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Comments on “Exchangeability assumption in propensity-
score based adjustment methods for population mean 

estimation using non-probability samples” 

Jae Kwang Kim and Yonghyun Kwon1 

Abstract 

Pseudo weight construction for data integration can be understood in the two-phase sampling framework. Using 
the two-phase sampling framework, we discuss two approaches to the estimation of propensity scores and 
develop a new way to construct the propensity score function for data integration using the conditional maximum 
likelihood method. Results from a limited simulation study are also presented. 
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1. Introduction 
 

We would like to congratulate Yan Li for being selected as a Morris Hansen lecturer and for giving an 

interesting presentation on data integration. Data integration is an emerging area of research to combine 

multiple data sources in a defensible way. In data integration, by using an independent probability sample 

as a calibration sample, the selection bias in the convenient sample can be reduced. However, statistical 

tools for data integration are limited. Thus, I welcome Li’s attempt to develop an additional statistical tool 

for data integration. 

Using the balancing score function to control selection bias in the nonprobability sample is a reasonable 

idea. How to construct the balancing score function in the context of data integration can be more tricky. Li 

recognized that the propensity score (PS) estimation method of Chen, Li and Wu (2020) can be inefficient, 

as the estimation procedure involves using the survey weights in the probability sample. Instead of using 

weighted estimation, Li proposed an unweighted estimation method and then developed a method for bias 

correction. The unweighted estimate of PS is also considered by Elliott and Valliant (2017) and has been 

adopted by some practitioners. In this discussion, we would like to clarify two existing approaches to the 

estimation of propensity scores and develop a defensible way of constructing the propensity score function 

for data integration. 

The paper is organized as follows. In Section 2, we present a two-phase sampling framework for data 

integration and the conditional PS model approach is introduced. In Section 3, another approach, called the 

unconditional model approach, is introduced. The simulation study is presented in Section 4. Some 

concluding remarks are made in Section 5. 
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2. Conditional PS model approach 
 

We use the set-up considered in Yang, Kim and Hwang (2021) where sample A is a probability sample 

observing x  and sample B is the nonprobability sample observing ( , ).yx  Table 2.1 presents the general 

setup of the two sample structures for data integration. As indicated in Table 2.1, sample B  is not 

representative of the target population. 

 
Table 2.1 

Data structure for data integration and data fusion. 
 

Data Integration 
Sample Type X  Y  Representative? 

A  Probability Sample ✓  Yes 

B  Non-probability Sample ✓ ✓ No 

 
The formulation is somewhat similar to the two-phase sampling: 

1. The first-phase sample 1S A B   is selected from U  and ix  is observed for all units in 1.S  

2. The second-phase sampling 2 =S B  is selected from 1S  and iy  is observed for all units in 2.S  

 

Unlike classical two-phase sampling, we do not know the first-order inclusion probability of 1S . Instead, 

we only know the first-order inclusion probability of the sample .A  That is, ( ) = ( | )A
i P i A i U    is the 

(known) first-order inclusion probability of sample .A  

Let ( ) = ( | )B
i P i B i U    be the (unknown) first-order inclusion probability of sample .B  Note that the 

first-order inclusion probability of 1S  can be written as  

 

1

( ) ( ) ( ) ( )

( | ) = ( | )

= ( | ) ( | ) ( | ) ( | )

= A B A B
i i i i

P i S i U P i A B i U

P i A i U P i B i U P i A i U P i B i U

   

    

         

 

 (2.1) 

where the last equality follows from the independence of two samples. Thus, we can express the conditional 

inclusion probability for the second-phase sample as  

 
( )

2 1 ( ) ( ) ( ) ( )

( | )
( | ) = = .

( | )

B
i

A B A B
i i i i

P i B i U
P i S i S

P i A B i U



   

 
 

    
 (2.2) 

Now, since we observe ix  for 1 = ,i S A B   we can make a statistical model for the conditional 

inclusion probability in (2.2) as a function of x . Let  

 2 1( | ) = ( ; )iP i S i S p   x  (2.3) 



Survey Methodology, June 2024 59 

 

 
Statistics Canada, Catalogue No. 12-001-X 

be the statistical model for the conditional inclusion probability with unknown parameter .  We can 

estimate   by unweighted analysis. That is,  

  
1

ˆ = arg max log ( ; ) 1 log{1 ( ; )} ,i i i i
i S

p p


    


      x x   

where = ( )i i B I  is the indicator function of the event .i B  If a logistic regression model with 

logit{ ( ; )} =i ip  x x  is used in (2.3), then ̂  can be obtained by solving  

 {1 ( ; )} ( ; ) = .i i i i
i B i A

p p 
 

  x x x x 0   

This unweighted estimation is fully justified, as the conditional inclusion probability model (2.3) is 

conditional on the first-phase sample 1 = .S A B  Since the propensity model in (2.3) is conditional on the 

first-phase sample, it can be called the conditional propensity score (PS) model. 

