canada, 2021, Parks Canada Attendance 2019-20, https://www.pc.gc.ca/en/docs/pc/attend (accessed February 10, 2021); Parks Canada, personal communication with Brenda Jones, September 6, 2019; Statistics Canada, Table 38-10-0020-01, Parks and green spaces, https://www150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=3810002001 (accessed October 19, 2021).

Table 4.7

Participation in outdoor activities close to home, by household income, 2019

			Но	usehold inco	me			
	Under							-
	\$20,000							
	(includes	\$20,000 to	\$40,000 to	\$60,000 to	\$80,000 to	\$100,000 to	\$150,000	All
	income loss)	\$39,999	\$59,999	\$79,999	\$99,999	\$149,999	and more	nousenoids
				perce	ntage			
Participated in outdoor activities close to home	59	61	72	76	83	87	88	77
Walking	56	56	67	71	78	82	83	72
Jogging, running, rollerblading, cross-country running	10	8	14	17	26	34	39	22
Hiking	14	12	21	25	32	32	38	26
Football, soccer, field hockey, basketball, volleyball,								
baseball, rugby, lacrosse, ultimate (frisbee), ball/road hockey	6 ^E	8	10	16	19	25	31	17
Golfing, croquet, lawn darts, lawn bowling, bocci	4 ^E	5	8	12	13	18	23	13
Boating, sailing, canoeing, kayaking, rafting, rowing,								
dragonboating, seadooing	5	6	8	11	16	17	20	12
Swimming, going to the beach, surfing, scuba diving,								
snorkeling	12	15	20	25	32	34	36	26
Bicycling	16	17	25	31	40	46	53	34
All-terrain vehicle (ATV)	2 ^E	2	4	4	7	7	8	5
Skiing, snowboarding, telemark	1 ^E	2 ^e	- 3	5	8	9	14	6
Snowmobiling	1 ^E	1 ⁶	≡ 3 [∎]	3	4	5	6	3
Cross-country skiing, snowshoeing	3 ^E	4	6	8	10	11	14	8
Hunting								
Fishing	5 ^E	6	9	11	13	15	16	11
Camping	6	6	10	12	14	17	16	12
Picnicking, barbecue	15	16	24	27	32	39	37	29
Skating	4 ^E	5	8	12	15	20	25	14
Ice hockey, broomball, curling	F	2 ^E	4	6	8	11	16	8
Bird watching, photography	7	8	11	11	15	17	13	12
Exercise, tai chi, aerobics, voga	8	9	13	16	16	22	23	16
Go to the park/playground	18	23	29	36	41	46	50	36
Mountain climbing	F	16	=	2 ^E	4	4	4	3
Tobogganing, sliding	4 ^E	3	8	8	13	16	20	11
Geocaching	F	F	15	- 1 ^E	2 ^E	3		2
Badminton, tennis	3ª	י פי	- 75	6	7	11	14	8
Other outdoor activities	2 ^E	2	.3ª	3	3 ^E			3
Did not participate in outdoor activities close to home	41	39	28	24	17	13	12	23

E use with caution

F too unreliable to be published

Note: "Close to home" is defined as being within a 10-minute journey of home. Figures may not add up to 100% as a result of rounding or due to the exclusion of respondents that did not

answer the question. Source: Statistics Canada, Tables 38-10-0123-01 and 38-10-0121-01, https://doi.org/10.25318/3810012301-eng and https://doi.org/10.25318/3810012101-eng (accessed October 21, 2021).

5.0 Appendices

A. Methodology and data limitations

Human Activity and the Environment 2021: Accounting for ecosystem change in Canada brings together data from many sources to provide accessible information on the state of Canada's environment. It is a first effort to organize available data according to the new integrated and comprehensive statistical framework for ecosystem accounting described in the System of Environmental-Economic Accounting–Ecosystem Accounting (SEEA – EA)²⁰⁷ that has been adopted by the United Nations Statistical Commission. While there are multiple components of these accounts, this report focuses on developing data for the core extent, condition and supply and use of ecosystem services accounts. The main data sources, methods and key data limitations are summarized below.

Extent and drivers of change

Terrestrial and freshwater ecosystems

The extent section compiles comprehensive terrestrial and freshwater area estimates that are comparable across the country at the ecoprovince level. Sources include data gathered through satellite imagery, ground plots and photo plots, soil surveys and respondent surveys. In some cases, multiple data sources have been combined to provide a more robust estimate. However, there are difficulties both in consistently delineating ecosystem types across the country and in accurately tracking change in ecosystem areas over time. Data are frequently inconsistent or unavailable across time and space, making time series comparisons difficult. Most land cover and land use maps currently available do not explicitly address changes over time. As a result, estimates of ecosystem extents may change in the future, reflecting not only actual changes on the ground over time, but also changes in data. For similar reasons, caution should be used when interpreting the changes in ecosystem extents over time that are presented in this report.

Table 2.1 (Part 1)

The total area for Canada includes land and water including the Canadian portion of the Great Lakes system. Ecoprovince boundaries are based on the *Terrestrial Ecoprovinces of Canada*, which exclude the Great Lakes.²⁰⁸

Freshwater areas are derived from the *Canvec Series* – *Hydrographic Features* at a scale of 1:50,000 using the layers for waterbodies and watercourses.²⁰⁹ A 5 m buffer was applied to watercourses to estimate the area.²¹⁰ Land areas are calculated as the difference between the total ecoprovince area and the water area.

Mapping wetlands and measuring change in extent are difficult on a national and regional scale. Peatlands are organic wetland ecosystems with peat deposits that are at least 40 cm thick, including bogs and fens. Peatland areas can underlie various land covers—these areas overlap with the land and freshwater areas and with other ecosystem types (e.g., forest, tundra, other natural and semi-natural area). Peatland data are taken from the *Peatlands of Canada Database* (2011), which is based on Soil Landscapes of Canada (SLC) polygons.²¹¹ Area is calculated by multiplying the percent of peatland by the area of the SLC and aggregating by ecoprovince. Map 2.1 displays soil landscape polygons where 50% or more of the area is classed as peatland. The development of updated spatial data on peatland areas is ongoing,²¹² but these newer results have not been assessed fully for the purposes of this study.

²⁰⁷ United Nations, 2021, System of Environmental-Economic Accounting — Ecosystem Accounting, https://seea.un.org/ecosystem-accounting (accessed March 15, 2021).

²⁰⁸ Agriculture and Agri-Food Canada, 2013, Terrestrial Ecoprovinces of Canada, https://open.canada.ca/data/en/dataset/98fa7335-fbfe-4289-9a0e-d6bf3874b424 (accessed December 2, 2020).

²⁰⁹ Natural Resources Canada, Canada Centre for Mapping and Earth Observation, 2018, *Lakes, Rivers and Glaciers in Canada – CanVec Series – Hydrographic Features, 50K*, https://open. canada.ca/data/en/dataset/9d96e8c9-22fe-4ad2-b5e8-94a6991b744b (accessed December 2, 2020). Note that the extent of freshwater area differs from areas previously published for Canada in Statistics Canada, 2017, "Freshwater in Canada," *Human Activity and the Environment,* Catalogue no. 16-201-X, https://www150.statcan.gc.ca/n1/pub/16-201-x/16-201x2017000-eng.htm.

²¹⁰ The 5 m buffer was selected based on consultation with data providers and was based on an average watercourse width estimate of 10 m.

²¹¹ Tarnocai, C., I.M. Kettles and B. Lacelle, 2011, Peatlands of Canada, Geological Survey of Canada, https://geoscan.nrcan.gc.ca/starweb/geoscan/servlet.starweb?path=geoscan/fulle.web&search1=R=288786 (accessed March 16, 2020).

²¹² For example, Webster, K.L., et al., 2018, "Spatially-integrated estimates of net ecosystem exchange and methane fluxes from Canadian peatlands," *Carbon Balance and Management*, https://doi.org/10.1186/s13021-018-0105-5 (accessed August 18, 2019).

Table 2.1 (Part 2)

Canada's official National Forest Inventory (NFI) is produced by Natural Resources Canada's Canadian Forest Service (CFS) on a 10-year cycle and is based on a stratified sample of ground and photo plots to support reporting at the national and ecozone level.²¹³ The NFI uses the Food and Agriculture Organization of the United Nations (FAO) definition of forest land as "land spanning more than 0.5 hectares with trees higher than 5 metres and a canopy cover of more than 10% or trees able to reach these thresholds in situ," including areas that are temporarily unstocked (areas harvested or burned).²¹⁴ The National Deforestation Monitoring System tracks forest area lost to other land uses and, in conjunction with afforestation data, is used to estimate forest area between cycles of the NFI.²¹⁵ The extent of boreal and non-boreal forests was estimated with boundaries from Brandt (2009).²¹⁶

Statistics Canada has produced an estimate of forest extent at the ecoprovince level for the purposes of ecosystem accounting. Estimates provided here were downscaled by benchmarking treed area data derived from medium resolution satellite imagery to the latest NFI estimates²¹⁷ This method increases uncertainty and error in the ecoprovince-level estimate. In addition, the use of treed area data excludes temporarily unstocked areas, which can be a significant component of forests in some regions, with estimates of about 10% of forest area temporarily unstocked a result of fire or harvest.²¹⁸ For these reasons, these estimates are not intended as official estimates of forest land, which are reported in the NFI and in *The State of Canada's Forests*.

There is considerable difficulty in accurately classifying grassland areas using satellite imagery data because of the similarities between natural grasslands and tame or seeded pasture, both of which can be used for grazing livestock. ²¹⁹ssessed data sets showed considerable interannual fluctuations between these classes and between pasture and cropland classes (e.g., hay land, from which a hay crop may be harvested.) In order to minimize fluctuations and provide a more robust estimate, the grassland data are estimated using multiple data sets, with satellite imagery data averaged over several years. As a result, change over time is difficult to assess.

First, Agriculture and Agri-Food Canada's (AAFC) space-based 30 m resolution Annual Crop Inventory²²⁰ classes for grassland and pasture were averaged for 2014, 2015 and 2016. For areas located outside Canada's agricultural ecumene, grassland was estimated with averaged 2010 and 2015 data from the temperate or subpolar grassland class from the Commission for Environmental Cooperation's (CEC) Land Cover of North America at 30 m.²²¹ In mountainous ecoprovinces, where there was a high degree of variability in grassland results between the datasets, results were further adjusted using derived coefficients. Treed pasture was removed by overlaying the 2015 Land Cover of North America temperate or sub-polar needleleaf forest, temperate or sub-polar shrubland, temperate or sub-polar broadleaf deciduous forest and mixed forest classes over the area and results were aggregated by ecoprovince. Tame or

²¹³ National Forest Inventory, 2021, Standard Reports, https://nfi.nfis.org/en/standardreports, (accessed August 13, 2021); Natural Resources Canada, 2020, The State of Canada's Forests 2020, https://www.nrcan.gc.ca/our-natural-resources/forests-forestry/state-canadas-forests-report/16496 (accessed December 8, 2020).

