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Handling non-probability samples through inverse 
probability weighting with an application to Statistics 

Canada’s crowdsourcing data 

Jean-François Beaumont, Keven Bosa, Andrew Brennan,  
Joanne Charlebois and Kenneth Chu1 

Abstract 

Non-probability samples are being increasingly explored in National Statistical Offices as an alternative to 
probability samples. However, it is well known that the use of a non-probability sample alone may produce 
estimates with significant bias due to the unknown nature of the underlying selection mechanism. Bias reduction 
can be achieved by integrating data from the non-probability sample with data from a probability sample provided 
that both samples contain auxiliary variables in common. We focus on inverse probability weighting methods, 
which involve modelling the probability of participation in the non-probability sample. First, we consider the 
logistic model along with pseudo maximum likelihood estimation. We propose a variable selection procedure 
based on a modified Akaike Information Criterion (AIC) that properly accounts for the data structure and the 
probability sampling design. We also propose a simple rank-based method of forming homogeneous post-strata. 
Then, we extend the Classification and Regression Trees (CART) algorithm to this data integration scenario, 
while again properly accounting for the probability sampling design. A bootstrap variance estimator is proposed 
that reflects two sources of variability: the probability sampling design and the participation model. Our methods 
are illustrated using Statistics Canada’s crowdsourcing and survey data. 

 
Key Words: Akaike Information Criterion; Classification and Regression Trees; Logistic model; Participation probability; 

Statistical data integration; Variable selection. 

 
 

1. Introduction 
 

Non-probability samples are being increasingly explored at Statistics Canada and in other statistical 

agencies around the world. Indeed, Statistics Canada has recently conducted several non-probability surveys 

to evaluate the impacts of the COVID-19 pandemic on different aspects of life of the Canadian population. 

Data of these non-probability surveys were collected from visitors of Statistics Canada’s website who 

responded voluntarily to an online survey questionnaire. The main motivation for considering this non-

probability approach, called crowdsourcing at Statistics Canada, over probability surveys is the significant 

reduction in time and cost that can be achieved in the production of survey statistics. Another important 

advantage is the non-intrusive nature of crowdsourcing since participation is made on a voluntary basis. 

However, it is well known that the use of a non-probability sample alone, such as a crowdsourcing sample, 

may produce estimates with significant bias due to the unknown nature of the underlying selection (or 

participation) mechanism. To reduce this participation bias, data from a non-probability sample can be 

combined with data from a probability sample, ideally a large one. Estimation methods that combine data 

from probability and non-probability samples fall under the area of statistical data integration.  

We consider the data integration scenario for which the variables of interest are available only in the 

non-probability sample. However, a vector of auxiliary variables is observed in both samples and used to 
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reduce bias. A possible approach to inference under this scenario relies on a model for the variables of 

interest along with the assumption that the non-probability sample is not informative with respect to the 

model. The prediction approach for finite populations (e.g., Royall, 1970; Valliant, Dorfman and Royall, 

2000) is one possible avenue for data integration. If a linear model between the variables of interest and the 

auxiliary variables holds, it can be implemented by weighting the non-probability sample through 

calibration on known population totals or totals estimated from the probability survey (e.g., Elliott and 

Valliant, 2017; Valliant, 2020). Another model-based method is statistical matching (see Yang, Kim and 

Hwang, 2021, for a recent reference). It consists of imputing the missing values of the variables of interest 

in the probability sample using non-probability sample data. The method is called sample matching (e.g., 

Rivers, 2007) when donor imputation is used to fill in the missing values. The prediction approach with 

estimated totals and statistical matching lead to identical estimators under linear models with error variance 

linearly related to auxiliary variables (Beaumont, 2020). Since both methods rely on a model for the 

variables of interest, they may become impractical when there are multiple variables of interest as a model 

needs to be determined and validated for each of them. 

An alternative approach to inference relies on a model for the participation indicator rather than a model 

for the variables of interest. This approach is more appealing when there are multiple variables of interest 

as there is only one participation indicator, and thus only one model to choose and validate. Estimates are 

obtained by weighting each participant in the non-probability sample by the inverse of its estimated 

participation probability. This is often called inverse probability weighting or propensity score weighting in 

the literature. We focus on this approach. If the values of the auxiliary variables are observed for the entire 

population, the problem is basically identical to weighting for survey nonresponse, and nonresponse 

weighting methods can be applied directly to weight the non-probability sample.  

In general, the auxiliary variables are observed only for the participants in the non-probability sample. 

Chen, Li and Wu (2020) proposed a simple and attractive method to address this issue. It requires the 

auxiliary variables to be also observed in a probability sample and assumes that the logistic function is used 

to model the participation probability. An alternative to Chen, Li and Wu (2020) consists of creating a 

pooled sample from the probability and nonprobability samples and modelling the participation indicator 

under the assumption that there is no overlap between the two samples (e.g., Lee, 2006; Valliant and Dever, 

2011; and Ferri-Garcia and Rueda, 2018). Chen, Li and Wu (2020) noted that this pooling method leads to 

a biased estimator of the participation probability. However, Beaumont (2020) pointed out that it yields 

estimated participation probabilities approximately equivalent to those of Chen, Li and Wu (2020) when all 

the participation probabilities are small and the probability sample is properly weighted. Wang, Valliant and 

Li (2021) proposed an extension of the pooling method to account for a non-negligible overlap between the 

probability and non-probability samples. Elliott and Valliant (2017) proposed another inverse probability 

weighting method based on the pooled sample. It also assumes no overlap between both samples and 

requires the probability survey weights to be available in the non-probability sample. Recent reviews of 

statistical data integration methods are given in Beaumont (2020), Lohr (2021), Rao (2021), Valliant (2020), 

Wu (2022) and Yang and Kim (2020). 
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The choice of auxiliary variables is key for bias reduction. They should ideally be related to both the 

participation indicator and the variables of interest. Chen, Li and Wu (2020) supposed that the auxiliary 

variables were given. In practice, there may be a number of auxiliary variables available in both samples, 

often categorical, and it may not be obvious to determine the relevant ones along with proper interactions. 

Variable selection tools could be useful but need to be adapted to the data integration scenario considered 

in this paper. In particular, they need to account for the sampling design used to select the probability sample 

and for any adjustments to the design weights, such as nonresponse and calibration adjustments. We propose 

a stepwise selection procedure that achieves this goal. It is based on a modification of the Akaike 

Information Criterion (AIC) similar to the one Lumley and Scott (2015) developed for the estimation of 

model parameters from probability survey data. The Least Absolute Shrinkage and Selection Operator 

(LASSO) is an alternative that is considered by Bahamyirou and Schnitzer (2021). This technique usually 

involves cross-validation for the determination of the penalty parameter. The development of cross-

validation methods that handle a combination of a probability and non-probability sample, and that properly 

account for the probability sampling design, requires further research.  

The logistic model may sometimes produce a few estimated probabilities that are very small leading to 

very large weights and potentially unstable estimates. A common solution to this problem in the context of 

survey nonresponse is to create homogeneous groups and weight each respondent (participant) in a given 

group by the inverse of the estimated response (participation) rate in the group. The resulting weights 

possess a calibration property (see Section 3.3), which tends to limit the magnitude of the largest weights. 

The creation of homogeneous groups also provides some robustness to model misspecifications, as 

illustrated by Haziza and Lesage (2016) in the context of survey nonresponse.  

A possible avenue to the creation of homogeneous groups is to adapt the Classification and Regression 

Trees (CART) algorithm, developed by Breiman, Friedman, Olshen and Stone (1984), to the data integration 

scenario studied in this paper. A nice advantage of tree-based methods is that auxiliary variables and their 

interactions are chosen automatically. Chu and Beaumont (2019) developed an algorithm for growing a tree 

that accounts for the survey weights. They called the algorithm “nppCART” because it integrates data from 

both a non-probability and probability sample. Pruning is an important aspect of CART that is used to avoid 

overfitting and to improve the efficiency of the resulting estimates. Pruning is often based on cross-

validation techniques but, as pointed out above, these techniques have yet to be extended to the data 

integration scenario studied in this paper. Instead, we consider a modification of the AIC, similar to Lumley 

and Scott (2015), that properly accounts for the probability sampling design and any design weight 

adjustments, and use it to develop a pruning procedure. 

In Section 2, we introduce the data integration problem along with some notation. The estimation of 

participation probabilities is discussed in Sections 3 and 4. In Section 3, we consider more specifically the 

logistic model and describe our proposed variable selection procedure as well as a simple rank-based 

method, called the Frank method, for the creation of homogeneous groups. In Section 4, we describe 

nppCART and our proposed pruning procedure. Bootstrap estimation of the variance of our estimators is 

discussed in Section 5. An empirical evaluation of our methods using real data is shown in Section 6. The 

last section contains some concluding remarks.  
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2. Data integration scenario 
 

Let us consider the estimation of the population total ,kk U
y


  where U  is the set of population 

units and ky  is the value of a variable of interest y  for population unit .k  We assume that ky  is observed 

without error in a non-probability sample NP .s U  Along with ,ky  a vector of auxiliary variables xk  is 

also observed for each unit NP.k s  The indicator of participation in the non-probability sample is denoted 

by ,k  i.e., 1,k   if NP ,k s  and 0,k   otherwise. A probability sample ,Ps  drawn using some 

probability sampling design, is also available. The auxiliary variables xk  are observed for each unit ,Pk s  

but the variable of interest ky  and the participation indicator k  are missing in the probability sample. 