Now, since (2.3) is the model for the conditional inclusion probability in (2.2), we can obtain  

 
( )

( ) ( ) ( ) ( )
ˆ= ( ; ),

B
i

iA B A B
i i i i

p



    

x   

which implies that  

 
( ) ( )

1 1 1
= 1 1 .

ˆˆ ( ; )
B A

i i ip  

  
  

  x
 (2.4) 

Thus, ( ) ( )ˆ ˆ= 1/B B
i iw   in (2.4) can be used as the final pseudo-weight for the elements in sample .B  

In practice, we cannot use (2.4) directly as the first-order inclusion probabilities are unknown outside 

the sample. One way to handle this problem is to estimate ( ) ( )= 1/A A
i iw   by  

 ( ) ( ) ( )= { | , = 1}A A A
i i i iw E w Ix  (2.5) 

following the result of Pfeffermann and Sverchkov (1999). Thus, (2.4) can be changed to  

 ( )

( )

1 1
= 1 1 .

ˆˆ ( ; )

A
iB

i i

w
p 

  
  

  x
  (2.6) 

Li used a parametric model for ( ) ( )( | ) = ( ; )A AE   x x  and developed a pseudo maximum likelihood method 

for estimating   from the sample. Once ̂  is obtained, we can use (2.6) with ( ) ˆ= 1/ ( ; ).A
i iw  x   

Instead of using (2.6), Elliott and Valliant (2017) proposed using  

 
( ) ( )

1 1 1
= 1

ˆˆ ˆ ( ; )
B A

i i ip  

  
 

  x
 (2.7) 

where  
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 ( ) ( ) ( )ˆ = { | , = 1}.A A A
i i i iE I  x  (2.8) 

However, ( ) ( )ˆ1/A A
i iw   in general and the pseudo weight in (2.7) is not theoretically justified. 

 
3. Unconditional PS model approach 
 

Another approach to the PS model is to assume a statistical model for ( ) = ( | )B
i P i B i U    such as  

 ( ) = ( ; )B
i B i  x  (3.1) 

for some parameter .  This unconditional PS model has been considered by Chen et al. (2020) and Wang, 

Valliant and Li (2021), where the pseudo maximum likelihood method was used to estimate .  

If we wish to improve the efficiency of estimators of ,  we can consider the maximum likelihood method 

as follows. First, if ( )A
i  are available in 1,S  using (3.1), we can derive the following conditional inclusion 

probability model:  

 2 |1 ( ) ( )

( ; )
( ) = .

( ; ) ( ; )
B i

i A A
i B i i B i

 
 

       

x

x x
 (3.2) 

In the second step, we can compute the conditional maximum likelihood estimator of   from the combined 

sample by  

  
1

2 |1 2 |1
ˆ = arg max log ( ) 1 log{1 ( )} ,i i i i

i S


      


      (3.3) 

where 2 |1( )i   is defined in (3.2). The conditional maximum likelihood estimator in (3.3) is based on the 

assumption that we can identify the units that belong to the intersection of A  and .B  Once ̂  is obtained 

from the conditional maximum likelihood method, we can use 
( ) ( ) ˆˆ =1/ ( ; )B B
i iw  x  as the pseudo weights 

for sample .B  This conditional maximum likelihood method was also considered by Savitsky, Williams, 

Gershunskaya, Beresovskyl and Johnson (2022) under the assumption that ( )A
i  are available in sample B. 

If ( )A
i  are not available outside the sample ,A  we cannot construct the conditional inclusion probability 

in (3.2). In this case, we can replace ( )A
i  by ( ) ( )= 1/ ,A A

i iw   where ( )A
iw  is defined in (2.5), and compute  

 2 |1 ( ) ( )

( ; )
( ) =

( ; ) ( ; )
B i

i A A
i B i i B i

 
 

       

x

x x 
 (3.4) 

to apply the above conditional maximum likelihood method in (3.3). The final pseudo weights are given by 
( ) ˆˆ =1/ ( ; )B
i B iw  x  and ̂  is computed by (3.3). 

Instead of the maximum likelihood method, the pseudo weights for sample B can be constructed to 

satisfy  

 
( )

1 1
= .

( ; )
i iA

i B i AB i i   

 x x
x

 (3.5) 
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Condition (3.5) is often called the calibration property. The calibration property is a desirable property for 

any pseudo-weights. Once ̂  is calculated from the calibration equation in (3.5), the final pseudo weight 

for sample B  is given by ( ) ˆˆ =1/ ( ; ).B
i B iw  x  

 
4. Simulation study 
 

A limited simulation study is conducted to compare the performance of estimators, including the 

methods suggested by the paper of Li. In the simulation, we generate a finite population with 

1 2 1 2Bernoulli ( ), = expit ( 1 0.8 0.2 0.5 )i i i i i i iy p p x x x x   ∼  with 1 2 3( , , )x x x  follows from the standared 

normal distribution. The finite population size is =N 5,000. 