²¹⁴ Food and Agriculture Organization of the United Nations, 2020, Global Forest Resources Assessment 2020 Main Report, Rome, Italy, https://doi.org/10.4060/ca9825en (accessed December 8, 2020).

²¹⁵ Dyk, A., D. Leckie, S. Tinis and S. Ortlepp, 2015, Canada's National Deforestation Monitoring System: System Description, Information Report—Pacific Forestry Centre, Canadian Forest Service, <u>https://cfs.nrcan.gc.ca/publications?id=36042</u> (accessed April 20, 2021).

²¹⁶ Brandt, J.P., 2009, "The extent of the North American boreal zone," *Environmental Reviews*, Vol. 27, no. 1, pp. 101-161, http://cfs.nrcan.gc.ca/publications/?id=29569 (accessed June 15, 2017)

²¹⁷ National Forest Inventory, 2021, First remeasurement standard reports (2007-2017), Table 4.1. Area (1000 ha) of forest and non-forest land by terrestrial ecozone in Canada, https://nfi.nfis.org/resources/general/summaries/en/html/NF13 T4_FOR_AREA_en.html (accessed August 13, 2021); Beaudoin, A., et al., 2017, Species composition, forest properties and land cover types across Canada's forests at 250 m resolution for 2001 and 2011, Natural Resources Canada (NRCan), Canadian Forest Service, Laurentian Forestry Centre, https://doi.org/10.23687/ec9e2659-1c29-4ddb-87a2-6aced147a990 (accessed March 31, 2019).

²¹⁸ Wulder, M.A., et al., 2020, "Satellite-based time series land cover and change information to map forest area consistent with national and international reporting requirements," *Forestry:* An International Journal of Forest Research, Vol. 93, no. 3, pp. 331-343, <u>https://doi.org/10.1093/forestry/cpaa006</u> (accessed April 8, 2021).

²¹⁹ Ogle, S.M., et al., 2018, "Delineating managed land for reporting national greenhouse gas emissions and removals to the United Nations framework convention on climate change," *Carbon Balance and Management*, Vol. 13, no. 9, https://doi.org/10.1186/s13021-018-0095-3 (accessed April 9, 2021).

²²⁰ Agriculture and Agri-Food Canada, 2020, Annual Crop Inventory, 2014-2016, https://open.canada.ca/data/en/dataset/ba2645d5-4458-414d-b196-6303ac06c1c9 (accessed December 3, 2020).

²²¹ Natural Resources Canada, Canada Centre for Mapping and Earth Observation, Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, Comisión Nacional Forestal, Instituto National de Estadística y Geografía and U.S. Geological Survey, 2020, 2010 and 2015 Land Cover of North America at 30 metres, Ed. 2.0, Commission for Environmental Cooperation (CEC), North American Land Change Monitoring System, http://www.cec.org/north-american-land-change-monitoring-system/ (accessed December 9, 2020).

seeded pasture areas from the *Interpolated Census of Agriculture*²²² were subtracted to avoid double counting, as these are reported as arable land in the intensive use area in Table 2.1 (Part 3). Final adjustments were made to ensure consistency with other classes.

Areas of arctic tundra were estimated using the tundra areas from Baldwin, et al. (2018)²²³ and subtracting areas of permanent snow and ice from the 2015 Land Cover of North America snow and ice class. Note that this estimate of area north of the boreal zone includes freshwater areas and barrenland.

The other natural and semi-natural area category is calculated by subtracting all other ecosystem types from the total area. It may include, for example, woodland, shrubland, barrenland, wetland and lakes and rivers.

Table 2.1 (Part 3)

Arable land is reported as the sum of cropland, tame or seeded pasture and summerfallow from the *Interpolated Census* of Agriculture, which aggregates *Census of Agriculture* data by ecological and drainage units. Other land on farms (e.g., idle land, land occupied by farm buildings, wetlands and woodlands) and natural pasture are not included. Data for arable land do not indicate the amount of land that is potentially cultivable. There are differences between tabulations of Statistics Canada's Census of Agriculture data by standard geographies and the interpolated data provided to AAFC. Specifically, confidentiality procedures are applied to the data in order to avoid the possibility of identifying any specific agricultural operation. This involves the suppression of selected data. As well, the interpolated data are based on the Census Geographic Component Database, in which splits of selected key farms have been reallocated to specific geolocations, rather than to the location of the farm headquarters.

Settlements and human infrastructure are represented with land cover data on built-up and artificial surfaces (BUAS), defined as areas that are predominantly built-up or developed including road surfaces, railway surfaces, buildings and paved surfaces, urban areas, industrial sites, mine structures and golf courses, as well the vegetated areas associated with these land covers. These estimates are based on the settlement (built-up and urban) and roads classes from AAFC's *Land Use*, *2000 and 2010*²²⁴ at 30 m resolution for areas of Canada south of 60° N. For areas north of 60° N, where no AAFC land use data was available, estimates were generated for 2000 based on road lengths from Statistics Canada's *Road Network File*.²²⁵ For 2010, the *Land Cover of North America* urban and built-up class was used to estimate the BUAS for northern areas.

The 2015 national BUAS extent was estimated by adding the area converted to settlement from Environment and Climate Change Canada's *National Inventory Report* (NIR) for the years from 2011 to 2015 to the 2010 national BUAS estimate. The NIR reports supplementary data in the common reporting format (CRF) tables, with Table 4.1 providing data on the area of land converted from forest, cropland and grassland to settlements. Settlements as defined in the NIR include all roads and transportation infrastructure; rights-of-way for power transmission and pipeline corridors; residential, recreational, commercial and industrial lands in urban and rural settings; and land used for resource extraction other than forestry. Land converted from wetlands and 'other land' are not included in the conversion. A detailed methodology of data development is available in Part 2 of the NIR.

A quality assessment of the change in BUAS areas in a buffer area surrounding 20 population centres was conducted for the 2000 to 2010 time period. These population centres were selected in different regions of the country. It found that the change accuracy was greater than 90% for large polygons greater than 10 ha, which contributed 90% of the change, and above 80% for medium sized polygons between 5 to 10 ha, which contributed 7% of change. Accuracy was lower for smaller polygons, but these polygons contributed less than 5% of the change. Additional but more general assessments were also done using satellite imagery.

²²² Agriculture and Agri-Food Canada, 2016, Interpolated Census of Agriculture, https://open.canada.ca/data/en/dataset/1dee8513-5c73-43b6-9446-25f7b985cd00 (accessed December 3, 2020).

²²³ Baldwin, K., et al., 2018, Vegetation Zones of Canada: a Biogeoclimatic Perspective [Map], Scale 1:5,000,000, NRCAN, CFS, https://open.canada.ca/data/en/dataset/22b0166b-9db3-46b7-9baf-6584a3acc7b1 (accessed October 26, 2020).

²²⁴ Agriculture and Agri-Food Canada, 2015, Land Use, 2000 & 2010, https://open.canada.ca/data/en/dataset/18e3ef1a-497c-40c6-8326-aac1a34a0dec (accessed June 1, 2020). 225 Statistics Canada, 2017, Road Network File, 2016, https://www150.statcan.gc.ca/n1/en/catalogue/92-500-X (accessed December 21, 2020).

Marine and coastal ecosystems

As a first step a hexagon grid was built for the entire area of Canada's exclusive economic zone. These I km² hexagons are used as the basic spatial unit for all of the marine data in this report.

Data for bathymetry, slope and the terrain ruggedness index were calculated from the General Bathymetric Chart of the Oceans (GEBCO) data (version 20150318). Depth classes were assigned by averaging bathymetry data over each hexagon.

Slope was calculated using the tool in ArcGIS, resampled at 25 m, and then the mean for each hexagon was calculated using zonal statistics.

Terrain ruggedness was calculated as a raster layer using the method described in Riley et al. (1999).²²⁶ It was then resampled at 25 m and the mean for each hexagon of the grid was calculated using zonal statistics.

Data for seagrass meadows, kelp forest and cold water coral were taken from a mix of polygon and point sources. For seagrass meadows, both polygon and point data were used. Polygon data that overlapped were treated as a single patch. Where point data did not overlap existing polygon data, the patch size was assumed to be equivalent to the ecoregion's average seagrass patch size. These derived polygons were then merged with the initial polygon data.

A similar methodology was used for cold water coral; however, the applied mean patch size was calculated using only coral areas less than 100 km², since the inclusion of larger patches would have skewed the mean and overestimated coral areas. Many of these larger patches were estimated using kernel density methods and may also overestimate coral area.

For kelp forests, only polygon data was used, as point data on the East Coast was scarce and clearly underestimated kelp area.

Salt marsh estimates were based on United Nations Environment Programme (UNEP)²²⁷ polygon data. Although there are other known areas of salt marsh in Canada, it was not possible to obtain area estimates for this analysis.

Seagrass, kelp and salt marsh ecosystems all occur in coastal areas, including in a number of small bays and inlets on the borders between land and sea—they were included in the extent even if in areas that were assigned to land. Furthermore there were some areas of overlap between ecosystem types. These areas have been assigned to both ecosystems rather than creating joint ecosystem types. As such, totals in this table will not match totals in other marine tables in the publication. As detailed marine data is costly to acquire, there are many gaps in the extent accounts, some of which could be filled by modelling exercises or potentially satellite data. Accounting for change over time of marine ecosystems is likely to prove particularly difficult.

Climate

Average annual and seasonal air temperature changes from 1948 to 2016 are produced by Environment and Climate Change Canada (ECCC) based on gridded temperature data interpolated from weather stations.²²⁸ The long-term temperature trend (1948 to 2016) refers to the linear trend of temperature departures from the 1961 to 1990 climate normal. The data are tabulated by ecoprovince and for different ecosystem types and areas by ecoprovince. Caution should be exercised when analyzing change results in the North because of lower climate station densities. Significance levels are not available.

To calculate the temperature change occurring in forest, freshwater, peatland, agricultural and built-up and artificial surface areas (Table 2.9), the temperature change data were overlayed on each class layer and an average was generated by ecoprovince. Each class is treated independently from the others and overlap exists between classes.

²²⁶ Riley, S.J., et al., 1999, "A terrain ruggedness index that quantifies topographic heterogeneity," Intermountain Journal of Sciences, Vol. 5, no. 1-4.

²²⁷ McOwen, C., et al., 2017, "A global map of saltmarshes," *Biodiversity Data Journal*, Vol. 5: e11764, <u>https://doi.org/10.3897/BDJ.5.e11764</u> and <u>http://data.unepwcmc.org/datasets/43</u> (v.6) (accessed September 20, 2019).

²²⁸ Environment and Climate Change Canada (ECCC), Canadian Gridded Temperature and Precipitation Anomalies (CANGRD), https://open.canada.ca/data/en/dataset/3d4b68a5-13bc-48bb-ad10-801128aa6604#wb-auto-6 (accessed May 15, 2020); ECCC, Climate Trends and Variations Bulletin, <a href="https://www.canada.ca/en/environment-climate-change/services/climate-change/ser

Some classes differ from the areas reported in Table 2.1. Specifically, the forest area layer uses treed area from Beaudoin (2017), while agricultural area is based on the total farm area (TFAREA) variable by soil landscape polygon from the *Interpolated Census of Agriculture* (2011).²²⁹ This variable represents all areas operated by farms including cropland, summerfallow, tame or seeded pasture, improved pasture and other areas on farms (woodlands, wetlands, idle land and farm buildings including barns, greenhouses, mushroom houses and dwellings).