The objective is to estimate   under the above data integration scenario, i.e., using the y  values 

observed in the non-probability sample along with the x values observed in both samples. Inverse probability 

weighting involves modelling the participation probability Pr ( 1 ),k k kp   x  which is assumed to be 

strictly greater than 0. The estimator of   under this approach is 
NP

NP
NP
ˆ ˆ ,k kk s

w y


  where NP 1ˆ ˆ
k kw p  is 

the non-probability survey weight, also called the pseudo survey weight, of participant ,k  and ˆ kp  is a 

consistent estimator of .kp  A critical assumption for the validity of this approach is that the participation 

mechanism is not informative, i.e., Pr ( 1 , ) Pr ( 1 ).k k k k ky   x x  The availability of auxiliary 

variables associated with both k  and ky  is key to making this assumption plausible and reducing the 

participation bias. 

The non-probability survey weight NPˆ
kw  can then be calibrated (e.g., Deville and Särndal, 1992) to 

achieve greater efficiency gains as well as a double robustness property (e.g., Chen, Li and Wu, 2020; 

Valliant, 2020). Calibration of the non-probability survey weight NPˆ
kw  may be particularly efficient when 

auxiliary variables strongly predictive of ky  are available, which were excluded from the modelling of .kp  

We focus next on the modelling and estimation of the participation probability .kp  

 
3. Estimation of the participation probability using a logistic model 
 

The most common model for the participation probability Pr ( 1 )xk k kp    is the logistic model 

 
1

( ) 1 exp( ) ,k kp


  α x α  where α  is a vector of unknown model parameters. Assuming xk  is observed 

for all ,k U  and k  are mutually independent, an estimator of α  can be found by solving the unbiased 

maximum likelihood estimating equation:   

  
NP

( ) ( ) ( ) .k k k k k kk U k s k U
p p

  
      U α α x x α x 0  (3.1) 

The resulting maximum likelihood estimator is denoted by α  and satisfies ( ) .U α 0  The estimated 

participation probability is denoted by ( ).k kp p α  

The estimating equation (3.1) cannot be used when the vector of auxiliary variables xk  is only observed 

for NPk s  and missing for NP.k U s   Chen, Li and Wu (2020) proposed to estimate ( )α xk kk U
p

  in 

(3.1) using a probability survey. The resulting pseudo maximum likelihood estimating equation is 
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NP

ˆ ( ) ( ) ,
P

k k k kk s k s
w p

 
   U α x α x 0  (3.2) 

where kw  is the probability survey weight for unit .Pk s  For simplicity, we assume in our theoretical 

developments that 1,k kw    where k  is the probability that population unit k  is selected in .Ps  This 

weight ensures that ˆ[ ( )] ( ),dE U α U α  where the subscript d  indicates that the expectation is taken with 

respect to the probability sampling design. As a result, the estimating equation (3.2) is unbiased with respect 

to both the participation model and the probability sampling design. In practice, the survey weight kw  is 

often obtained after adjusting the basic design weight, 1,k
  for nonresponse and calibration. The estimating 

equation (3.2) requires knowing the vector xk  for all NPk s  and all Pk s  but not for all .k U  Its solution 

yields the pseudo maximum likelihood estimator ˆ ,α  which satisfies ˆ ˆ( ) .U α 0  The resulting estimated 

participation probability is denoted by ˆˆ ( ).k kp p α  Note that the estimating equation (3.2) may not have a 

solution. This is more likely to occur when NPn N  is large and the probability sample is small (see 

Beaumont, 2020). This was not an issue in our experimentations since NPn N  was smaller than 1%. 

Beaumont (2020) argued that the occurrence of inexistent solutions may be reduced by replacing the logistic 

model with the exponential model.  

Chen, Li and Wu (2020) considered the case where the auxiliary variables are given. In practice, it may 

be necessary to choose relevant auxiliary variables and their interactions among a large set of candidate 

auxiliary variables. In the applications we have experimented with so far, the candidate auxiliary variables 

are often categorical (e.g., education, marital status, etc.). Blindly crossing all these variables may lead to a 

huge number of groups with many small groups, even empty. This was our motivation for finding methods 

that could select relevant auxiliary variables and their interactions.  

We consider a stepwise selection procedure that attempts to minimize a modified version of the AIC, 

which properly accounts for the probability sampling design used to draw .Ps  The justification for this 

modified AIC is provided in Section 3.1, and our selection procedure is described in Section 3.2. Section 3.3 

considers an important special case of the logistic model: the homogeneous group model. In Section 3.4, a 

simple rank-based method for creating homogeneous groups is proposed. Finally, in Section 3.5, the recent 

method of Wang, Valliant and Li (2021) is discussed and contrasted with the method of Chen, Li and Wu 

(2020). 

 
3.1 A modified AIC for the logistic model that accounts for the probability 

sampling design 
 

Let us first consider the case where xk  is known for all the population units .k U  Assuming k  are 

mutually independent, we can write the log likelihood function as 

 

NP

( ) log[ ( )] (1 ) log[1 ( )]

( )
log log[1 ( )].

1 ( )

k k k kk U

k
kk s k U

k

l p p

p
p

p

 


 

   

 
   

 



 

α α α

α
α

α
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Let us define 0 ( ) [ ( )],ml E lα α  where the subscript m  indicates that the expectation is taken with respect 

to the true unknown participation model. The maximum likelihood estimator α  maximizes ( )αl  and we 

denote by 0 ,α  the value of α  that maximizes 0 ( ).l α  Under regularity conditions, the maximum likelihood 

estimator α  is consistent for 0α  under the model, i.e.,  0 (1),pN O α α  where N  is the population 

size. 

The AIC is an estimator of 02 [ ( )].mE l α  It is well known that a consistent estimator of 02 [ ( )]αmE l   is 

 AIC 2 ( ) 2 ,l q  α  (3.3) 

where q  is the number of model parameters (or the number of auxiliary variables). Equation (3.3) is the 

original AIC expression and the most widespread in practice. 

Let us now consider the case where xk  is known only for NPk s  and .Pk s  Chen, Li and Wu (2020) 

proposed the pseudo log likelihood function 

 
NP

( )ˆ( ) log log[1 ( )].
1 ( ) P

k
k kk s k s

k

p
l w p

p 

 
   

 
 

α
α α

α
 (3.4) 

Using 1
k kw    ensures that ˆ[ ( )] ( )α αdE l l  and 0

ˆ[ ( )] ( ).mdE l lα α  Under regularity conditions, the pseudo 

maximum likelihood estimator ˆ ,α  which maximizes ˆ( )αl  in (3.4), is consistent for 0α  under both the 

model and the sampling design, i.e., 0
ˆ( ) (1),P

pn O α α  where Pn  is the size of the probability sample. 

Under pseudo maximum likelihood estimation, the AIC can be defined as an estimator of  

0 0
ˆ ˆˆ ˆ ˆ ˆ2 [ ( )] 2 [ ( )] 2 [ ( ) ( )].md md mdE l E l E l l    α α α α  

In Appendix 1, we provide a sketch of the proof that 

 1
0 0 0 0

ˆ ˆˆ ˆ[ ( ) ( )] tr {var [ ( )]}[ ( )] ,md m dE l l q E      α α U α H α  (3.5) 

where the function ˆˆ ( ) ( )U α α αl    is given in (3.2) for the logistic model, and 2
0 0( ) ( ) .l    H α α α α  

Our derivations follow closely those of Lumley and Scott (2015). From (3.5) and (A.3) in Appendix 1, a 

consistent estimator of 0
ˆ2 [ ( )]mdE l α  is 

  10
ˆ ˆ ˆˆ ˆˆAIC 2 ( ) 2 2tr [ ( )][ ( )] ,dl q     α v U α H α  (3.6) 

where 0
ˆˆ [ ( )]v U αdd  is any design-consistent estimator of 0

ˆvar [ ( )]U αd  and 2 ˆˆ ( ) ( ) .l    H α α α α  For the 

logistic model, 

 ˆ ( ) ( ) [1 ( )] .
P

k k k k kk s
w p p


  H α α α x x  (3.7) 

The AIC expression (3.6) is similar to the one given in Lumley and Scott (2015) but they omitted the 

term 2 .q  This term is negligible compared with the third term on the right-hand side of (3.6) when the 

sampling fraction Pn N  is negligible. However, the term 2q  may not always be negligible compared with 

the third term of (3.6), even when Pn N  is small. This would tend to occur when the participation 
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probabilities ( )αkp  are small, which is typically the case of online volunteer-based surveys like Statistics 

Canada’s crowdsourcing surveys. Therefore, the term 2q  should generally not be neglected unless the non-

probability sample size is significantly larger than the probability sample size. Another reason for keeping 

2q  in the expression (3.6) is that it reduces to the standard AIC expression (3.3) when the probability sample 

is a census. The last term on the right-hand side of (3.6) can thus be interpreted as a penalty for using a 

probability sample instead of a complete census in the estimating equation (3.2). The smaller the probability 

sample, the larger the effect of the penalty on the AIC (3.6).  

 
3.2 Stepwise selection of auxiliary variables and pairwise interactions 
 

In the empirical Section 6, we use a stepwise procedure based on the AIC (3.6) to select auxiliary 

variables (main effects) and pairwise interactions. Our procedure starts with the naïve model, which only 

includes the intercept. At each step of the procedure, a variable (main effect or pairwise interaction) is either 

included in the model or, if it was previously included, removed from the model. The inclusion or removal 

of the variable that yields the largest reduction of the AIC (3.6) is selected. An interaction is only eligible 

for inclusion when both main effects have already been selected, and a main effect is only eligible for 

removal when it is not supporting any interaction. The procedure stops when no variable can be added or 

removed from the model, i.e., no further reduction of the AIC (3.6) is possible.  