From the finite population, sample A  is generated repeatedly by the PPS sample with measure of size  

 1 3 1 3= exp( 1 0.5 0.5 0.2 )i i i i imos x x x x      

with sample size =An 250. In addition, sample B  is selected repeatedly by stratified random sampling with 

two strata, where stratum 1 is 1 1= : > 0iU i U x  and stratum 2 is 2 1= : 0.iU i U x   In stratum 1, 

1 = 0.7B Bn n  samples are selected by simple random sampling. In stratum 2, 2 = 0.3B Bn n  samples are selected 

by simple random sampling. The sample size of B  is chosen to be either =Bn 250 or =Bn 2,500 so that 

the sampling ratio is either 5% or 50%. The design weights for sample A are available in sample ,A  but not 

in sample .B  The study variable y  is available only in sample .B  The covariate of the main effects and 

their pairwise interaction effects 1 2 3 1 2 1 3 2 3( , , , , , )x x x x x x x x x  are available in .A B  

We compare the following estimators: 

Mean C Sample mean of the nonprobability sample .C  Unweighted in the paper.  

WBS ALP(Adjusted Logistic Propensity) estimator using weighted balancing score method, proposed 

by Wang et al. (2021). 

ABS ALP estimator using adaptive balancing score method, proposed by Li.  

CLW Chen et al. (2020)’s IPW(Inverse Probability Weighting) estimator using logistic regression 

model for ( ).B
i   

Cal Calibration estimator that satisfies (3.5) using logistic regression model for ( ).B
i  

CPS The proposed pseudo weight estimator (2.6) using the conditional inclusion probability model and 

the smoothed weights in (2.5). The logistic regression model is used for the conditional inclusion 

probability model, and Poisson regression was used for smoothing weights of sample A in (2.5).  

UCPS The pseudo weight estimator proposed in Section 3 using the logistic regression model for ( )B
i  

with ̂  estimated by the conditional maximum likelihood method in (3.3).  

 

While the sample B  is selected using stratified sampling, the propensity scores of WBS, ABS, CLW, CPS, 

and UCPS were fitted from the logistic model, and we allowed model misspecification on the response 

model of ( ).B  
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The simulation results after 1,000 simulation runs are summarized in Table 4.1. When =Bn 250, the 

ABS, the CPS, and the UCPS estimators tend to outperform all other estimators considered. When =Bn

2,500, the CPS and UCPS estimators are better than the other estimators considered. The ABS and WBS 

methods are developed based on the assumption that the overlap between the two samples is negligible, but 

this assumption does not hold for =Bn 2,500, as the sampling rate for sample B, / =Bn N 0.5, is non-

negligible. 

 
Table 4.1 

Bias, standard error, and root mean square error after 1,000 repetitions. 
 

 =Bn 250 =Bn 2,500 

BIAS SE RMSE BIAS SE RMSE 
Mean C 0.0533 0.0252 0.0589 0.0514 0.0052 0.0517 

WBS 0.0087 0.0275 0.0289 0.0053 0.0139 0.0149 
ABS 0.0097 0.0264 0.0281 0.0097 0.0130 0.0162 

CLW 0.0084 0.0278 0.0291 -0.0081 0.0234 0.0248 
Cal 0.0061 0.0284 0.0291 0.0080 0.0140 0.0161 

CPS 0.0095 0.0263 0.0279 0.0035 0.0116 0.0121 
UCPS 0.0094 0.0263 0.0280 0.0035 0.0116 0.0121 

 
5. Concluding remark 
 

In constructing pseudo-weights, model assumptions for the nonprobability sample are used. The model 

assumptions can be classified into two groups, one is the conditional PS model approach and the other is 

the unconditional PS model approach. The conditional PS model approach is computationally attractive but 

the smoothing weights for sample A should be constructed correctly. In the unconditional PS model 

approach, the pseudo maximum likelihood method of Chen et al. (2020) has been used. Li’s method is more 

efficient than the pseudo maximum likelihood method as long as the sampling rate for sample B is 

negligible. In this paper, we propose an alternative approach using the conditional maximum likelihood 

method as an efficient estimation method, which can be justified even when the sampling rate for sample B 

is non-negligible. The computation for the conditional maximum likelihood method is somewhat involved. 

Beaumont, Bosa, Brennan, Charlebois and Chu (2024) independently proposed a very similar method, 

which was called the maximum sample likelihood method. Further investigation of the proposed method 

will be presented elsewhere. 
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