Average annual, maximum and minimum monthly temperature, precipitation, evapotranspiration and potential evapotranspiration, as well as average annual and seasonal change in precipitation, evapotranspiration and potential evapotranspiration from 1979 to 2016 are based on the Ecological Assimilation of Land and Climate Observations (EALCO) model used by the Canada Centre for Mapping and Earth Observation, Natural Resources Canada.²³⁰

These variables were estimated from models that used a combination of climate and satellite data. Caution should be used when interpreting these results and in particular trend results. There can be higher levels of uncertainty in some areas because of a scarcity of data, for example, in northern and mountainous regions.²³¹ These variables are useful indicators for identifying where ecosystem changes might be occurring or may have occurred. For other types of research, such as water budget or climate change analysis, broader considerations and more validation are recommended. The time series data from the EALCO model were tested for the presence of serial correlation and for anomalous observations (outliers). The ARIMA function in the R statistical program was used to compute the overall trend. The ARIMA function produces a linear trend and the associated significance level is adjusted for any existing serial correlation and anomalous observations. Statistically significant linear trends at the 90% confidence level or above are indicated.

The average climate variables are defined as the mean of the reference period. The months used to calculate each season are as follows: spring (March, April, May); summer (June, July, August); fall (September, October, November); and winter (December, January, February).

Condition characteristics

Total water storage change and water yield

Total water storage change is a coarse resolution estimate of changes in the amount of water stored in the environment above and below the Earth's surface including groundwater, soil moisture, snow, ice and surface water. Change in total water storage is indicative of changing climate conditions and is useful for understanding potential influences on ecosystems. Results should be interpreted with caution, in context with supporting data.

Total water storage change data are based on Wang and Li (2016)²³² who used monthly data from the Gravity Recovery and Climate Experiment (GRACE) satellite mission to assess terrestrial water storage climatology for 2002 to 2016. This data has been resampled from the GRACE data to a resolution of 5 km using the EALCO model.²³³

²²⁹ Beaudoin, A., et al., 2017, Species composition, forest properties and land cover types across Canada's forests at 250 m resolution for 2001 and 2011, Natural Resources Canada (NRCan), Canadian Forest Service, Laurentian Forestry Centre, https://doi.org/10.23687/ec9e2659-1c29-4ddb-87a2-6aced147a990 (accessed March 31, 2019); Agriculture and Agri-Food Canada, 2016, Interpolated Census of Agriculture, https://open.canada.ca/data/en/dataset/1dee8513-5c73-43b6-9446-25f7b985cd00 (accessed December 3, 2020).

²³⁰ Statistics Canada, Environment and Energy Statistics Division, 2021, special tabulation based on Wang, S., Y. Yang, Y. Luo and A. Rivera, 2013, "Spatial and seasonal variations in evapotranspiration over Canada's landmass," *Hydrology and Earth System Sciences*, Vol. 17, no. 9, pp. 3561-3575, <u>https://doi.org/10.5194/hess-17-3561-2013</u> (accessed December 1, 2020); Wang, S., et al., 2014, "A national-scale assessment of long-term water budget closures for Canada's watersheds," *Journal of Geophysical Research: Atmospheres*, Vol. 119, pp. 8712–8725, <u>https://doi.org/10.1002/2014JD021951</u> (accessed February 1, 2021); Li, Z., S. Wang and J. Li, 2020, "Spatial variations and long-term trends of potential evapotranspiration in Canada," *Scientific Reports*, Vol. 10, no. 22089, <u>https://doi.org/10.1038/s41598-020-78994-9</u> (accessed February 3, 2021).

²³¹ Wang, S., et al., 2014, "A national-scale assessment of long-term water budget closures for Canada's watersheds," *Journal of Geophysical Research: Atmospheres*, Vol. 119, pp. 8712–8725, https://doi.org/10.1002/2014JD021951 (accessed February 1, 2021).

²³² Wang, S. and J. Li, 2016, "Terrestrial water storage climatology for Canada from GRACE satellite observations in 2002-2014," *Canadian Journal of Remote Sensing*, Vol. 42, no. 3, pp. 190-202, https://doi.org/10.1080/07038992.2016.1171132 (accessed December 17, 2020).

²³³ Zhong, D., S. Wang and J. Li, 2020, "A self-calibration variance-component model for spatial downscaling of GRACE observations using land surface model outputs," *Water Resources Research*, Vol. 57, no. 1, https://doi.org/10.1029/2020WR028944 (accessed February 11, 2021).

Time series results were generated monthly at the ecoprovince level. Data were suppressed for smaller ecoprovinces using a threshold of approximately 90,000 km² based on recommendations from Wang et al. (2014).²³⁴ The time series data were tested for the presence of serial correlation and for anomalous observations (outliers). The ARIMA function in the R statistical program was used to compute the overall trend. The ARIMA function produces a linear trend and the associated significance level is adjusted for any existing serial correlation and anomalous observations. Statistically significant linear trends at the 90% confidence level or above are indicated.

Water yield is an estimate of freshwater runoff, derived from data on the unregulated flow of water in rivers and streams in Canada. Data were suppressed at the ecoprovince level for the North, but are included in the Canada-level estimate. The national average annual water yield is area-weighted based on ecoprovince areas. The methodology for water yield is described in Statistics Canada, 2017, "Freshwater in Canada," Human Activity and the Environment, Catalogue no. 16-201-X and Statistics Canada, 2009, "The Water Yield for Canada as a Thirty-year Average (1971 to 2000): Concepts, Methodology and Initial Results," Environment Accounts and Statistics Analytical and Technical Paper Series, Catalogue no. 16-001-M, no. 7.

Forest condition

The National Forestry Database is Canada's main source of provincial and territorial data on forest management and impacts on forest resources.²³⁵ These data differ from the spatial data on timber harvesting and burned areas mapped and reported by ecoprovince in this report in Table 3.3 and Map 3.3. Fire data were taken from the National Burned Area Composite (NBAC), which calculates the area of forest burned on a national scale for each year since 1986. The NBAC is part of the Fire Monitoring, Accounting and Reporting System and is based on the integration of data from fine and coarse resolution satellite data from Natural Resources Canada and Provincial, Territorial and Parks Canada Agencies. Time series harvest data (1985 to 2015) were identified by 30 m Landsat remote sensing, as part of the *Canada Landsat Disturbance* (CanLaD), by Guindon, et al. (2017).²³⁶

Urban greenness

This analysis provides a synoptic view of urban greenness in summer for three reference years over an 18-year period as a measure of urban condition. It used the normalized difference vegetation index (NDVI) generated from moderate resolution imaging spectroradiometer (MODIS) at a spatial resolution of 230 m to estimate urban greenness for 996 of 1,010 population centres (i.e., those located south of 60° latitude).

The analysis used scaled NDVI, where values from 0 to 1 correspond to a vegetation gradient of non-vegetated (0) to highly vegetated (1). Population centre pixels were classified as either 'green' or 'grey.' The urban green class corresponds to areas with an NDVI greater than or equal to 0.5, representing urban areas with more vegetation. Areas with lower values are considered grey and are largely non-vegetated, though patches of grass, shrubs or crops, or other unhealthy/poor condition vegetation will be included (Figure A.1). Water areas were excluded from the analysis.

Greenness was assessed for the reference years 2001, 2011 and 2019 for the same physical area using the 2016 population centre boundary to ensure consistency. The mean NDVI was calculated using mean weekly best-quality maximum-NDVI corrected for cloud and other atmospheric residual contaminants²³⁷ for nine weeks from June 25 to August 26 for each year.

²³⁴ Wang, S., et al, 2014, "Assessment of water budget for sixteen large drainage basins in Canada," *Journal of Hydrology*, Vol. 512, pp. 1-15, https://doi.org/10.1016/j.jhydrol.2014.02.058 (accessed December 1, 2020).

²³⁵ National Forestry Database, 2020, Canada's National Forestry Database, http://nfdp.ccfm.org/en/index.php (March 3, 2021).

²³⁶ Natural Resources Canada, Canadian Forest Service, 2020, National Burned Area Composite (NBAC), http://cwfis.cfs.nrcan.gc.ca/datamart (accessed October 26, 2020); Guindon, L., et al., 2017, Canada Landsat Disturbance (CanLaD): a Canada-wide Landsat-based 30-m resolution product of fire and harvest detection and attribution since 1984, https://doi.org/10.23687/ add1346b-f632-4eb9-a83d-a662b38655ad (accessed July 20, 2020); Data files downloaded from https://opendata.nfis.org/mapserver/nfis-change_eng.html (accessed July 20, 2020).

²³⁷ Bédard, F., 2010, "Satellite image data processing at Statistics Canada for the Crop Condition Assessment Program (CCAP)," Methodology document for Statistics Canada Integrated Metadata base, https://www.statcan.gc.ca/eng/statistical-programs/document/5177_D1_T9_V1 (accessed September 18, 2020); Davidson, A., 2018, An Operational Canadian Ag-Land Monitoring System (CALMS): Near-real-time agricultural assessment from space, Agriculture and Agri-Food Canada, 100 pp.

This assessment of greenness has several limitations associated with the use of NDVI to represent greenness, including the coarse resolution of the MODIS data and the selection of the 0.5 NDVI threshold to classify green or grey pixels. As well, no distinction was made between greenness resulting from publicly accessible or private green spaces. For trend analysis, assessment of additional time series data are required, while higher resolution data are needed for the identification of detailed urban green spaces. A next step for this work will be the assessment of green space extent and greenness condition using more spatially-detailed datasets and additional time periods.

For more information, see Grenier, M., et al., 2021, "Urban greenness, 2001, 2011 and 2019," *EnviroStats*, Statistics Canada Catalogue no. 16-002-X.

Figure A.1 Examples of urban pixels classed as green or grey

Note: The green or grey class is based on the MODIS NDVI value.

Landscape fragmentation, human landscape modification index (HLMI) and human freshwater influences index (HFII)

This report measures ecosystem degradation and human impacts on landscapes in several ways including estimating directly and indirectly modified areas, linear feature density, natural and semi-natural patch size, distance to natural and semi-natural patch, the human landscape modification index (HLMI) and the human freshwater influences index (HFII).

Directly modified land (circa 2016) includes areas used for agriculture (e.g., cropland, pasture and summerfallow) from the *Interpolated Census of Agriculture*, recent forest harvest (1986 to 2015) from *CanLaD* and built-up and artificial surfaces using the datasets described above in the extent section. Indirectly modified areas include all other terrestrial and freshwater extent.