One issue with the selection of auxiliary variables in a participation model is that it ignores the 

relationships between auxiliary variables and the variables of interest. As a result, an auxiliary variable that 

would be weakly associated with participation but strongly associated with some of the variables of interest 

could be discarded from the final participation model. This could have a negative effect on the bias reduction 

of the estimator NP̂  of the finite population parameter .  It is thus advisable to consider variable selection 

methods that lean towards overfitting, such as the AIC, to reduce the risk of omitting a relevant auxiliary 

variable. Moderate overfitting may better control for bias at the expense of a possible increase in variance. 

Our intent is to avoid gross overfitting so as to stabilize NP
ˆ .  As pointed out in Section 2, the above variable 

selection issue can also be dealt with by calibrating inverse probability weights NPˆ
kw  using calibration 

variables that are predictive of the variables of interest.  

 
3.3 The homogeneous group model 
 

Consider a partition of the population U  into G  groups, ,gU 1,..., ,g G  and let NP, gs  and ,P gs  be the 

sets of units gk U  that fall in the non-probability and probability samples, respectively. In the 

homogeneous group model, the participation probability is assumed to be constant for all units ,gk U  i.e., 

,k gp p  ,gk U  1,..., .g G  The homogeneous group model can be viewed as a special case of the logistic 

model with ,q G  1( , , , , )α g G    … …  and 1( , , , , ),k k gk Gkx x x x … …  where gkx  is a binary variable 

that equals 1 if ,gk U  and that equals 0, otherwise. Therefore, for a unit ,gk U ( ) ( )k g gp p p  α  
1[1 exp( )] ,g    and thus log[ (1 )].g g gp p    For this model, the pseudo log likelihood function (3.4) 

reduces to    
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 NP

1

( )ˆ ˆ( ) log log[1 ( )]
1 ( )

α
G

g

g g g
g g

p
l n N p

p






 
   

  
 , (3.8) 

where NP
gn  is the size of NP, gs  and 

,

ˆ
P g

g kk s
N w


  is the estimated population size in group g  obtained 

from the probability sample. The pseudo maximum likelihood estimator 1
ˆ ˆ ˆ ˆ( , , , , ),g G   α … …  which 

maximizes ˆ( )αl  in (3.8), is such that ˆ ˆ ˆlog[ (1 )],g g gp p   1, , ,g G …  where 

 

NP

ˆ .
ˆ
g

g

g

n
p

N
  (3.9) 

From (3.8), we can write ˆ ˆ( )αl  as  

 
1

ˆ ˆˆ ˆ ˆ ˆ ˆ( ) [ log ( ) (1 ) log (1 )].
G

g g g g g
g

l N p p p p


   α  (3.10) 

For the homogeneous group model, the estimating function ˆ ( )U α  in (3.2) reduces to 1 1
ˆ ˆ[ ( )] [ ( ), ,U  U α …  

ˆ ˆ( ), , ( )],g g G GU U …  where 

 NPˆ ˆ( ) ( ).g g g g gU n N p    (3.11) 

Also, from (3.7), the matrix ˆ ˆ( )H α  reduces to a diagonal matrix with the thg  element on the diagonal given 

by   

 ˆ ˆˆ ˆ ˆ( ) (1 ).g g g g gH N p p     (3.12) 

Let 0 0,1 0, 0,( , , , , ).g G   α … …  Using (3.11) and (3.12), the AIC (3.6) becomes  

 
0,

1

ˆˆ [ ( )]ˆ ˆAIC 2 ( ) 2 2 ,
ˆ ˆ ˆ(1 )

G
d g g

g g g g

v U
l G

N p p





   


α  (3.13) 

where 0,
ˆˆ [ ( )]d g gv U   is a design-consistent estimator of 0,

ˆvar [ ( )].d g gU   Using (3.11), a consistent variance 

estimator is   

 2
0,

ˆ ˆˆ ˆ ˆ[ ( )] ( ),d g g g d gv U p v N   (3.14) 

where ˆˆ ( )d gv N  is a design-consistent estimator of ˆvar ( ).d gN  Using (3.14), the AIC (3.13) can be rewritten 

as 

 

2

NP

1

ˆ[cv ( )]ˆ ˆAIC 2 ( ) 2 2 ,
ˆ1

G
d g

g
g g

N
l G n

p

   


α  (3.15) 

where ˆ ˆ ˆˆcv ( ) ( )d g d g gN v N N  is the estimated coefficient of variation of ˆ .gN  Again, the last term on the 

right-hand side of (3.13) or (3.15) can be interpreted as a penalty for estimating the unknown population 

sizes ,gN 1, , ,g G …  using a probability sample.  
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Using (3.9), we obtain the non-probability survey weight of a unit NP, gk s  as   

 
NP 1

NP

ˆ
ˆ ˆ .g

k k

g

N
w p

n
   (3.16) 

The non-probability survey weight (3.16) shows the importance of avoiding groups for which NP
gn  is very 

small, even zero, so as to reduce the occurrence of extreme weights. Using (3.16), the inverse probability 

weighted estimator of the population total   can be written as 

 
NP

NP NP
NP

1

ˆ ˆˆ ,
G

k k g gk s
g

w y N y




    (3.17) 

where 
NP,

NP NP

g
g k gk s

y y n


  is the average of variable of interest y  over units in NP, .gs  The estimator 

(3.17) is simply a post-stratified estimator and satisfies the calibration equations 
NP,

NP ˆˆ ,
g

k gk s
w N


  

1, , .g G …  The groups (post-strata) are constructed to be homogeneous with respect to the participation 

indicator. If they are also homogeneous with respect to the variable of interest then the post-stratified 

estimator (3.17) has a double robustness property (e.g., see Chen, Li and Wu, 2020; and Valliant, 2020). 

We have assumed so far that the group membership is pre-determined for every population unit. In 

practice, homogeneous groups are often defined after observing sample data. There are several methods of 

constructing sample-dependent homogeneous groups. In Section 3.4, we propose a simple rank-based 

method that partitions the non-probability sample with respect to estimated participation probabilities from 

a logistic model. An extension of CART, nppCART, is described in Section 4. Once the non-probability 

and probability samples have been partitioned into sample-dependent groups, weights can be computed 

using (3.16) as if the group memberships were fixed.   

 

3.4 A rank-based method for creating homogeneous groups 
 

The first step of this method consists of estimating participation probabilities using a logistic model (with 

or without stepwise selection). We denote by logistic ˆˆ ( )αk kp p  these estimated participation probabilities, 

which are computed for each NPk s  and .Pk s  The idea is then to form G  groups that are homogeneous 

with respect to logisticˆ
kp  so as to make the homogeneous group model plausible. Once the groups are formed, 

the estimated probabilities logisticˆ
kp  are discarded and the non-probability survey weights are computed using 

(3.16).  

There are many methods for partitioning NPs  into homogeneous groups. A simple and popular method 

is to form groups with an equal number of participants (e.g., Eltinge and Yansaneh, 1997, formed groups 

with an equal number of sample units in the context of survey nonresponse). This method is equivalent to 

determining group boundaries from equal-width intervals in the range of ,kr NP ,k s  where kr  is the rank 

of logisticˆ .kp  We propose below a generalization of this method that retains the simplicity of assigning units 

based on their rank, but allows some flexibility so that the classes do not need to be equal-sized.  

Rather than making equal-width bins in the range of ,kr  we propose to form G  equal-width bins in the 

range of ( ),kf r  a monotone function of the rank .kr  We call it the Frank method. All the non-probability 

sample units that fall in a given bin are assigned to the same group. Any non-linear function f  would thus 
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make smaller groups (fewer units) where the slope is steeper and larger groups where the slope is flatter. 

We propose the function  

 
NP

( ) log 1 ,k
k

r
f r a

n

 
  

 
  

NP ,k s  where NPn  is the size of the non-probability sample and a  is a non-negative pre-specified constant 

that determines the degree of non-linearity. This function is concave down, with a larger slope and smaller 

groups for the lower-ranked units. The constant a  determines the size of this effect, with a large value (e.g., 

100)a   providing groups that are more unequal in size. The limit as a  approaches 0 from above renders 

this function linear and so returns the equal-sized groups. The rank can be defined in ascending order of 
logisticˆ
kp  ( 1kr   for the smallest logisticˆ ,kp 2kr   for the second smallest logisticˆ ,kp  etc.), in which case the units 

with smaller estimated probabilities will be in the smaller groups, or in descending order of logisticˆ
kp  ( 1kr   

for the largest logisticˆ ,kp 2kr   for the second largest logisticˆ ,kp  etc.), in which case the units with larger 

estimated probabilities will be in the smaller groups. The Frank method is somewhat similar to forming 

equal-width groups but with the groups bunched toward one end or the other, depending on whether logisticˆ
kp  

are sorted in ascending or descending order. Figure 1A in Appendix 2 illustrates the Frank method for 

10,a  15G   and NPn  31,415, which is the size of the non-probability sample used in our empirical 

study in Section 6. 

Once the non-probability sample has been partitioned into groups, each probability sample unit must 

then be assigned to one of the groups. Because the function f  is monotone, each group contains non-

probability sample units with values of logisticˆ
kp  within a certain interval, and the intervals of any two different 

groups do not overlap so that the groups can be sorted based on their average value of logisticˆ .kp  The boundary 

between any two consecutive groups is taken as the midpoint between the largest logisticˆ
kp  from the group 

with the smaller average and the smallest logisticˆ
kp  from the other group. Once all the boundaries have been 

determined, each probability sample unit Pk s  is assigned to the group with boundaries that cover logisticˆ .kp  

The application of the Frank method requires determining suitable values of a  and G  as well as sorting 
logisticˆ ,kp NP ,k s  in ascending or descending order before computing the ranks .kr  Each possible choice leads 

to a different set of groups. We propose to determine the values of a  and ,G  and the sorting order, by 

looking at different options and choosing the one that yields the smallest value of the AIC (3.15). This is 

investigated empirically in Section 6.3. 

 

3.5 Adjusted logistic propensity weighting  
 

As pointed out in the introduction, Wang, Valliant and Li (2021) proposed an extension of the pooling 

method to account for a non-negligible overlap between the probability and non-probability samples. The 

justification of their method, called Adjusted Logistic Propensity (ALP) weighting, is not based on a true 

likelihood approach, but still yields an md-unbiased estimating equation given by 

 
NP

ALP
ALP

ALP ALP

1 ( )ˆ ( ) ,
1 ( ) 1 ( )P

k
k k kk s k s

k k

p
w

p p 
  

 
 

α
U α x x 0

α α
 (3.18) 
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where ALP ( ) exp ( ).k kp α x α  The estimating equation (3.18) is not equivalent to (3.2). However, if all the 

participation probabilities are small, both estimating equations should yield similar estimates of the 

participation probabilities.  

An important difference between Wang, Valliant and Li (2021) and Chen, Li and Wu (2020) is the choice 

of the participation model. Chen, Li and Wu (2020) modelled the participation probability using a logistic 

function whereas Wang, Valliant and Li (2021) considered an exponential function. The logistic model is 

more natural as it ensures that estimated participation probabilities are always within the (0,1)  interval. This 

is to be contrasted with the exponential model, which may produce estimated probabilities greater than 1. 

Wang, Valliant and Li (2021) conducted a simulation study to evaluate their method. Their results show 

that (3.18) yields estimates of population means that are more robust to model failure than (3.2). This 

robustness could be explained by the use of the exponential model. 

For the homogeneous group model, we have seen in Section 3.3 that the solution of (3.2) yields 
NP ˆˆ ˆ( ) ,k g g gp p n N α  for every unit .gk U  It is straightforward to show that the solution of (3.18) for 

the homogeneous group model also yields ALP NP ˆˆ ˆ( ) ,k g g gp p n N α  for every unit .gk U  The equivalence 

between (3.2) and (3.18) for the homogeneous group model suggests that, in general, the two methods may 

produce similar estimates of ,  particularly when estimated probabilities are used only for the purpose of 

creating homogeneous groups (e.g., using the Frank method described in Section 3.4). 

Wang, Valliant and Li (2021) also proposed a scaled version of their ALP method. Although the scaled 

estimating equation is not md-unbiased anymore, the authors showed its effectiveness in a simulation study 

for the estimation of population means. We tested the ALP method, including its scaled version, in our 

empirical experiments. The resulting estimates (not reported) were close to the pseudo maximum likelihood 

estimates of Chen, Li and Wu (2020), particularly after creating homogeneous groups. This observation is 

not surprising considering that the non-probability sample size is smaller than 1% of the population size in 

our experiments and that the estimated participation probabilities tend to be quite small. A thorough 

comparison of ALP and pseudo maximum likelihood estimation is left for future research. 

One of the objectives of this paper was to develop a variable selection procedure applicable to the data 

integration scenario described in Section 2. Wang, Valliant and Li (2021) did not tackle the problem of 

variable selection. An AIC based on Lumley and Scott (2015) is not appropriate with ALP (or its scaled 

version) because the underlying estimating equation is not justified through a true likelihood approach. 

However, if ALP were preferable in a given context, variable selection could first be based on the pseudo 

likelihood method of Chen, Li and Wu (2020) and then ALP could be applied using the selected auxiliary 

variables. 

 
4. Estimation of the participation probability using nppCART 
 

The CART tree-growing procedure, developed by Breiman, Friedman, Olshen and Stone (1984), is a 

recursive binary partitioning algorithm that minimizes a certain objective function. For a binary dependent 

variable such as ,k  a suitable objective function is the entropy impurity. For a given partition, ,gU  

1, , ,g G …  the entropy impurity is given by 
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1

[ log ( ) (1 ) log(1 )],
G
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g g g g
g

N
I p p p p

N

           

where gN  is the size of ,gU  
1

G

gg
N N


  and NP .g g gp n N  The entropy impurity cannot be computed 

when gN  is unknown. We propose to replace gN  with the survey-weighted estimator ˆ .gN  This yields the 

computable objective function 

 
1

ˆ
ˆ ˆ ˆ ˆ ˆ[ log ( ) (1 ) log (1 )],

ˆ

G
g

g g g g
g

N
I p p p p

N

      (4.1) 

where ˆ gp  is given in (3.9) and 
1

ˆ ˆ .
G

gg
N N


  The estimated entropy impurity (4.1) is proportional to the 

pseudo log likelihood function (3.10) under the homogeneous group model since ˆˆ ˆˆ( ) .I l N  α  

The recursive binary partitioning algorithm starts by examining all the possible splits of the non-

probability sample NPs  into two groups. A split is any binary partition of NPs  based on the categories or 

numerical values of one of the candidate auxiliary variables. For instance, a split could be “SEX = male” 

and “SEX = female” or “AGE < 25” and “AGE ≥ 25”. For each split of NP ,s  the probability sample Ps  is 

also split using the same binary partition. A split is said to be inadmissible and is rejected if it satisfies any 

of the following three stopping criteria:  

i) NP
NP ,gn C  for 1g   or 2,g   where NP 1C   is a pre-determined constant specifying the 

minimum number of participants in a group; 

ii) NP ˆ ,g gn N  for 1g   or 2;g   

iii) ,P
g Pn C  for 1g   or 2,g   where P

gn  is the size of ,P gs  and 1PC   is a pre-determined 

constant specifying the minimum number of probability sample units in a group.       
 

Then, the estimated entropy impurity (4.1) with 2G   is computed for each admissible split, and the 

best of those admissible splits, i.e., the one that has the smallest value of (4.1), is selected to form the first 

two groups. If all the splits are inadmissible or the best split does not decrease the objective function (4.1) 

then partitioning into two groups is not done.  

After the determination of the first two initial groups, the same splitting operation is repeated for each 

of the two groups, and so on and so forth, layer by layer, until all the groups cannot be split further based 

on the stopping criteria. We say that this process results in a fully grown tree although it is a slight abuse of 

language as there are stopping criteria that limit its growth. The above procedure, the earlier version of 

which was called nppCART by Chu and Beaumont (2019), is essentially identical to the original CART 

algorithm, except for the use of the estimated entropy (4.1) and the three stopping criteria above. The 

stopping criterion (i) ensures that the non-probability survey weight NPˆ
kw  in (3.16) does not become extreme. 

The stopping criterion (ii) ensures that the estimated probability ˆ gp  is always smaller than 1. The last 

criterion is added to ensure that the estimator ˆ gN  is not too unstable.  

Chu and Beaumont (2019) developed an R program that implements the nppCART algorithm. They 

showed in a simulation study that this algorithm was effective for reducing the participation bias although 

the resulting post-stratified estimator (3.17) had a variance somewhat larger than its competitors. This 
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instability might be explained by overfitting, i.e., the creation of too many groups. The usual 

recommendation to avoid overfitting is to prune the tree after it has been grown. Pruning is usually applied 

in two steps. In the first step, a finite sequence of nested subtrees of decreasing size and increasing impurity 

is determined, starting with the fully grown tree that has the maximum number of groups and ending with 

the degenerate subtree that contains only one group. In the second step, the best of these nested subtrees is 

selected, often through K -fold cross-validation. This pruning approach is equivalent to penalizing the 

objective function with an additive penalty term defined as the product of a positive penalty parameter and 

the number of groups. Cross-validation is then typically used to determine an optimal value for the penalty 

parameter. Greater detail on pruning can be found in Breiman, Friedman, Olshen and Stone (1984); see also 

Izenman (2008, Chapter 9). In the context of survey nonresponse, classification and regression trees have 

been explored by Phipps and Toth (2012) and Lohr, Hsu and Montaquila (2015).  

However, as pointed out in the introduction, classical cross-validation methods cannot be directly applied 

to the data integration scenario studied in this paper, and this topic requires further research. As an 

alternative to cross-validation for the selection of the best subtree, among a set of nested subtrees of 

decreasing size and increasing impurity, we propose to choose the subtree that minimizes the AIC (3.15). 

This AIC takes the probability sampling design into account through the estimation of the design variance 

of ˆ
gN  (see Section 5). This variance could be readily estimated in our experiments in Section 6 using 

available bootstrap weights. Similar to variable selection, discussed in Section 3.2, pruning is intended to 

avoid gross overfitting so as to stabilize NP
ˆ .  

 
5. Bootstrap variance estimation 
 

It is not enough to produce inverse probability weighted estimates of finite population parameters; it is 

also important to provide users with indicators of the quality of those estimates. We propose a bootstrap 

procedure to estimate the variance of inverse probability weighted estimators with a focus on the post-

stratified estimator (3.17). The variance may be useful but has some limitations since it is derived under the 

assumption that the participation model is correctly specified and that the inverse probability weighted 

estimators are unbiased. The absence of bias depends critically on the availability and proper choice of 

auxiliary variables so as to make the non-informative participation assumption reasonable. Although some 

amount of bias seems unavoidable in practice, the computation of variance estimates may nonetheless 

provide some useful information for comparison and evaluation purposes, as illustrated in Section 6.  