Data on natural and semi-natural patch size and distance to patch (circa 2016) are calculated based on spatial data files from AAFC's *Land Use*, 2015 beta,²³⁸ Statistics Canada's *Road Network File* and from *CanLaD*. Natural and seminatural patches include all land classes except settlements (built-up and urban), roads, cropland (annual and perennial), harvested forest (from 2001 to 2015) and managed grassland (natural grass and shrubs used for cattle grazing). A single patch of natural and semi-natural land has a minimum size of 9 pixels (at 30 m x 30 m) with an area of 8,100 m². Distance to patch is the average distance from any location in the ecoprovince to the nearest patch of natural

²³⁸ Agriculture and Agri-Food Canada, 2020, Land Use, 2015 (beta version).

and semi-natural land. Average natural and semi-natural patch size should be interpreted with distance to natural and semi-natural patch to get a more complete understanding of fragmentation. Note that the presence of islands can lower the average natural and semi-natural patch size.

Linear feature density (circa 2016) is calculated based on the length of linear features including roads from Statistics Canada's *Road Network File*, and rail lines, cutlines and electrical transmission lines from Natural Resources Canada's Topographic Data of Canada.²³⁹ Linear feature density excludes other types of infrastructure, such as pipelines, and is represented in metres per square kilometre of the total ecoprovince area.

The HLMI is a composite index of the above variables calculated at the pixel level by Statistics Canada. It represents human modifications circa 2011 using the datasets described above with the exception of forest harvest data, which is for the period from 2001 to 2011. It aggregates three measures of human modifications and provides a score to indicate how much the land area has been modified from its natural state. This tool enables comparisons of the level of human modification or use. The index is based on three principles: the degree to which an area has been modified—from a natural or semi-natural state to the most modified state of built-up and artificial surfaces; the distance of an area to the nearest patch of natural and semi-natural land and the size of that patch; and the distance of an area to the nearest linear feature and the density of those linear features. The formula for calculating the HLMI is below.

- I. Linear feature (LF) fragmentation index (LFFI) = (LF Density * 0.5) + (LF Distance *0.5)
- 2. Natural patch fragmentation index (NPFI) = (Size of closest natural and semi-natural patch *0.5) + (Distance to nearest natural and semi-natural patch *0.5)
- 3. Fragmentation index (FI) = (LFFI * 0.5) + (NPFI * 0.5)
- 4. Green index (GI) = Natural and semi-natural pixels (*1) + Forest harvest and managed grassland areas (*2) + Cropland (*3) + Urban and artificial surfaces (*4)
- 5. HLMI = (GI * 0.5) + (FI * 0.5)
- 6. Pixel values are re-scaled from 0 to 100.

Areas with lower scores are generally more intact and therefore potentially able to supply ecosystem services such as water filtration, climate regulation, habitat maintenance and pollination that would be more in line with their natural condition. Areas with higher scores represent progressively more altered or intensively-used ecosystems. Canada totals are an area-weighted average based on ecoprovince areas. Other indicators similar to the HLMI exist at a global scale, for example, the Human Footprint, the Global Human Modification of Terrestrial Systems and the Forest Landscape Integrity Index. These indicators differ in the variables used and methodology applied, but all represent the influence of human activities on terrestrial areas.²⁴⁰

The HFII presents an aggregated ranking by drainage region of the individual rankings of 13 variables and indicators. These variables were selected because they are associated with various anthropogenic influences on freshwater ecosystems. They include climate change, population density, the HLMI, water crossing density (e.g., bridges and culverts), dams, freshwater intake and nutrient emissions from industrial plants, farms and wastewater treatment plants (Table A.1). Higher ranked drainage regions (i.e., 1st, 2nd, 3rd, etc.) are subjected to a higher number of direct and indirect human influences on their freshwater ecosystems.

Water crossing density is calculated using Statistics Canada's *Road Network File*²⁴¹ and represents the number of bridges or culverts crossing a water body or water course per square kilometre. Dam density results were compiled using Natural Resource Canada's *CanVec* dam data integrated with data from an inventory of large dams produced

²³⁹ Natural Resources Canada, 2019, Topographic Data of Canada – CanVec Series, <u>https://open.canada.ca/data/en/dataset/8ba2aa2a-7bb9-4448-b4d7-f164409fe056</u> (accessed December 9, 2020).

²⁴⁰ Venter, O., et al., 2016, "Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation," *Nature Communications*, Vol.7, https://doi.org/10.1038/ncomms12558 (accessed May 21, 2021); Kennedy, C.M., et al., 2019, "Managing the middle: A shift in conservation priorities based on the global human modification gradient," *Global Change Biology*, Vol. 25., pp. 811-826, https://doi.org/10.1111/gcb.14549 (accessed May 21, 2021); Grantham, H.S., et al., 2020, "Anthropogenic modification of forests means only 40% of remaining forests have high ecosystem integrity," *Nature Communications*, Vol. 11, https://doi.org/10.1111/gcb.14549 (accessed May 21, 2021); Grantham, H.S., et al., 2020, "Anthropogenic modification of forests means only 40% of remaining forests have high ecosystem integrity," *Nature Communications*, Vol. 11, https://doi.org/10.1111/gcb.14549 (accessed May 21, 2021).

²⁴¹ Statistics Canada, 2017, *Road Network File, 2016*, <u>https://www150.statcan.gc.ca/n1/en/catalogue/92-500-X</u> (accessed December 21, 2020).

by the Canadian Dam Association.²⁴² Where dams were coincident (within 1 km) between the two datasets they were counted once. Caution should be used when analyzing dam data as there are differences in coverage across provincial jurisdictions.

Table A.1 Human freshwater influence index component data (Part 1)

	Drainage region	Overall rank	Population density, 2011	Annual temperature change, 1948 to 2016	Temperature change for season of largest change, 1948 to 2016	Water crossing density, 2011	Dam density	Human landscape modification index, 2011
Drainage region	code	Rank	persons/km ²		٥°	crossings/km ²	dams / thousand km ²	score (0 to 100)
Pacific Coastal	1	13	4.7	1.9	3.5	0.2	0.4	7.3
Fraser–Lower Mainland	2	8	10.4	1.9	3.2	0.3	1.5	14.8
Okanagan–Similkameen	3	6	21.8	2.0	2.5	1.0	6.5	19.6
Columbia	4	14	1.9	1.6	2.5	0.2	0.8	13.4
Yukon	5	21	0.1	2.8	6.2	0.0	0.1	5.4
Peace-Athabasca	6	12	0.9	2.2	4.7	0.1	0.2	13.0
Lower Mackenzie	7	20	0.0	2.7	5.2	0.0	0.0	3.7
Arctic Coast–Islands	8	24	0.0	2.4	3.7	0.0	0.0	0.5
Missouri	9	7	0.3	2.0	3.9	0.2	85.4	53.0
North Saskatchewan	10	2	10.9	2.0	4.0	0.7	12.9	42.8
South Saskatchewan	11	1	12.7	1.9	3.8	0.7	37.7	48.5
Assiniboine–Red	12	4	8.1	1.9	3.5	0.5	19.8	50.3
Winnipeg	13	16	1.0	1.7	2.8	0.1	1.3	12.5
Lower Saskatchewan-								
Nelson	14	15	0.7	1.9	3.5	0.1	0.5	12.9
Churchill	15	17	0.4	2.0	3.8	0.0	0.1	6.1
Keewatin–Southern								
Baffin Island	16	25	0.0	1.9	3.2	0.0	0.0	0.1
Northern Ontario	17	22	0.2	1.3	2.3	0.0	0.1	3.6
Northern Quebec	18	23	0.1	1.2	1.8	0.0	0.2	1.8
Great Lakes	19	5	54.7	1.1	1.4	0.9	3.6	24.6
Ottawa	20	11	14.9	1.1	1.2	0.6	5.3	18.3
St. Lawrence	21	3	59.9	0.9	1.1	1.8	14.8	25.3
North Shore–Gaspé	22	18	1.5	0.8	1.2	0.1	1.6	5.4
Saint John–St. Croix	23	10	10.3	0.9	1.3	0.6	6.8	20.2
Maritime Coastal	24	9	13.1	0.9	1.3	0.7	7.4	20.8
Newfoundland-Labrador	25	19	1.6	0.8	1.4	0.1	1.3	4.8

... not applicable

Notes: The human freshwater influences index is an overall ranking of drainage regions based on individual rankings of selected anthropogenic variables that affect freshwater ecosystems. The overall rank is determined by ranking each variable individually from highest to lowest impact and then calculating the average of the rankings. Lower values indicate a higher degree of human influence. Dam density was compiled using Natural Resource Canada's CanVec dam data integrated with data from an inventory of large dams produced by the Canadian Dam Association. Where dams were coincident (within 1 km) between the two datasets they were counted once. Caution should be used when analyzing dam data as there are differences in coverage across provincial lurisdictions.

Sources: Statistics Canada, Environment and Energy Statistics Division, 2021, special tabulation based on Environment and Climate Change Canada (ECCC), *Canadian Gridded Temperature and Precipitation Anomalies (CANGRD)*, https://open.canada.ca/data/en/dataset/3d4b68a5-13bc-48bb-ad10-801128aa6604#wb-auto-6 (accessed May 15, 2020); Statistics Canada, 2011, *Census of Population;* Agriculture and Agri-Food Canada (AAFC), 2015, *Land Use 2010*, https://open.canada.ca/data/en/dataset/18e3ef1a-497c-40c6-8326-aact 1a34a0dec (accessed June 1, 2020); Natural Resources Canada (NRCan), 2017, *Topographic Data of Canada - CanVec Series*, https://open.canada.ca/data/en/dataset/8ba2aa2a-7bb9-4448-b4d7-f164409fe056 (accessed December 21, 2020); Statistics Canada, 2017, *Road Network File, 2016*, https://www150.statcan.gc.ca/n1/en/catalogue/2500-X (accessed December 21, 2020); Statistics Canada, 2013, *Survey of Drinking Water Plants, 2011*, https://www150.statcan.gc.ca/n1/en/catalogue/16-401-X; AAFC, 2015, *Agri-environmental Indicator—Residual Soil Nitrogen (RSN)*, http://open.canada.ca/data/en/dataset/3f5acb7c-78e6-4127-8867-ddd70e396476 (accessed September 28, 2016); AAFC, 2015, *Agri-environmental Indicator—Residual Soil Nitrogen (RSN)*, http://open.canada.ca/data/en/dataset/f3f5acb7c-78e6-4127-8867-ddd70e396476 (accessed September 28, 2016); ECCC, 2015, *National Pollutart Release Inventory, Pollution Data and Reports*, www.ec.gc.ca/inrp-npri/default.asp?lang=En&n=B85A1846-1 (accessed August 24, 2016); Statistics Canada, 2020, *Table 38-10-0099-01 Wastewater volumes processed by municipal sewage systems (x 1,000,000)*, https://www150.statcan.gc.ca/11/ch1/tn/tv.atcin?pid=3810009901 (accessed December 16, 2020); Canadian Dam Association, 2019, *Inventory of Large Dams in Canada 2019*, https://cda.ca/publications/dams-in-canada-2019 (accessed October 29, 2020).