The bootstrap variance estimator that we propose accounts for two sources of variability: the probability 

sampling design and the participation model. We suppose that B  bootstrap weights ( ) ,b
kw 1, , ,b B …  are 

available for each unit ,Pk s  and that these bootstrap weights properly capture the variability due to the 

probability sampling design. For instance, we assume that these bootstrap weights can be used to obtain a 

design-consistent estimator of ˆvar ( )d gN  as   

 boot ( ) 2

1

1ˆ ˆ ˆˆ ( ) ( ) ,
B

b
d g g g

b

v N N N
B 

   (5.1) 
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where 
,

( ) ( )ˆ
P g

b b
g kk s

N w


  is the thb  bootstrap replicate of ˆ .gN  The Rao, Wu and Yue (1992) bootstrap 

weights are often used in social surveys conducted by Statistics Canada. They are applicable for stratified 

multistage designs when the first-stage sampling fractions are small and can incorporate weight adjustments, 

such as nonresponse adjustments and calibration. Beaumont and Émond (2022) proposed an extension of 

the method that removes the requirement of small first-stage sampling fractions.  

The unknown participation mechanism is modelled as a Poisson sampling design, where population units 

are assumed to participate independently of one another with probability ,kp .k U  For Poisson sampling, 

Beaumont and Patak (2012) pointed out that valid bootstrap weights for sample units NPk s  can be written 

as 1 ( ) ,b
k kp a 1, , ,b B …  provided that the bootstrap factors ( )b

ka  are generated independently of one another 

using a distribution that is not too heavily skewed with a mean of one and a variance of 1 .kp  For a non-

probability sample, the true participation probability kp  is unknown but can be replaced with a consistent 

estimator ˆ .kp  Following Beaumont and Émond (2022), who studied bootstrap under survey nonresponse, 

we thus suggest generating the bootstrap factors ( ) ,b
ka NPk s  and 1, , ,b B …  independently of one another 

using the gamma distribution with a mean of one and a variance of ˆ1 .kp  The choice of the gamma 

distribution is to ensure non-negative bootstrap factors ( ).b
ka  

The bootstrap estimator of the variance of the inverse probability weighted estimator NP
ˆ , NP

ˆvar ( ),md   is 

given by  

 boot ( ) 2
NP NP NP

1

1ˆ ˆ ˆˆ ( ) ( ) ,
B

b
md

b

v
B

  


   (5.2) 

where ( )
NP
ˆ b  is the thb  bootstrap replicate of NP

ˆ .  Assuming the logistic model is used with fixed auxiliary 

variables, the thb  bootstrap replicate of 
NP

NP
NP
ˆ ˆ ,k kk s

w y


  with NP 1ˆˆ [ ( )] ,k kw p  α  is 
NP

( ) NP, ( )
NP
ˆ ˆ ,b b

k kk s
w y


  

where NP,( ) ( ) ( )ˆˆ ( ) ,b b b
k k kw a p α  and ( )α̂ b  is the solution of the thb  bootstrap replicate of estimating equation 

(3.2):   

 
NP

( ) ( ) ( )ˆ ( ) ( ) .
P

b b b
k k k k kk s k s

a w p
 

   U α x α x 0   

Assuming now that the homogeneous group model is used, the thb  bootstrap replicate of the post-stratified 

estimator (3.17) can be written as  

 
NP

( ) NP, ( ) ( ) NP, ( )
NP

1

ˆ ˆˆ ,
G

b b b b
k k g gk s

g

w y N y




    (5.3) 

where NP, ( ) ( ) ( ) NP, ( )ˆˆ ,b b b b
k k g gw a N n  for NP, ,gk s

NP,

NP, ( ) ( )

g

b b
g kk s

n a


  and 
NP,

NP, ( ) ( ) NP, ( ) .
g

b b b
g k k gk s

y a y n


  

The bootstrap replicate (5.3) is valid provided that the homogeneous groups are fixed. This simplification 

is often made when estimating the variance of estimators adjusted for survey nonresponse, even when the 

homogeneous groups are determined adaptively from the observed sample data. In our context, it would not 

be straightforward to develop a bootstrap procedure that correctly accounts for variable selection or pruning. 

In particular, a double bootstrap might be required if the design variance estimators involved in the AIC 

(3.6) or (3.15) were obtained through bootstrap weights. Treating auxiliary variables or homogeneous 
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groups as fixed, when they are not, should tend to underestimate the variance NP
ˆvar ( ).md   Although the 

magnitude of the underestimation is expected to be small to moderate, further research is needed on this 

topic. 

 
6. Empirical evaluation of methods using real data 
 

We evaluated and compared inverse probability weighting methods, discussed in Sections 3 and 4, using 

real data. In Section 6.1, we present the three data sources used in our investigations. Methods are described 

in Section 6.2 and results are given in Sections 6.3 and 6.4.  

 

6.1 Data sources and variables 
 

After the beginning of the COVID-19 lockdown in March 2020, Statistics Canada conducted a series of 

crowdsourcing surveys to respond to urgent information needs about the life of the Canadian population. 

Each crowdsourcing survey collected data from visitors of Statistics Canada’s website who responded 

voluntarily to a short online questionnaire. Renaud and Beaumont (2020) provide greater detail on 

crowdsourcing experiments conducted by Statistics Canada. 

We investigated the use of the Labour Force Survey (LFS) as a means of reducing the participation bias 

of crowdsourcing estimates. Except for the Census, the LFS is the most important social probability survey 

conducted by Statistics Canada with a sample containing around 56,000 selected households each month. 

Data are collected for all eligible persons within responding households. The household response rate was 

around 90% before the pandemic but fell to around 70% in June 2020. In our empirical study, we used data 

of the June 2020 LFS sample, which contains responses for 87,779 persons. The LFS is based on a stratified 

multistage design and a regression composite estimator (see Gambino, Kennedy and Singh, 2001). Rao, Wu 

and Yue (1992) bootstrap weights are produced and made available to users for variance estimation.   

In parallel to crowdsourcing experiments, Statistics Canada also started a series of probability web panel 

surveys: the Canadian Perspective Survey Series (CPSS). The CPSS sample is obtained from previous LFS 

respondents. The June 2020 CPSS initial probability sample was relatively large with over 30,000 selected 

persons but the overall recruitment/response rate was quite low at around 15%; this resulted in 4,209 

respondents in June 2020. Greater detail on the CPSS can be found in Baribeau (2020).  

In June 2020, participants from previous crowdsourcing experiments were also randomly chosen and 

sent the same questionnaire as CPSS respondents; 31,415 participants responded to the questionnaire. This 

allowed for a comparison of estimates from this crowdsourcing non-probability sample with those from the 

CPSS probability sample.  

Table 6.1 shows naïve crowdsourcing estimates and CPSS estimates for nine selected proportions. For 

the first two proportions, LFS estimates are also available and very close to the corresponding CPSS 

estimates. This is not unexpected as nonresponse in the CPSS is adjusted using education and employment 

status. Both probability surveys show large differences with naïve crowdsourcing estimates for these two 
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proportions. The following five proportions also show significant differences between naïve crowdsourcing 

and CPSS estimates whereas estimates from both sources are similar for the last two proportions.  
 

Table 6.1 

Proportions of interest. 
 

Proportion Description Naïve 
crowdsourcing 

estimate 

CPSS 
estimate 

LFS 
estimate 

1  Proportion of people having a university degree. 64.5% 30.6% 30.2% 

2  Proportion of people who worked at a job or business during the 
reference week. 

65.4% 50.1% 50.3% 

3  Proportion of people whose usual place of work is a fixed location 
outside the home. 

50.2% 40.2% - 

4  Proportion of people who worked most of their hours at home during the 
reference week. 

45.6% 19.3% - 

5  Proportion of people who report having “more than enough” income to 
meet their household needs. 

32.1% 15.9% - 

6  Proportion of people who are “very likely” to get COVID-19 vaccine 
when available. 

74.2% 57.3% - 

7  Proportion of people who are “very concerned” about the health risk 
posed by gathering in large groups. 

70.0% 54.4% - 

8  Proportion of people who “fear being a target for putting others at risk” 
because they do not always wear a mask in public. 

9.9% 9.8% - 

9  Proportion of people who report ordering the same amount of take-out 
food as before. 

45.6% 46.2% - 

 
In a first step, we used June 2020 LFS data to reduce the participation bias of naïve crowdsourcing 

estimates using inverse probability weighting methods discussed in Sections 3 and 4. The candidate 

auxiliary variables available in both the crowdsourcing and LFS samples were: age group (13 levels), sex 

(2 levels), economic region (56 levels), education (8 levels), immigration status (3 levels), household size 

(6 levels), marital status (6 levels) and employment status (3 levels). Greater detail on these eight auxiliary 

variables is given in Appendix 3. Then, we used non-probability survey weights to compute adjusted 

crowdsourcing estimates for the nine proportions defined in Table 6.1 and compared them to those obtained 

using the CPSS probability sample alone. These results are provided in Section 6.3. Note that a proportion 

is defined as 1 ,kk U
N y 


   where ky  is a binary variable of interest, and is estimated by NP̂   

NP NP

NP NPˆ ˆ .k k kk s k s
w y w

    For the first two proportions in Table 6.1, the variable of interest ky  can be 

derived from auxiliary variables. We thus expect weighting methods to successfully remove the 

participation bias for these proportions.  

In a second step, we obtained adjusted crowdsourcing estimates using June 2020 CPSS data instead of 

LFS data with the same candidate auxiliary variables as above. Our objective was to evaluate the effect on 

bias reduction of using a smaller probability sample. These results are provided in Section 6.4. 