242 Natural Resources Canada, 2017, CanVec Series, https://open.canada.ca/data/en/dataset/fd4369a4-21fe-4070-914a-067474da0fd6 (accessed October 29, 2020); Canadian Dam Association, 2019, Inventory of Large Dams in Canada 2019, https://cda.ca/publications/dams-in-canada-2019 (accessed October 29, 2020).

Table A.1 Human freshwater influence index component data (Part 2)

	Drainage region_	Overall rank	Nitrogen emissions, National Pollutant Release Inventory, 2014	Phosphorous emissions, National Pollutant Release Inventory, 2014	Residual soil nitrogen on agricultural land, normalized across the total area of the drainage region, 2011	Risk of phosphorous release from agricultural soils, normalized across the total area of the drainage region, 2011	Wastewater volumes processed by municipal sewage systems (x 1,000,000), 2013 to 2017 average	Wastewater volumes processed by municipal sewage systems (x 1,000,000), normalized across the total area of the drainage region, 2013 to 2017 average	Surface freshwater intake, normalized across the total area of the drainage region, 2013
Drainage region	code	Rank		kg/km ²		mg/kg		m³/yr	million m ³ /km ²
Pacific Coastal	1	13	170	10	6.8	0.000	130.5	390	0.002
Fraser–Lower Mainland	2	8	672	181	105.5	0.006	455.1	1,952	0.003
Okanagan–Similkameen	3	6	100	0	184.5	0.021	31.3	2,009	0.010
Columbia	4	14	204	4	30.2	0.000	12.4	142	0.002
Yukon	5	21	5	0	0.0	0.000	4.4	13	0.000
Peace–Athabasca	6	12	1,927	3	215.1	0.011	41.2	85	0.001
Lower Mackenzie	7	20	84	0	0.1	0.000	1.4	1	0.000
Arctic Coast–Islands	8	24	29	0	0.0	0.000	1.0	1	0.000
Missouri	9	7	3,342	0	922.5	1.092	1.0	37	0.001
North Saskatchewan	10	2	4,708	3	1,314.5	0.645	154.6	1,029	0.006
South Saskatchewan	11	1	3,660	5	1,099.9	1.087	271.0	1,526	0.011
Assiniboine–Red	12	4	962	15	1,822.4	0.706	176.5	926	0.008
Winnipeg	13	16	107	3	30.3	0.000	12.0	112	0.001
Lower Saskatchewan-									
Nelson	14	15	22	0	337.0	0.017	16.4	45	0.000
Churchill	15	17	267	0	94.9	0.002	5.2	17	0.000
Keewatin–Southern									
Baffin Island	16	25	8	0	0.0	0.000	1.0	1	0.000
Northern Ontario	1/	22	45	0	1.6	0.000	24.6	36	0.000
Northern Quebec	18	23	33	0	1.1	0.000	13.5	14	0.000
Great Lakes	19	5	2,876	22	405.6	0.021	1,695.2	5,333	0.074
Ottawa	20	11	518	6	172.6	0.006	315.9	2,159	0.002
St. Lawrence	21	3	1,813	48	690.5	0.062	1,881.1	15,843	0.017
North Shore–Gaspé	22	18	244	3	38.2	0.000	110.9	301	0.001
Saint John-St. Croix	23	10	1,324	31	142.0	0.004	54.2	1,293	0.004
Maritime Coastal	24	9	1,427	17	128.1	0.003	248.7	2,038	0.002
Newtoundland-Labrador	25	19	196	2	1.6	0.000	98.1	258	0.001

... not applicable

Notes: The human freshwater influences index is an overall ranking of drainage regions based on individual rankings of selected anthropogenic variables that affect freshwater ecosystems. The overall rank is determined by ranking each variable individually from highest to lowest impact and then calculating the average of the rankings. Lower values indicate a higher degree of human influence.

Sources: Statistics Canada, Environment and Energy Statistics Division, 2021, special tabulation based on Environment and Climate Change Canada (ECCC), *Canadian Gridded Temperature and Precipitation Anomalies (CANGRD)*, https://open.canada.ca/data/en/dataset/3d4b68a5-13bc-48bb-ad10-801128aa6604#wb-auto-6 (accessed May 15, 2020); Statistics Canada, 2011, *Census of Population;* Agriculture and Agri-Food Canada (AAFC), 2015, *Land Use 2010*, https://open.canada.ca/data/en/dataset/18e361a-497c-40c6-8326-aac1a34a0dec (accessed June 1, 2020); Natural Resources Canada (NRCan), 2017, *Topographic Data of Canada - CanVec Series*, https://open.canada.ca/data/en/dataset/8ba2aa2a-7bb9-4448-b4d7-f164409fe056 (accessed December 21, 2020); Statistics Canada, 2017, *Road Network File, 2016*, https://www150.statcan.gc.ca/n1/en/catalogue/92-500-X (accessed December 21, 2020); Statistics Canada, 2017, *Road Network File, 2016*, https://ownuf16.statcan.gc.ca/n1/en/catalogue/16-403-X; Statistics Canada, 2011, https://www150.statcan.gc.ca/n1/en/catalogue/16-401-X; AAFC, 2015, *Agri-environmental Indicator—Residual Soil Nitrogen (RSN)*, http://open.canada.ca/data/en/dataset/3f5acb7c-78e6-4127-8867-ddd70e396476 (accessed September 28, 2016); AAFC, 2015, *Agri-environmental Indicator—Residual Soil Nitrogen (RSN)*, http://open.canada.ca/data/en/dataset/fc9e5c73-1c1a-47c1-9de4-612559b718fd (accessed September 28, 2016); ECCC, 2015, *National Pollutant Release Inventory*, *Pollution Data and Reports*, www.ec.gc.ca/inrp-npri/default.asp?lang=En&n=885A1846-1 (accessed Jaguest 24, 2016); Statistics Canada, 2020, *Table 38-10-0099-01 Wastewater volumes processed by municipal sewage systems (x 1,000,000)*, https://www150.statcan.gc.ca/ 11/en/tv.action?pid=3810009901 (accessed December 16, 2020); Canadian Dam Association, 2019, *Inventory of Large Dams in Canada 2019*, https://cda.ca/publications/dams-in-canada.2019 (accessed October 29, 2020).

Marine and coastal condition

Sea surface temperature and salinity data were taken from the *World Ocean Atlas* data selector,²⁴³ projected to the Canadian Albers equal area projection and assigned to the underlying hexagonal grid using zonal statistics in ArcGIS Pro. For marine ecoregion and depth class averages, the data were averaged across the geography. As there are relatively few partial hexagons in the grid, weighting the averages by area made an insignificant difference. Stock sustainability data were obtained from the Fisheries and Oceans website²⁴⁴ and were assigned to species group and regions using the stocks' fishing area available in the downloadable file for 2019.

Sea ice extent data were estimated using annual shapefiles from the National Snow and Ice Data Center²⁴⁵ for the months of September, February and March, projected to the Canadian Albers equal area projection. These were then intersected with the marine ecoregion geography to estimate extent by marine ecoregion. For the Atlantic ecoregions the maximum value of February or March extent was taken for each year. These maximum extents were then averaged to produce decade averages for the Atlantic ecoregions while the September minimum values were averaged by decade for Arctic ecoregions.

Data on the area of aquaculture sites were taken or estimated from numerous sources, as referenced in Table 3.11 and Map 3.11. The area of sites was calculated directly from the polygon files used for British Columbia fish sites, and for sites in Prince Edward Island and Nova Scotia.²⁴⁶

Point data were found for Newfoundland aquaculture along with an estimate of total aquaculture area.²⁴⁷ The area of sites for different regions around the island was estimated by dividing the total area by the number of sites.

For New Brunswick, coordinates and area of aquaculture sites were available and were used to create the map and table.

British Columbia shellfish aquaculture sites were mapped using a PDF map and a list of licenses by fisheries region. The area was estimated using an average area per farm of 8.3 hectares, taken from DFO (2017).²⁴⁸

The total area and location of sites for aquaculture in Quebec were taken from the ministère de l'Agriculture, des Pêcheries et de l'Alimentation (MAPAQ).²⁴⁹

Data for oil licenses were mapped using shapefiles from the Canada–Newfoundland and Labrador Offshore Petroleum Board, Canada–Nova Scotia Offshore Petroleum Board and Crown–Indigenous Relations and Northern Affairs Canada.²⁵⁰

²⁴³ Locarnini, R. A., et al., 2018, World Ocean Atlas 2018: Volume 1: Temperature, A. Mishonov (Technical ed.), NOAA Atlas NESDIS 81, <a href="https://www.nodc.noaa.gov/OC5/SELECT/woaselect/woa

²⁴⁴ Fisheries and Ocean Canada, 2019, Sustainability Survey data and summaries, https://www.dfo-mpo.gc.ca/reports-rapports/regs/sff-cpd/survey-sondage/data-donnees-en.html (accessed April 1, 2021).

²⁴⁵ Fetterer, F., et al., 2017, Sea Ice Index, Version 3, Northern Shapefiles, updated daily, February, March and September, Boulder, Colorado USA, NSIDC: National Snow and Ice Data Center, https://doi.org/10.7265/N5K072F8 (accessed July 13, 2020).

²⁴⁶ British Columbia Ministry of Forests, Lands, Natural Resource Operations and Rural Development, 2011, *Saltwater Finfish Tenures – Coastal Resource Information Management System (CRIMS)*, GeoBC, https://catalogue.data.gov.bc.ca/dataset/saltwater-finfish-tenures-coastal-resource-information-management-system (accessed November 10, 2019); Nova Scotia Fisheries and Aquaculture, July 20, 2020, *Nova Scotia Marine Aquaculture Leases*, https://data.novascotia.ca/Fishing-and-Aquaculture/Aquaculture/License-and-Lease-GIS-Database/ https://catalogue.data.gov.bc.ca/dataset/saltwater-finfish-tenures-coastal-resource-information-management-system (accessed November 10, 2019); Nova Scotia Fisheries and Aquaculture, July 20, 2020, *Nova Scotia Marine Aquaculture Leases*, https://www.arcgis.com/home/webmap/viewer.html?webmap=16aa8830c7084a8a92ce066b525978b4 (accessed September 15, 2019).

²⁴⁷ Newfoundland Aquaculture Industry Association, 2016, Industry by the Numbers, https://naia.ca/index.php/aquaculture-nl/production-stats (accessed July 20, 2020); Aquaculture, Fisheries and Land Resources, Newfoundland and Labrador, 2015, Licensed aquaculture sites Newfoundland and Labrador, 2015, https://www.fishaq.gov.nl.ca/pdf/aquaculture_2015_year.pdf (accessed Feb 14, 2019).

²⁴⁸ Fisheries and Oceans Canada, 2017, Pacific Region -Shellfish integrated management of aquaculture plan: Background and overview of the sector, https://www.pac.dfo-mpo.gc.ca/aquaculture/management-gestion/shellfish-mollusques/background-contexte-eng.html (accessed April 15, 2019).

²⁴⁹ Ministère de l'Agriculture, des Pêcheries et de l'Alimentation du Québec, 2019, Portrait-diagnostic sectorial de l'industrie de la mariculture au Québec, https://www.mapaq.gouv.qc.ca/ fr/Publications/Portrait-diagnostic_mariculture.pdf (accessed October 15, 2019) obtained from https://catalogue.ogsl.ca/data/mapaq/f9558184-92d8-4925-b280-bcfbd75ea20f/ mariculture_mapaq_2017.xlsx

²⁵⁰ Canada-Newfoundland and Labrador Offshore Petroleum Board, n.d., *Mapping Information and Shapefiles*, https://www.cnlopb.ca/information/shapefiles/ (accessed February 26, 2019); Canada-Nova Scotia Offshore Petroleum Board, 2019, Maps and Coordinates, https://www.cnsopb.ns.ca/whate-we-do/lands-management/maps-and-coordinates (accessed November 30, 2020), Canada-Nova Scotia Offshore Petroleum Board, 2019, GIS Information, https://callforbids.cnsopb.ns.ca/whate-we-do/lands-management/maps-and-coordinates (accessed November 30, 2020), Canada-Nova Scotia Offshore Petroleum Board, 2019, GIS Information, https://callforbids.cnsopb.ns.ca/2011/01/gis_information.html (accessed November 30, 2020), Crown-Indigenous Relations and Northern Affairs Canada, 2015, Oil and Gas Rights, https://open.canada.ca/data/en/dataset/208ddd6d-dea8-4d1c-bf62-5b49e8983a51#wb-auto-6 (accessed May 20, 2020).

Ecosystem services supply and use

Provisioning services

The System of Environmental Economic Accounting – Ecosystem Accounts (SEEA – EA) includes several categories of biomass provisioning services. The intent is to recognize the ecosystem contribution of provisioning services, though where this contribution is difficult to distinguish, gross biomass harvested is recognized as an adequate proxy measure. Each service is defined such that there is no double-counting of the ecosystem contribution of individual services. For example, the production of cultivated livestock is not included as a provisioning service where the biomass provision of fodder crops and grazed biomass are counted. Similarly, aquaculture production that relies on wild-caught fish or harvested crops as feed is excluded, since inclusion would result in double-counting, while production that requires no feed inputs (e.g., oysters, mussels) can be included. Note that the data reported in Table 4.1 includes different moisture contents.

Agricultural production is reported as a proxy of the provisioning service provided by agricultural ecosystems. Estimates of crop, honey and maple production include the majority of grain, oilseed, pulse, corn for silage, tame hay (alfalfa, other tame hay and forage seed), potato, vegetable, fruit, honey and maple production (as syrup). Estimates of fodder corn production are calculated using a standard percentage moisture content of 70%. Estimates of production of hay are based on a standard dry matter content of 90%. Estimates for fruit are for marketed production. The estimates may include some data assessed at data quality standard E (use with caution). Provincial data that are unavailable or data that are suppressed to meet confidentiality or data quality standards are not included in the total. The estimates exclude greenhouse vegetable, mushroom, tobacco, cannabis, nursery, sod, or Christmas tree production, as well as grazing on crop residue.

Forage production estimates for tame or seeded pasture and natural land for pasture (rangeland) are based on the areas reported on the Census of Agriculture multiplied by estimates of the average provincial animal unit month (AUM) taken from Yungblut (2012).²⁵¹ Biomass provisioning estimates exclude the production of meat, dairy, egg, wool and fur-bearing animals.

The volume of harvested timber reported in the National Forestry Database was converted to tonnage weight by adjusting for wood density.²⁵² The green weight with bark was estimated using forest product conversion factors for the United States for conifer and non-conifer saw/veneer and pulpwood/fuelwood logs. Non-commercial harvests (e.g., for residential firewood) are excluded.

Fisheries landings are defined as the part of the commercial catch that is put ashore. Seafisheries include groundfish, pelagic and other finfish and shellfish. The data may include some farmed shellfish production (e.g., Atlantic oysters). Freshwater landings data exclude Newfoundland and Labrador, Prince Edward Island, Nova Scotia, British Columbia and Yukon Territory.

Total aquaculture production of shellfish is reported and includes some wild production. It excludes aquaculture production of finfish, restocking of lakes and freshwater fisheries. Data are collected from each of the provincial departments responsible for aquaculture. Provinces and territories with data not available are not included in the total.

Economic data including GDP and employment by sector are available following the North American Industry Classification System (NAICS). An effort was made to align economic statistics on the sectors benefiting from ecosystem provisioning services (i.e., agriculture, forestry, fishing, hunting and trapping etc.); however, in some cases data were aggregated at a higher level. The report grouped the sectors according to previously defined industry groupings. For this reason, there are some differences in the treatment of sector-level aggregation. For example, GDP and employment data for the forest sector includes manufacturing activities, while the primary agriculture sector excludes manufacturing and aquaculture was omitted. GDP and employment data are available for fishing, hunting and trapping industries,

²⁵¹ Yungblut, D. 2012, National Forage and Grassland Assessment, http://www.canadianfga.ca/wp-content/uploads/2011/04/V1-Final-June-2012-Report-National-Forage-and-Grassland-Assessment-formatted.pdf (accessed December 3, 2019).

²⁵² National Forestry Database, 2021, Table 5.1 Net merchantable volume of roundwood harvested by jurisdiction, tenure, category and species group, http://nfdp.ccfm.org/en/index.php (accessed July 14, 2021); FAO, ITTO and United Nations, 2020, Forest Product Conversion Factors, Rome, Italy, https://doi.org/10.4060/ca7952en (accessed July 14, 2021); FAO, ITTO and United Nations, 2020, Forest Product Conversion Factors, Rome, Italy, https://doi.org/10.4060/ca7952en (accessed July 14, 2021); FAO, ITTO and United Nations, 2020, Forest Product Conversion Factors, Rome, Italy, https://doi.org/10.4060/ca7952en (accessed July 3, 2021).

to which aquaculture and fish processing were added. However, data on the contribution of the fishing and seafood sector to census subdivision (CSD) employment income was based on an aggregation of data from the 2016 Census, and includes only fishing, aquaculture (finfish and shellfish) and fish processing.

Regulating services

According to the SEEA - EA, ecosystem contributions to global climate regulation services include measurement of carbon sequestration and retention of carbon in ecosystems.²⁵³ Under this standard, carbon sequestration reflects the ability of ecosystems to remove carbon from the atmosphere and store it for long periods of time. Net ecosystem carbon balance is considered an appropriate metric. Where net carbon sequestration is zero or negative, the service supplied by the ecosystem is zero. Carbon retention supplies a service through avoided carbon emissions and includes carbon in above ground and below ground biomass (including in the seabed) and soil organic carbon (including peatlands to a maximum of 2 m depth). It excludes inorganic carbon in freshwater, marine and subterranean ecosystems, fossil fuel deposits, as well as harvested wood products (carbon stored in produced assets) and stocks of crops or livestock (short-term storage). Measurement of carbon retention is a focus particularly for ecosystems where the stock of carbon is at risk of emission, e.g., as a result of fire, deforestation or peatland draining.

This report makes use of data related to carbon sequestration and retention that are produced by other departments to meet their existing reporting requirements;²⁵⁴ however, there are some differences in focus and gaps exist, e.g., for marine and coastal ecosystems and unmanaged forests. For example, carbon stock change and fluxes of CO₂ to the atmosphere are the subject of reporting requirements for Land use, Land-Use Change and Forestry as part of the *National Inventory Report* (NIR) to the United Nations Framework Convention on Climate Change (UNFCCC). Carbon stock changes and fluxes are also modeled by NRCan CFS to meet other reporting frameworks such as the Montréal Process. These data are based upon models and are subject to limitations and uncertainty, as detailed in the original documentation.

Carbon sequestration service supply for arable and urban ecosystems is based on data reported in the common reporting format (CRF) tables as part of the NIR 2020. Values reported in CO₂ equivalents have been converted to carbon. Sequestration attributed to built-up and artificial surfaces is based on the net carbon stock change in living biomass for settlements remaining settlements as reported in CRF Table 4E. This estimate of carbon removals for urban ecosystems accounts for net carbon uptake by urban trees, in which biomass decay is implicit. It includes 69 population centres in Canada with a population over 30,000 (of 947 population centres on the 2011 Census), capturing major Canadian cities representing 62% of 1990 urban area and 79% of 1990 population.²⁵⁵ It does not include emissions related to urban expansion. Sequestration attributed to arable land (cropland, summerfallow and improved pasture) is based on reporting of net removals for cropland remaining cropland as reported in the CRF Table 4B. This estimate is based on a gains-loss approach to carbon stock estimation using land management changes reported on the Census of Agriculture. Emissions associated with land conversions to cropland were not included in Table 4.4.

Carbon ecosystem indicators are modeled by the CFS for managed forests using the Carbon Budget Model of the Canadian Forest Sector (CBM-CFS3) and national compilation of forest inventories, forest growth and yield tables, large-scale disturbances and forest management activity data, as part of the National Forest Carbon Monitoring, Accounting and Reporting System (NFCMARS) supporting reporting in the NIR 2020.²⁵⁶ The definition of forests is based on the definition in the Marrakesh Accords (i.e., 25% crown closure, with potential tree height at maturity of 5 m or greater and covering an area of 1 ha or greater). Forests are classified as managed or unmanaged based on the

²⁵³ United Nations, 2021, System of Environmental-Economic Accounting — Ecosystem Accounting, https://seea.un.org/ecosystem-accounting (accessed March 15, 2021).

²⁵⁴ Environment and Climate Change Canada, 2020, National Inventory Report 1990-2018: Greenhouse gas sources and sinks in Canada, https://publications.gc.ca/site/eng/9.506002/ publication.html (accessed April 30, 2020); Montréal Process Working Group, 2015, "Criteria and indicators for the conservation and sustainable management of temperate and boreal forests," The Montréal Process, Fifth Edition, https://www.montrealprocess.org/documents/publications/techreports/MontrealProcessSeptember2015.pdf (accessed October 27, 2020).

²⁵⁵ Ristow, M., J. W. Steenberg and P. N. Duinker, 2019, An updated approach for assessing Canada's urban forest carbon storage and sequestration, Report submitted to Environment and Climate Change Canada; McGovern, M. and J. Pasher, 2016, "Canadian urban tree canopy cover and carbon sequestration status and change, 1990-2012," *Urban Forestry and Urban Greening*, Vol. 20, pp. 227-232, https://dx.doi.org/10.1016/j.ufug.2016.09.002 (accessed October 27, 2020).