 

6.2 Methods 
 

We investigated the eight methods described in Table 6.2 below. For methods 3, 5 and 6, which involve 

a logistic model with the stepwise selection procedure described in Section 3.2, all main effects and pairwise 

interactions were considered as candidate variables to be included or removed from the model. For these 
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methods, the estimator 0
ˆˆ [ ( )],dv U α  required to compute the AIC (3.6), was obtained using bootstrap weights 

as 

 *( ) *( )
0

1

1ˆ ˆ ˆˆ ˆˆ [ ( )] [ ( )] [ ( )] ,
B

b b
d

bB 

 v U α U α U α   

where 

 
NP

*( ) ( )ˆ ˆ ˆ( ) ( ) .
P

b b
k k k kk s k s

w p
 

  U α x α x   

For methods 4, 5, 6 and 8, the estimator ˆˆ ( ),d gv N  required to compute the AIC (3.15), is obtained from (5.1). 

For methods, 6, 7 and 8, which use nppCART, we set NP 5C   and 5PC   in the stopping criteria (i) and 

(iii) given in Section 4. 

 
Table 6.2 

Description of methods. 
 

Method Model Stepwise 
selection 

Homogeneous 
groups 

Description 

1 Intercept - - Naïve logistic model with only the intercept (or homogeneous group 
model with only one group). 

2 Logistic - - Logistic model including all main effects but no interaction.  

3 Logistic Yes - Logistic model with stepwise selection of main effects and pairwise 
interactions by minimizing the AIC (3.6). 

4 Logistic - Frank Method 2 followed by creation of homogeneous groups using the 
Frank method, described in Section 3.4, with sorting in ascending 
order, a  10 and the number of groups roughly minimizing the 

AIC (3.15). 

5 Logistic Yes Frank Method 3 followed by creation of homogeneous groups using the 
Frank method, described in Section 3.4, with sorting in ascending 
order, a  10 and the number of groups roughly minimizing the 

AIC (3.15). 

6 Logistic Yes nppCART  
with pruning 

Method 3 followed by creation of homogeneous groups using 
nppCART with pruning minimizing the AIC (3.15); only one 
auxiliary variable is provided to nppCART: the estimated 
participation probability from the logistic model. 

7 - - nppCART 
without pruning 

nppCART based on all candidate auxiliary variables without 
pruning. 

8 - - nppCART  
with pruning 

nppCART based on all candidate auxiliary variables with pruning 
minimizing the AIC (3.15). 

 
6.3 Results when integrating crowdsourcing data with the LFS probability 

sample 
 

Stepwise selection results for the logistic model 
 

Using the LFS as the probability sample, our stepwise selection procedure described in Section 3.2 

resulted in the selection of all main effects along with 15 pairwise interactions for a total of 395 model 

parameters. Six main effects entered the model before any interaction in the following order: education, 

economic region, immigration status, sex, age group and household size. Together, they accounted for more 

than 95% of the total AIC reduction (difference between AIC of methods 1 and 3). The variable education 

alone accounted for more than 40% of the total AIC reduction. For these data, it thus appears that 
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interactions are not as important as the main effects to reduce the AIC. This suggests that a model including 

all the main effects but no interaction might be reasonable.   

 
Comparisons of AIC values 
 

Table 6.3 shows values of the Relative AIC (RAIC) for the eight methods described in Table 6.2. The 

Relative AIC is defined as  

 0

0

AIC AIC
RAIC 100%,

AIC


    

where 0AIC  is the value of the AIC (3.6) for the naïve model containing only the intercept. For methods 1, 

2 and 3, the RAIC is computed using the AIC (3.6) whereas it is computed using the AIC (3.15) for methods 

4 to 8 assuming the groups are fixed. The RAIC can be interpreted similarly to the coefficient of 

determination in linear regression: it is 0 for the naïve model, it increases as the AIC decreases, and it is 

always smaller than 1. However, it can take negative values unlike the coefficient of determination. A model 

that has a larger RAIC than a competitor suggests that its auxiliary variables are better predictors of 

participation. Table 6.3 also shows the number of model parameters q  or the number of groups ;G q  is 

shown for methods 1, 2 and 3, and G  is shown for methods 4 to 8.  

 
Table 6.3 

RAIC values in percentage. 
 

Method Model Stepwise 
selection 

Homogeneous 
groups 

RAIC 
(%) 

q  or 

G  

Proportion 
(%) of AIC 
from the 1st  

term 

Proportion 
(%) of AIC 
from the 2nd  

term 

Proportion 
(%) of AIC 
from the 3rd  

term 
1 Intercept - - 0 1 100.00 0.00 0.00 
2 Logistic - - 10.7 90 99.90 0.04 0.06 
3 Logistic Yes - 11.1 395 99.59 0.18 0.23 
4 Logistic - Frank 10.7 100 99.89 0.05 0.07 
5 Logistic Yes Frank 11.3 100 99.88 0.05 0.07 
6 Logistic Yes nppCART  

with pruning 
12.2 1,276 97.99 0.59 1.42 

7 - - nppCART  
without pruning 

11.9 3,165 96.23 1.45 2.33 

8 - - nppCART  
with pruning 

12.5 1,772 97.58 0.82 1.60 

 
The RAIC varies from 10.7% to 12.5% for methods 2 to 8; thus, all these methods provide a meaningful 

improvement over the naïve method. Comparing methods 2 and 3, we observe that accounting for pairwise 

interactions yielded only a small improvement of the RAIC, as noted above. Using the Frank method to 

create homogeneous groups did not significantly improve the RAIC. This is an indication that the logistic 

model was reasonable for these data. The use of nppCART resulted in an increase of RAIC, albeit not 

substantial. This may indicate that nppCART has achieved some robustness. However, nppCART also 

resulted in a number of groups significantly larger than other methods, even after pruning. Given the AIC 

(3.15) assumes the groups are fixed (although they are not), this improvement of RAIC should not be over-

interpreted.  
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Table 6.3 also shows the proportion of the AIC that comes from each of the three terms on the right-

hand side of (3.6) or (3.15). Not surprisingly, the first term, ˆ ˆ2 ( ),l α  is the dominant component of the AIC. 

The relative importance of the other two terms increases with q  or .G  Both terms have similar importance 

although the third term is always slightly larger than the second term. In this application, none of the terms 

should be omitted in the computation of the AIC. 
 

The Frank Method  
 

Figures 1B and 1C in the Appendix 2 illustrate the Frank method of creating homogeneous groups for 

method 5 in Table 6.2. Figure 1B shows a graph of logisticˆ
kp  as a function of the rank kr  for both the non-

probability and probability samples. It also shows the corresponding boundaries, in terms of the ranks, for 

15G   and different values of ,a  and for both sorting orders. Figure 1B illustrates that the groups containing 

smaller values of logisticˆ
kp  are under-represented in the non-probability sample, compared with the probability 

sample, because these units are less likely to participate. Figure 1B also illustrates that sorting in ascending 

order produces groups that are closer to being equal-sized in the probability sample, particularly when a  is 

large. This has the advantage of reducing the occurrence of groups that contain too few probability sample 

units, which could lead to unstable weights. A value of 5a   or 10,a   along with sorting in ascending 

order, seems to offer a suitable compromise for both samples.  

Figure 1C shows the values of the AIC (3.15) as a function of the number of groups G  for a few values 

of a  and both sorting orders. It appears that the sorting order makes a significant difference on the AIC, 

with lower values obtained when logisticˆ ,kp NP ,k s  are sorted in ascending order. Figure 1C does not show 

much sensitivity to the choice of a  but the best values seem to occur near 10.a   Notably, the optimal 

number of classes is near 100 in this application, much larger than the value of 5 that is often recommended 

(e.g., Eltinge and Yansaneh, 1997). Based on these results, we chose to sort in ascending order and used 

10a   and 100G   when applying the Frank method with LFS data. A smaller number of groups was 

chosen with the CPSS data (see Section 6.4).  

With these data, forming groups with an equal number of participants ( 0)a   was slightly inferior to 

a  10 in terms of AIC (see Figure 1C). However, both values of a  led to similar estimates (results not 

shown). 
 

Comparisons of estimates 
 

Table 6.4 shows estimates and their bootstrap standard errors (in italic) for each of the nine proportions 

in Table 6.1 and each method described in Table 6.2. The bootstrap standard error is the square root of the 

bootstrap variance estimate given in (5.2). The thb  bootstrap replicate of the estimated proportion 

NP NP

NP NP
NP
ˆ ˆ ˆ

k k kk s k s
w y w

 
   is 

NP NP

( ) NP, ( ) NP, ( )
NP
ˆ ˆ ˆ .b b b

k k kk s k s
w y w

 
   For methods 4 to 8, the bootstrap 

weights NP, ( )ˆ b
kw  are obtained under the simplification that the homogeneous groups are fixed. Bootstrap 

standard errors are not computed for methods 2 and 3. The CPSS estimates and their design-based standard 

errors are also provided for comparison purposes in the last row of Table 6.4. The CPSS estimates are 

believed to be less biased than adjusted crowdsourcing estimates since they are obtained from a probability 
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survey, albeit with a small response rate (around 15%), with nonresponse weight adjustments and 

calibration. 

From the estimates and standard errors in Table 6.4, we make the following observations:  

 Methods 2 to 8 are all roughly equivalent.  

 For the first seven proportions, where the naïve estimates (method 1) are significantly different from 

the CPSS estimates, methods 2 to 8 yield adjusted crowdsourcing estimates closer to CPSS 

estimates, which suggests a non-negligible bias reduction. Indeed, for the first three proportions, 

the adjusted crowdsourcing estimates are not markedly different from the CPSS estimates. It is not 

surprising for the first two proportions since the variables of interest can be derived from auxiliary 

variables. This observation is particularly interesting for the third proportion. For proportions 4 to 

7, the bias reduction is not so spectacular, albeit not negligible; the adjusted crowdsourcing 

estimates lie in between the naïve and CPSS estimates.  