²⁵⁶ Natural Resources Canada, 2020, Carbon Accounting, https://www.nrcan.gc.ca/climate-change/impacts-adaptations/climate-change-impacts-forests/carbon-accounting/13087 (accessed April 9, 2021); Kurz, W.A., et al., 2013, "Carbon in Canada's boreal forest — A synthesis," Environmental Reviews, Vol. 21, pp. 260-292, https://doi.org/10.1139/er-2013-0041 (accessed February 2, 2020).

occurrence of management activities for timber or non-timber and on the level of protection against disturbances.²⁵⁷ Note that this definition of forest area differs from that used for the National Forest Inventory, which is based on the FAO definition (i.e., 10% canopy cover, 5 m height, 0.5 ha).²⁵⁸

Table 4.3 reports carbon stocks by Intergovernmental Panel on Climate Change (IPCC) carbon pool. Indicators reported in Table 4.4 include net primary productivity (NPP), net ecosystem productivity (includes heterotrophic respiration) and net biome productivity (NBP), which includes harvesting transfers and disturbance emissions, for managed forest land. Negative NBP represents a loss of carbon and therefore is not a carbon sequestration service. Note however that harvesting transfers include wood products that can store carbon in the built environment over the long term, in addition to wood products that are more quickly oxidized. The species-weighted density of commodities used to estimate carbon in harvested wood products (oven dry tonne wood material/m³)²⁵⁹ differs from the densities used for estimating the green weight of commercial timber harvests as a biomass provisioning service in Table 4.1. In addition, these two estimates use different data sources for fuelwood and firewood.

Kelp forests, seagrass meadows and salt marshes in coastal area have an important role in carbon cycling. Studies on Canadian seagrass meadows have currently produced a wide range of estimates for carbon accumulation in sediment at different sites and mapping of these ecosystems is ongoing. Section 2.1 provides an estimated minimum known extent.

²⁵⁷ Government of Canada, 2007, Canada's initial report under the Kyoto Protocol, https://unfccc.int/files/national_reports/initial_reports_under_the_kyoto_protocol/application/pdf/initial_report_of_canada.pdf (accessed April 20, 2021); Environment and Climate Change Canada, 2020, National Inventory Report 1990 – 2018: Greenhouse gas sources and sinks in Canada, Part 2, Catalogue no. EN81-4E-PDF, https://publications.gc.ca/site/eng/9.506002/publication.html (accessed July 20, 2020); Stinson, G., et al., 2011, "An inventory–based analysis of Canada's managed forest carbon dynamics, 1990 to 2008," Global Change Biology, Vol. 17, pp. 2227–2244, https://doi.org/10.1111/j.1365-2486.2010.02369.x (accessed April 4, 2020).

²⁵⁸ Natural Resources Canada, 2020, The State of Canada's Forests: Annual Report, 2020, https://www.nrcan.gc.ca/our-natural-resources/forests-forestry/state-canadas-forests-report/16496 (accessed December 15, 2020).

²⁵⁹ Environment and Climate Change Canada, 2020, National Inventory Report 1990 – 2018: Greenhouse gas sources and sinks in Canada, Part 2, Catalogue no. EN81-4E-PDF, https://publications.gc.ca/site/eng/9.506002/publication.html (accessed July 20, 2020).

B.Glossary

Abyssalpelagic: refers to waters at depths of greater than 4 km depth. The abyssalpelagic class includes areas where the maximum water depths exceeds 4 km.

Agriculture sector (primary): includes the following North American Industry Classification System (NAICS) codes: 111 – crop production, 112A – animal production (excluding aquaculture), 1151 – support activities for crop production and 1152 – support activities for animal production. Excludes agricultural input suppliers, food product manufacturing, wholesale and retail, and food services.

Ambient air concentrations: amount of air pollutants in outdoor air expressed in parts per billion (ppb) by volume for gases and micrograms per cubic metre ($\mu g/m^3$) for particulate matter. Average indicators are used to capture prolonged or repeated exposures over long periods or chronic exposure, while peak indicators are used to capture immediate or acute short-term exposures. The average and peak air quality definitions vary by pollutant. For more information, see <u>here</u>.

Ambient air quality: refers to outdoor air quality. The Canadian Ambient Air Quality Standards set limits, based on human health considerations for outdoor air concentrations of fine particulate matter ($PM_{2.5}$), ozone (0_3), sulphur dioxide (SO_2) and nitrogen dioxide (NO_2).²⁶⁰

Arable land: reported as the sum of cropland, tame or seeded pasture and summerfallow from the *Interpolated Census of Agriculture*. Other land on farms (e.g., idle land, land occupied by farm buildings, wetlands and woodlands) and natural pasture are not included.

Bathypelagic: refers to waters at depths of 1 km to 4 km. The bathypelagic class includes areas where maximum water depths are within this range.

Built-up and artificial surfaces: include areas that are predominantly built-up or developed including road surfaces, railway surfaces, buildings and paved surfaces, urban areas, industrial sites, mine structures and golf courses, as well the vegetated areas associated with these land covers, at a resolution of 30 m or greater.

Canadian Ambient Air Quality Standards (CAAQS): the CAAQS were developed by the Canadian Council of Ministers of the Environment, under the *Canadian Environmental Protection Act*, as outdoor air quality targets to drive air quality management across Canada. Standards exist for fine particulate matter ($PM_{2.5}$), ozone (0_3), sulphur dioxide (SO_2) and nitrogen dioxide (NO_2) with an averaging time (e.g., 24-hour, annual, 8-hour, 1-hour), numerical value and statistical form. For more information, see <u>here</u>.

Carbon sequestration: the removal and long-term storage of carbon from the atmosphere. The carbon sequestration service focuses on the amount of biocarbon accumulated in ecosystems net of respiration, decomposition and combustion in an accounting period.

Carbon retention: carbon is stored in ecosystems in living and dead biomass and soil organic carbon. The carbon retention service relates to the ability of ecosystems to retain carbon, thus avoiding emissions of carbon to the atmosphere. It is quantified as the stock of carbon retained (stored) in ecosystems including forests, wetlands (e.g., peatlands) and agricultural, coastal and marine areas at the beginning of the accounting period.

Climate normal: a three-decade average of a climatological variable such as temperature or precipitation.

Cropland: area used for growing crops. Total area of cropland from the *Interpolated Census of Agriculture* includes reported areas of hay and field crops, vegetables, nursery products, fruit, berries, grapes and nuts. Total area of cropland in the AAFC *Land Use* spatial data product includes annual and perennial crops.

Cutlines: a line cut through an area to facilitate cadastral or seismic surveys or create fire breaks. E.g., seismic cutlines are narrow corridors up to about 10 m wide cut through the landscape including forest, peatland and tundra. Often used to transport survey equipment for natural resource exploration.

²⁶⁰ Canadian Council of Ministers of the Environment, 2017, Canada's Air, https://ccme.ca/en/air-quality-report (accessed February 14, 2020).

Distance to natural and semi-natural patch: the average distance from any location in the ecoprovince to the nearest patch of natural and semi-natural land.

Degree of modification: the degree to which a landscape has been modified from a natural state. Heavily built areas with a large proportion of artificial surfaces and lower proportion of natural and semi-natural areas can be considered the most modified or the least intact ecosystems.

Drainage region: grouping of sub-sub drainage areas as defined by the Standard Drainage Area Classification, Statistics Canada's official classification of drainage areas. For more information, see <u>here</u>.

Ecoprovince: the second level (under ecozones) of the *Ecological Land Classification*, a hierarchical classification of ecological areas in Canada. For more information, see <u>here</u>.

Ecosystem: defined in Article 2 of the Convention of Biological Diversity as a dynamic complex of plant, animal and micro-organism communities and their non-living environment interacting as a functional unit.²⁶¹

Ecosystem condition: the quality of an ecosystem measured in terms of its abiotic, biotic and landscape and seascape-level characteristics across a range of temporal and spatial scales.²⁶²

Ecosystem functions: the physical, chemical and biological processes (e.g., nutrient cycling, carbon cycling, etc.) that occur in ecosystems.

Ecosystem services: a wide range of services that flow from ecosystems and provide benefits to people, often grouped into three categories: provisioning services (e.g., supply of food, fuel, fibre and water), regulating services (e.g., filtration, purification, regulation and maintenance of air, water, soil, habitat and climate) and cultural services (e.g., nature-based recreation or education).

Ecozone: the first level of the *Ecological Land Classification*, a hierarchical classification of ecological areas in Canada. For more information, see <u>here</u>.

Epipelagic: refers to waters from the water surface to 200 m depth. The epipelagic class includes areas where the maximum water depth reaches 200 m. This region is further divided, with the coastal epipelagic class having a maximum depth of 50 m.

Evapotranspiration (ET): the process of evaporation from land surfaces and transpiration from plants. It is controlled by surface water availability and by meteorological variables such as net solar radiation, air temperature, humidity and wind speed.

Exclusive Economic Zone (EEZ): refers to the area of the sea in which a country has rights to the exploration and use of marine resources. The area covers from the coast to 200 nautical miles offshore.

Fishing and seafood sector: includes the following North American Industry Classification System (NAICS) codes: 1141 – fishing; 1125 – aquaculture and 3117 seafood product preparation and packaging.

Forest: ecosystems dominated by trees, including temperate forest and boreal forest. Canada's National Forest Inventory uses the FAO definition of forest, "land spanning more than 0.5 hectares where the tree canopy covers more than 10% of the total land area and the trees can grow to a height of more than 5 metres. It does not include land that is predominantly urban or used for agricultural purposes.¹²⁶³ Canada's *National Inventory Report* to the UNFCCC uses the Marrakesh Accords definition of forest (25% crown closure, with potential tree height at maturity of 5 m or greater and covering an area of 1 ha or greater).²⁶⁴

²⁶¹ United Nations, 1992, *Convention on Biological Diversity*, <u>https://www.cbd.int/convention/text/</u> (accessed February 14, 2020).

²⁶² United Nations, 2021, System of Environmental-Economic Accounting — Ecosystem Accounting, https://seea.un.org/ecosystem-accounting (accessed March 15, 2021).

²⁶³ Natural Resources Canada, 2020, The State of Canada's Forests: Annual Report, 2020, https://www.nrcan.gc.ca/our-natural-resources/forests-forestry/state-canadas-forests-report/16496 (accessed December 15, 2020).

²⁶⁴ Government of Canada, 2007, *Canada's initial report under the Kyoto Protocol*, https://unfccc.int/files/national_reports/initial_reports_under_the_kyoto_protocol/application/pdf/ initial_report_of_canada.pdf (accessed April 20, 2021); Environment and Climate Change Canada, 2020, National Inventory Report 1990 – 2018: Greenhouse gas sources and sinks in Canada, Part 2, Catalogue no. EN81-4E-PDF, https://publications.gc.ca/site/eng/9.506002/publication.html (accessed July 20, 2020).

Forest sector: includes the following North American Industry Classification System (NAICS) codes: 113 – forestry and logging; 1153 – support activities for forestry and logging (e.g., forest conservation services, forest fire fighting services, forestry maintenance, log hauling, pest control and timber cruising and valuation); 321- wood product manufacturing and 322 – paper manufacturing.

Grassland, natural pasture and rangeland: areas dominated by grasses or grass-like plants including natural grasslands or native rangelands of the Canadian Prairies used for grazing, as well as other areas dominated by grassy vegetation (e.g., wetland, alpine meadows).

Groundfish: fish living near the bottom of the ocean. Also known as demersal or bottomfish.