 For the last two proportions, the naïve, adjusted crowdsourcing and CPSS estimates are all similar. 

A slight but not alarming discrepancy between adjusted crowdsourcing and CPSS estimates is 

observed for the last proportion for methods 2 and 3, which do not use homogeneous groups. 

Overall, it is reassuring to observe that inverse probability weighting did not introduce significant 

biases for the last two proportions.  

 Finally, the standard errors for the naïve method are much smaller than those for the other methods. 

This indicates that naïve estimates are likely more stable. However, the standard error does not 

account for bias and should not be the main criterion for choosing an appropriate method. 

 
Table 6.4 

Estimates and standard errors (in italic) in percentage. 
 

Method Model Stepwise 
selection 

Homogeneous 
groups 

1  2  3  4  5  6  7  8  9  

1 Intercept - - 64.5 65.4 50.2 45.6 32.1 74.2 70.0 9.9 45.6 
0.27 0.26 0.27 0.28 0.27 0.24 0.26 0.17 0.28 

2 Logistic - - 29.7 50.2 40.4 28.0 23.5 67.9 62.4 11.4 43.5 
- - - - - - - - - 

3 Logistic Yes - 28.9 48.2 39.8 26.6 23.3 68.1 64.1 10.2 42.3 
- - - - - - - - - 

4 Logistic - Frank 32.4 52.1 40.6 29.5 23.5 68.0 63.5 10.7 44.9 
0.41 0.76 0.70 0.58 0.60 0.74 0.78 0.49 0.77 

5 Logistic Yes Frank 30.8 51.4 39.8 28.5 22.4 67.9 64.0 10.3 44.4 
0.35 0.86 0.78 0.63 0.59 0.82 0.89 0.54 0.87 

6 Logistic Yes nppCART  
with pruning 

30.9 50.7 39.5 28.4 22.9 67.8 63.7 10.4 44.5 
0.36 0.84 0.78 0.70 0.79 1.02 1.00 0.62 1.02 

7 - - nppCART  
without pruning 

30.2 52.7 40.6 28.0 24.3 69.3 65.4 9.4 46.8 
0.29 0.88 0.91 0.46 0.82 0.91 0.96 0.42 0.74 

8 - - nppCART  
with pruning 

30.2 52.5 40.5 28.0 23.8 69.4 65.2 9.3 47.0 
0.29 0.87 0.91 0.47 0.81 0.90 1.03 0.39 0.78 

CPSS estimate 30.6 50.1 40.2 19.3 15.9 57.3 54.4 9.8 46.2 
0.87 1.25 1.14 0.97 0.87 1.41 1.33 0.86 1.42 
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With these data, methods 2 to 8 performed similarly. This may be due to the large size of the LFS 

probability sample. In order to study the behaviour of inverse probability weighting methods when the 

probability sample is smaller, we replaced the LFS by the CPSS probability sample. Results for this case 

are discussed below.  

 
6.4 Results when integrating crowdsourcing data with the CPSS probability 

sample 
 
Stepwise selection results for the logistic model 
 

When we used the CPSS as the probability sample, our stepwise selection procedure selected again all 

main effects but only 10 pairwise interactions for a total of 254 model parameters. All but one main effect 

entered the model before any interaction in the following order: education, household size, economic region, 

sex, immigration status, age group and marital status. For these data, pairwise interactions were again not 

as important as the main effects to reduce the AIC.  

 
Comparisons of AIC values 
 

Table 6.5 shows values of the RAIC for the eight methods described in Table 6.2. Comparing methods 

2 and 3, we observe that accounting for pairwise interactions yielded only a small improvement of the RAIC. 

For these data, the creation of homogeneous groups resulted in a non-negligible increase of the RAIC. In 

particular, when a logistic model is used along with stepwise selection, the RAIC is 12.1 and it increases to 

18.5 after forming homogeneous groups with nppCART. The use of nppCART without a logistic model 

(methods 7 and 8) also yielded a larger RAIC than methods 2 and 3. The effect of pruning remains negligible 

with these data since the RAIC of methods 7 and 8 are similar. However, pruning reduced the number of 

groups from 600 to 451. The replacement of the LFS sample by the CPSS sample resulted in a reduction of 

the number of groups for methods 4 to 8; this is not surprising since the CPSS sample size is significantly 

smaller than the LFS sample size. 

Table 6.5 also shows the proportion of the AIC that comes from each of the three terms on the right-

hand side of (3.6) or (3.15). Again, the first term, ˆ ˆ2 ( ),l α  is the dominant component of the AIC, and the 

relative importance of the other two terms increases with q  or .G  Given the small CPSS sample size, the 

third term, which can be viewed as a penalty for using a probability sample instead of a census, is now 

relatively much larger than the second term 2q  (or 2 ).G  The second term could thus be omitted, as in 

Lumley and Scott (2015), although there is no computational advantage of neglecting it.  

 
Comparisons of estimates 
 

Table 6.6 shows estimates and their bootstrap standard errors (in italic) for each of the nine proportions 

in Table 6.1 and each method described in Table 6.2. We make the following observations: 

 For the first two proportions, the variables of interest can be derived from auxiliary variables, and 

we expect inverse probability weighting methods to entirely remove bias. Methods 7 and 8 
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(nppCART without a logistic model) basically eliminated the discrepancy between the naïve and 

CPSS estimates. Other methods were not so successful although method 4 (logistic model with main 

effects followed by the Frank method) performed relatively well.  

 Method 2 appeared to over-adjust the naïve estimates for the first three proportions. Forming 

homogeneous group (method 4) corrected for this over-adjustment.  

 Methods 2 and 3 (logistic model without homogeneous groups) were somewhat erratic. This may 

be explained by variable and extreme non-probability survey weights, particularly for method 3. 

The coefficient of variation of the non-probability survey weights is provided in Table 6.7 for each 

method. It is 7.5 and 39.7 for methods 2 and 3, respectively, whereas it is no greater than 5.5 for all 

the other methods. This shows the importance of forming homogeneous groups to reduce extreme 

weights. By comparison, when the LFS is used as the probability sample, the coefficient of variation 

of the non-probability survey weights is 4.7 and 6.3 for methods 2 and 3, respectively, and it is no 

greater than 4.0 for all the other methods.    

 Methods that use stepwise selection tended to under-adjust when homogeneous groups were formed 

(methods 5 and 6), particularly for the first proportion. This was not expected given their large 

values of RAIC in Table 6.5. However, the RAIC only indicates the strength of the association 

between the auxiliary variables and participation. It does not account for the strength of the 

association between the auxiliary variables and variables of interest, which can affect the magnitude 

of participation bias and variance.  

 Comparing methods 5 and 6, we observe that the creation of homogeneous groups using the Frank 

method and nppCART yielded similar estimates with nppCART estimates tending to be slightly 

closer to CPSS estimates, possibly due to the larger number of groups with nppCART.  

 Pruning did not show significant improvements in our experiments since methods 7 and 8 produced 

similar estimates. 

 Overall, nppCART with or without pruning (methods 7 and 8) appeared to be the most stable and 

reliable method for reducing participation bias followed closely by method 4 (logistic model with 

main effects only along with the Frank method).  
 

It is interesting to observe that nppCART estimates in Table 6.6 (methods 7 and 8) were not markedly 

different from the corresponding estimates in Table 6.4 based on the LFS probability sample. This suggests 

that a small probability sample can succeed at reducing bias even though it remains preferable to use a larger 

probability sample. For nppCART, using the LFS as the probability sample was just slightly better than 

using the CPSS. For other methods, the differences were sometimes much larger and using the LFS provided 

better estimates. This may be an argument to favour nppCART when the probability sample size is small. 
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Table 6.5 

RAIC values in percentage. 
 

Method Model Stepwise 
selection 

Homogeneous 
groups 

RAIC (%) q  or 

G  

Proportion 
(%) of AIC 

from the 
1st term 

Proportion 
(%) of AIC 

from the 
2nd term 

Proportion 
(%) of AIC 

from the 
3rd term 

1 Intercept - - 0 1 100.00 0.00 0.00 

2 Logistic - - 11.2 90 98.45  0.04  1.50 

3 Logistic Yes - 12.1 254 96.27  0.12  3.62  

4 Logistic - Frank 13.4 20 98.18  0.01  1.80  

5 Logistic Yes Frank 15.9 16 99.35  0.01  0.64  

6 Logistic Yes nppCART  
with pruning 

18.5 384 96.43 0.19 3.38 

7 - - nppCART 
without pruning 

14.3 600 95.93 0.28 3.78 

8 - - nppCART 
with pruning 

14.4 451 96.27 0.21 3.51 

 
Table 6.6 

Estimates and standard errors (in italic) in percentage. 
 

Method Model Stepwise 
selection 

Homogeneous 
groups 

1  2  3  4  5  6  7  8  9  

1 Intercept - - 64.5 65.4 50.2 45.6 32.1 74.2 70.0 9.9 45.6 

0.28 0.28 0.29 0.29 0.28 0.25 0.25 0.17 0.28 

2 Logistic - - 21.3 44.4 34.4 24.4 22.8 69.1 61.3 10.2 44.9 

- - - - - - - - - 

3 Logistic Yes - 29.4 43.4 28.3 29.8 27.4 78.4 71.8 10.1 27.6 

- - - - - - - - - 

4 Logistic - Frank 34.1 50.9 39.4 30.2 25.8 70.8 66.6 9.8 45.1 

0.59 0.61 0.56 0.51 0.50 0.55 0.58 0.36 0.59 

5 Logistic Yes Frank 43.6 54.6 41.8 34.3 27.4 71.7 67.9 9.7 44.6 

0.67 0.54 0.50 0.55 0.43 0.44 0.47 0.30 0.47 

6 Logistic Yes nppCART with 
pruning 

42.0 54.0 41.2 34.2 27.3 70.8 67.4 10.1 44.6 

0.81 0.77 0.73 0.71 0.63 0.69 0.66 0.44 0.70 

7 - - nppCART 
without pruning 

30.8 48.9 39.1 28.5 27.7 71.5 64.9 8.9 47.1 

0.98 1.38 1.41 0.80 1.35 1.23 1.46 0.56 1.49 

8 - - nppCART with 
pruning 

30.8 49.8 38.7 29.3 27.1 71.5 65.2 9.3 46.8 

0.98 1.27 1.28 0.78 1.24 1.20 1.41 0.80 1.35 

CPSS estimate 30.6 50.1 40.2 19.3 15.9 57.3 54.4 9.8 46.2 

0.87 1.25 1.14 0.97 0.87 1.41 1.33 0.86 1.42 

 
Table 6.7 

Coefficients of variation of the non-probability survey weights. 
 

Probability 
sample 

Method 1 Method 2 Method 3 Method 4 Method 5 Method 6 Method 7 Method 8 

CPSS 0 7.5 39.7 1.8 1.4 2.2 5.5 5.0 
LFS 0 4.7 6.3 2.6 3.0 3.6 4.0 3.9 
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7. Conclusion 
 

We extended the pseudo maximum likelihood method of Chen, Li and Wu (2020) that integrates data 

from a non-probability and probability sample: We developed a variable selection procedure for the logistic 

model and an extension of CART, nppCART. Inspired by Lumley and Scott (2015), our extensions use a 

modified AIC that properly accounts for the probability sampling design. In our investigations, we observed 

that the additional penalty term for using a probability sample instead of a census was not negligible.  

Not surprisingly, our experimentations illustrated that inverse probability weighting methods can reduce 

participation bias, but sometimes a significant bias remains. For the large LFS probability sample, all the 

methods performed similarly. Significant differences between methods were observed when the smaller 

CPSS probability sample was used. In particular, our experimentations showed the importance of creating 

homogeneous groups to reduce the occurrence of extreme weights and improve the stability and robustness 

of estimates. For the small probability sample, accounting for pairwise interactions somewhat reduced the 

AIC but was generally not beneficial for the estimates. Main effects appeared more important than pairwise 

interactions to reduce the AIC with our data. Overall, the best method for bias reduction was nppCART 

followed closely by the use of a logistic model with main effects only along with the creation of 

homogeneous groups. However, different conclusions could potentially be drawn with smaller domains or 

other datasets. 

It is well known that inverse probability weighted estimators may be inefficient, particularly when the 

variables of interest are weakly related to the weights. This can be addressed through calibration on known 

population totals or totals estimated from the probability sample. Calibration will be particularly efficient 

when auxiliary variables strongly related to the variables of interest are available and excluded from the 

participation model. This was not the case in our experimentations. Weight smoothing is an alternative 

aiming to improve the efficiency of inverse probability weighted estimators, which may be useful when 

such powerful calibration variables are not available. It consists of replacing the weights with predictions 

obtained by modelling the weights conditionally on the variables of interest. In the context of integrating 

non-probability and probability samples, weight smoothing was studied by Ferri-Garcia, Beaumont, Bosa, 

Charlebois and Chu (2021). 

Tree-based methods more sophisticated than the CART algorithm, such as random forests, are available 

in the literature. Given the good performance of nppCART in our experimentations, it could be worthwhile 

to extend those methods to the data integration scenario considered in this paper and evaluate them. Further 

developments are needed on this topic. 

There is most likely no inverse probability weighting method that is uniformly better than all the other 

methods. All the techniques are useful and can be part of the statistician’s toolkit. However, there is a need 

for the development of bias reduction indicators that would help statisticians in choosing the best method 

for a given non-probability and probability sample. The relative AIC and the coefficient of variation of the 

non-probability survey weights are two useful indicators but they do not tell the full story as they do not say 

anything about the strength of the association between the auxiliary variables and variables of interest. One 
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idea that could be explored would be to use statistical matching methods with nonparametric models (e.g., 

random forests) for each variable of interest conditionally on the auxiliary variables. The resulting estimates 

would be expected to be more efficient than inverse probability weighting methods because they would be 

tailored to each variable of interest. In practice, this statistical matching strategy would be tedious to apply 

as a different model would need to be developed and validated for each estimate produced. However, a few 

statistical matching estimates could be computed and used to evaluate inverse probability weighting 

methods. We might expect that a better inverse probability weighting method would generally tend to yield 

estimates closer to statistical matching estimates. A possible procedure to reconcile the two methods would 

be to calibrate inverse probability weights so that the resulting estimates agree exactly with selected 

statistical matching estimates. 

 
Appendix 1 
 

Sketch of the proof of equation (3.5) 
 

Using first-order Taylor expansions, we have   

  0 0 0 0 0 0 0 0
ˆ ˆ ˆˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )α α α α U α U α α α p P

N
l l l l o

n

                
 (A.1) 

and 

  0 0 0
ˆ ˆ ˆˆ ˆ( ) ( ) ( ) ,p P

N
o

n

 
     
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U α U α H α α α  (A.2) 

where 0 0( ) ( ) .l  U α α α  In addition to (A.1) and (A.2), we also assume that  

  0
ˆ ( ) ( )H α H α po N   (A.3) 

under the model and the sampling design. Noting that 0 0( )U α 0  and ˆ ˆ( ) ,U α 0  we obtain from (A.1), 

(A.2) and (A.3),   

     0 0 0 0 0 0 0 0
ˆ ˆˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) .p P

N
l l l l o

n

              
α α α α α α H α α α  (A.4) 

Ignoring the smaller order term and taking the expectation of both sides of (A.4) yield: 

 0 0 0
ˆ ˆ ˆ ˆ[ ( ) ( )] tr[ ( ) var ( )],md mdE l l  α α H α α  (A.5) 

where 0 0
ˆ ˆ ˆvar ( ) [( ) ( ) ].md mdE   α α α α α  Using (A.2) and (A.3), and ignoring the smaller order terms, we 

can approximate this variance as 
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where ( ) ( )U α α αl    is given in equation (3.1) for the logistic model. The last equation in (A.6) results 

from a well-known property of the Fisher information matrix 0 0( )H α  (assuming the true model is in the 

same parametric family as the postulated model). Using (A.6) in (A.5) yields result (3.5). 

 
Appendix 2 
 
Illustration of the Frank method 
 

Figure 1 below contains three sub-figures, Figures 1A, 1B and 1C, that illustrate the behaviour of the 

Frank method for the data described in Section 6.1 and for method 5 described in Section 6.2 when the LFS 

is used as the probability sample. The description of each sub-figure is provided below: 
 

(A) Frank method with 10,a  15G   and NPn  31,415. The rank, ,kr  is on the horizontal axis and the 

function of the rank, NP( ) log (1 ),k kf r a r n   is on the vertical axis. The bins are equal-width in the 

range of ( ).kf r  The constant a  determines the shape of the function. As a  increases, it becomes 

increasingly non-linear and the groups are more bunched to one side.  

(B) The top panels show the sorted values of logisticˆ
kp  for the non-probability (left) and probability (right) 

samples. Fifteen groups are formed based on the non-probability sample using Frank with different 

values of a  and both sorting orders, resulting in different group boundaries as represented by the 

coloured bars in the bottom panels. For the non-probability sample (bottom left panel), when the rank 

is defined in ascending order of logisticˆ ,kp  the groups are smaller for small values of logisticˆ .kp  When the 

rank is defined in descending order of logisticˆ ,kp  the groups are smaller for large values of logisticˆ .kp  

Increasing a  increases the bunching, while 0a   gives equal-sized groups.  

(C) The AIC (3.15) versus the number of groups for different values of a  and both sorting orders. Sorting 
logisticˆ
kp  in ascending order leads to smaller values of AIC, without much sensitivity to changes in the 

value of .a  The AIC is minimized with around 100 groups for all parameterizations. The right panel 

smooths the left panel using a centered moving average filter with window size 81. The smoothed 

curves show the Frank method performs slightly better than equal-sized groups ( 0),a   especially 

when the number of groups is higher than optimal, adding some robustness to the choice of the number 

of groups. When the number of groups is large and logisticˆ
kp  are sorted in descending order, it occurs that 

some groups do not contain any probability sample unit. As a result, ˆ gp  is undefined for those groups, 

and the AIC cannot be computed.  
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Figure 1  Illustration of the Frank method. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

(A)                   Frank group formation with a = 10 
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(B)             Non-probability sample logistic propensities 
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Appendix 3 
 

Auxiliary variables 
 

Age Group: 5-year age groups, starting from 15-19 and ending with 75+. 

Sex: Male/Female. 

Education:  8 categories (Less than high school; High school; Some post-secondary; Trades 

certificate or diploma; Community college, CEGEP, etc.; University certificate 

below Bachelor’s; Bachelor’s degree; Above Bachelor’s degree). 

Economic Region: Sub-provincial geography partitioning the country. It contains 73 levels, but some 

were collapsed due to insufficient respondent counts; 56 levels were used in the 

models. 

Immigration:  3 levels (Born in Canada; Landed immigrant; Not a landed immigrant). 

Household Size:  Number of people in the household, regardless of age, capped at 6.  

Marital Status:  6 levels (Married; Common-law; Widow or widower; Separated; Divorced; Single, 

Never married). 

Employment Status: 3 levels (Employed and at work at least part of the reference week; Employed but 

absent from work; Not employed). 
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