Human landscape modification index (HLMI): a composite index used to measure direct human modifications to the landscape, based on the degree that an area has been modified from a natural or semi-natural state, the relationship of an area to the nearest patch of natural and semi-natural land and the size of that patch, and the relationship of an area to the nearest linear feature and the density of those linear features. Values range from 0 to 100, with higher scores indicating more intensively-used ecosystems and lower scores representing more intact ecosystems.

Human freshwater influences index (HFII): a ranked index of selected variables and indicators that reflect anthropogenic influences on freshwater ecosystems including population density, the HLMI, water crossings, dams, temperature change and nutrient emissions from industrial plants, farms and wastewater treatment plants.

Landscape fragmentation: the breaking up of areas of natural and semi-natural landscapes into smaller and more disconnected or isolated patches.

Linear feature density: a measure of linear features that cut across a landscape, calculated based on the length of roads, rail lines, cutlines and electrical transmission lines per unit area.

Managed forest: for the purposes of reporting on greenhouse gas emissions to the United Nations Framework Convention on Climate Change (UNFCCC), forest areas are classified as managed or unmanaged based on the occurrence of management activities for timber and non-timber resources (including parks) and on the level of protection against disturbances.²⁶⁵

Mesopelagic: refers to waters at depths of 200 m to 1,000 m. The mesopelagic class includes areas where maximum water depths are within this range.

Natural and semi-natural patch: includes all land classes except built-up and artificial surfaces (settlements and roads), cropland (annual and perennial), harvested forest (from 2001 to 2015) and managed grassland (grass and shrubs used for cattle grazing). A single patch of natural and semi-natural land has a minimum size of 9 pixels (at 30 m x 30 m) or 8,100 m².

Net primary productivity: gross primary productivity (the rate at which photosynthetic plants and bacteria use sunlight to covert CO₂ and water to carbon compounds used to fuel growth (biomass)) less cellular respiration.²⁶⁶

Net ecosystem productivity: net primary productivity less heterotrophic respiration.

Net biome productivity: net ecosystem productivity less disturbance losses. Equivalent to net ecosystem carbon balance at the landscape level.

Nitrogen dioxide (NO_2) : important in the formation of ozone in the atmosphere and a precursor to fine particulate matter.

Ocean acidification: the process by which the pH level of the ocean decreases mainly because of the absorption of CO₂.

²⁶⁵ Stinson, G., et al., 2011, "An inventory-based analysis of Canada's managed forest carbon dynamics, 1990 to 2008," *Global Change Biology*, Vol. 17, pp. 2227–2244, <u>https://doi.org/10.1111/j.1365-2486.2010.02369.x</u> (accessed April 4, 2020); Ogle, S.M., et al., 2018, "Delineating managed land for reporting national greenhouse gas emissions and removals to the United Nations framework convention on climate change," *Carbon Balance and Management*, Vol. 13, no. 9, <u>https://doi.org/10.1186/s13021-018-0095-3</u> (accessed April 9, 2021).

²⁶⁶ Malone, T., et al., 2016, "Chapter 6. Primary production, cycling of nutrients, surface layer and plankton," *The First Global Integrated Marine Assessment: World Ocean Assessment 1*, United Nations, https://www.un.org/Depts/los/global_reporting/WOA_RPROC/Chapter_06.pdf (accessed April 4, 2020).

Parkland: ecosystems characterized by tall herbaceous vegetation, scrub and scattered large trees. This ecosystem type occurs for example in the Parkland Prairies ecoprovince, including the Aspen Parkland ecoregion, which is a transitional area between the prairie grassland and the boreal forest.

Peatland: wetland ecosystems with peat deposits that are at least 40 cm thick.

Pelagic fish: fish that live in the water column and that are not dependent on the ocean floor or shoreline for habitat.

Population centre: has a population of at least 1,000 and a population density of 400 persons or more per square kilometre, based on population counts from the current Census of Population. All areas outside population centres are classified as rural areas. Population centres are classified into three groups: small (population between 1,000 and 29,999), medium (population between 30,000 and 99,999) and large urban (100,000 or more).²⁶⁷

Potential evapotranspiration (PET): represents the evapotranspiration that would occur without limitations on water supply. PET is therefore linked to the amount of energy available to generate ET in a specific area and is independent of water supply.

Salinity: estimate of the amount of salt dissolved in water.

Sea knoll: an isolated small elevation on the deep seafloor.

Seamount: an elevation of the seafloor 1,000 m or higher, either flat-topped or peaked.

Shellfish: aquatic shelled animals including molluscs (e.g., oysters and mussels) and crustaceans (e.g., crabs and lobsters).

Species abundance and richness: species abundance refers to the total number of individuals of a species in an area, population or community. Species richness refers to the total number of species in an area.

Stratification: the existence or formation of distinct layers in a body of water identified by thermal or salinity characteristics or by differences in oxygen or nutrient content.

Sulphur dioxide (SO₂): emitted when a fuel or raw material containing sulphur is burned or used in industrial processes such as metal ore smelting.

Summerfallow: total area of summerfallow from the *Interpolated Census of Agriculture*. Summerfallow is a land management practice that involves leaving land fallow in summer to conserve water or manage weeds.

Tame or seeded pasture: total area of tame or seeded pasture from the *Interpolated Census of Agriculture*. This category represents managed grazing lands supporting introduced forage species and receiving periodic cultural treatment, such as tillage, fertilization, mowing and irrigation.

Thermokarst topography: an uneven landscape in permafrost regions marked by small depressions and lakes, formed by subsidence and following melting of ground ice.

Total water storage change: an estimate of the change in the amount of water stored in the environment above and below the Earth's surface including groundwater, soil moisture, snow, ice and surface water. To convert water measured in depth in mm to a volume per area in m³/m², divide by 1000.

Tundra: treeless areas of dwarf shrub and other low-lying sedges, mosses and lichen that develop north of the boreal zone and in alpine regions at higher elevation.

Turbidity: a measure of the relative clarity or cloudiness of a liquid, caused by suspended particles (e.g., clay, silt, metals, organic matter, microorganisms), that is measured in nephelometric turbidity units (NTU).

Urban densification: increase in the number of people or residential units within an established area.

²⁶⁷ Statistics Canada, 2017, Census of Population, 2016, Dictionary, https://www12.statcan.gc.ca/census-recensement/2016/ref/dict/index-eng.cfm (accessed August 20, 2020).

Urban greenness: a biotic condition variable for urban areas that classifies population centre areas as green or grey based on the normalized difference vegetation index (NDVI) from moderate resolution imaging spectroradiometer (MODIS). This assessment does not correspond to the actual area of vegetated or unvegetated land cover in cities; rather it measures whether a given pixel (230 m x 230 m) meets a set vegetation threshold (NDVI \geq 0.5).

Water cycle: the natural cycle in which water evaporates from the Earth's surface including the oceans to the atmosphere and returns to the earth as precipitation.

Water yield: an estimate of freshwater runoff that provides information on Canada's renewable freshwater supply. It is derived from data on the unregulated flow of water in rivers and streams. Although water yield provides an estimate of renewable freshwater, it can include some water that is considered non-renewable (e.g., melt water from receding glaciers). To convert water measured in depth in mm to a volume per area in m³/m², divide by 1000.

Wetland: areas that are permanently or temporarily saturated with water for periods long enough to promote wetland or aquatic processes, as indicated by poorly drained soils, hydrophytic vegetation and various kinds of biological activity adapted to a wet environment. Wetlands can be categorized as organic wetlands (more commonly referred to as peatlands) or mineral wetlands and are classified as bog, fen, swamp, marsh or shallow water (< 2 m).²⁶⁸

Windthrow: natural disturbance in forests caused by wind, leading to stem breakage or root system failure. May occur at the individual tree or stand level. Also known as blowdown.²⁶⁹

²⁶⁸ National Wetlands Working Group, 1997, The Canadian Wetland Classification System, 2rd Ed. B.G. Warner and C.D.A. Rubec (Eds.), Catalogue no. CW66-156/1997, Wetlands Research Centre, https://www.gret-perg.ulaval.ca/fileadmin/fichiers/fichiersGRET/pdf/Doc_generale/Wetlands.pdf (accessed April 29, 2021).

²⁶⁹ Mitchell, S., 2000, Forest Health: Preliminary Interpretations for Wind Damage, British Columbia Ministry of Forests, Forest Practices Branch, https://www.for.gov.bc.ca/hfp/publications/00166/wb_29Mar00.pdf (accessed May 5, 2021).

C. Acknowledgements

Human Activity and the Environment 2021 was prepared by the Environment and Energy Statistics Division under the direction of Carolyn Cahill (Director), Jeff Fritzsche (Assistant Director), François Soulard (Chief) and Jennie Wang (Editor).

This report is dedicated to the memory of Giuseppe Filoso and Michael Bordt.

Giuseppe was an important member of the HAE team, having worked on the publication for over three decades up till his passing in May of 2019. His camaraderie and sense of humour, as well as his considerable technical GIS expertise, are sorely missed by his numerous friends and colleagues. Joe, we all feel so lucky to have known you and we share countless fond memories of you.

Michael was one of the inaugural members of the HAE team, involved in the first edition produced in the 1970s and many following editions, until he left Statistics Canada in 2012. Friend and mentor, we all benefitted from his boundless imagination and world-renowned energy, gently encouraging us to become better versions of ourselves. Environmental statisticians in Canada and abroad owe a debt of gratitude to Michael, and this edition of HAE in particular builds squarely on his legacy. Michael passed away in August, 2021.

Rest in Peace.

Analysis and reporting were performed by:

Lauren Allen, Jessica Andrews, Ann Helen Jean-Baptiste, Mark Henry, Marcelle Grenier, Roxane Jaffray, François Soulard, Katharine Strong and Jennie Wang

Recognition is given to the following people and areas for their support in data development and production, map and infographic production, factchecking and review of this report:

Lauren Allen, Jessica Andrews, Merinah Buller, Giuseppe Filoso, Ann Helen Jean-Baptiste, Nick Lantz, Hugo Larocque, Eleen Marzook, Yasmina Seddiki, Katharine Strong and Myriam Venasse.

The support and co-operation of the following individuals and federal departments with regards to data provision and review is also gratefully acknowledged, including:

Dr. Alain Pietroniro, P. Eng, Professor and Chair in Sustainable Water Systems in a Changing Climate, Schulich School of Engineering, Department of Civil Engineering, University of Calgary

Agriculture and Agri-Food Canada: Andrew Davidson, Bahram Daneshfar, Xiaoyuan Geng and Melodie Green.

Fisheries and Oceans Canada: Messan Agbaglah, Zeba Ali, Michael Bordt, Gisele Magnusson, Andrea Moore and Andrea Niemi.

Environment and Climate Change Canada: Elizabeth Bush, Jason Duffe, Vincent Cheng, Douglas MacDonald, Brett Painter, Jon Pasher and Susan Preston

Natural Resources Canada: Luc Guindon, Darren Janzen, Shusen Wang and the Canadian Forest Service.