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The missing information principle ‒ A paradigm for analysis 
of messy sample survey data 

Raymond L. Chambers1 

Abstract 

Sample surveys, as a tool for policy development and evaluation and for scientific, social and economic research, 
have been employed for over a century. In that time, they have primarily served as tools for collecting data for 
enumerative purposes. Estimation of these characteristics has been typically based on weighting and repeated 
sampling, or design-based, inference. However, sample data have also been used for modelling the unobservable 
processes that gave rise to the finite population data. This type of use has been termed analytic, and often involves 
integrating the sample data with data from secondary sources. 

 

Alternative approaches to inference in these situations, drawing inspiration from mainstream statistical 
modelling, have been strongly promoted. The principal focus of these alternatives has been on allowing for 
informative sampling. Modern survey sampling, though, is more focussed on situations where the sample data 
are in fact part of a more complex set of data sources all carrying relevant information about the process of 
interest. When an efficient modelling method such as maximum likelihood is preferred, the issue becomes one 
of how it should be modified to account for both complex sampling designs and multiple data sources. Here 
application of the Missing Information Principle provides a clear way forward. 

 

In this paper I review how this principle has been applied to resolve so-called “messy” data analysis issues in 
sampling. I also discuss a scenario that is a consequence of the rapid growth in auxiliary data sources for survey 
data analysis. This is where sampled records from one accessible source or register are linked to records from 
another less accessible source, with values of the response variable of interest drawn from this second source, 
and where a key output is small area estimates for the response variable for domains defined on the first source. 

 
Key Words: Maximum likelihood; Combined data; Informative sampling; Nondeterministic linkage; Small area 

estimation. 

 
 

1. Introduction 
 

1.1 Descriptive and analytical inference with multiple data sources 
 

Over the last century, sample surveys have become the primary method by which data are collected for 

analysis of social and economic processes, and empirical analysis of survey data is often the way theories 

are developed and investigated. While there has been a large increase in recent years in the data available 

from registers and administrative and business systems, these data are often limited. The number of variables 

for which information is gathered is often small, the definition of the variables may not be what is required, 

the data may be out-of-date, they may be available only in aggregate form and coverage of the population 

may be limited. A survey can be used to collect information on many variables at the individual person or 

business level, using relevant definitions in a consistent manner. This allows great flexibility in the estimates 

produced and the analyses possible. 

How the sample is defined in a sample survey can vary considerably. Probability-based samples based 

on complex designs that reflect the heterogeneity and complex structures of the population of interest 
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represent one extreme. These designs may use auxiliary data available concerning the population at the time 

of selection. At the other extreme are convenience samples (Galloway, 2005) whose relationship to the 

population they are supposed to represent is problematic. In many cases external information, both on the 

process of sample selection as well as the comparability of the selected sample with the target population in 

terms of some known characteristics, is available to the analyst. Traditionally this auxiliary information has 

been used to improve sample design and estimation. With the increasing amount of data available in 

administrative and business databases, the sample survey now has a significant new role in supplementing 

such data sources so that they can be fully exploited. In particular, we now regularly face situations where 

data from multiple data sources need to be integrated for inference. 

In order to address this issue of integrated inference, I will distinguish between statistical analysis aimed 

at estimating the value of an observable population quantity (e.g., the population average value of a variable) 

and analysis aimed at summarising the relationship between population variables in terms of a statistical 

model (e.g., a regression model). In the former case it is clear that the value of the population quantity 

becomes more and more “known” as the sample size increases, with the value known precisely (at least in 

theory) when the population is completely enumerated. This type of analysis is referred to variously as 

enumerative, predictive, descriptive or finite population inference. In the latter case the model is an abstract 

concept, corresponding to an idealisation of how the values of the different variables in the model relate to 

one another across the entire population. The “true” model is never known precisely, irrespective of how 

large a sample is used in the survey. This type of analysis is referred to as analytic inference. It is usually 

carried out by fitting the assumed statistical model to the survey data, with the nature and strength of the 

population relationship then summarised from the estimated values of the model parameters (e.g., the 

estimated regression coefficients). 

Unfortunately, two quite distinct modes of inference exist for these two cases. If the target is a finite 

population quantity (e.g., a population average) the inferential framework is based on repeated sampling of 

the population, i.e., the population values for the variable of interest are held fixed. This is often referred to 

as design-based inference. On the other hand, if the target is a parameter of a statistical model for the 

population of interest (e.g., a regression parameter), then inference is typically model-based, i.e., it is with 

respect to potential population values that could have arisen under the true model. Little (2012) has described 

this state of affairs as “inferential schizophrenia” since the distinction between a target of inference that 

corresponds to a finite population quantity (e.g., the small area mean of a variable )Y  and one that is the 

parameter of a model for the finite population values (e.g., the model expectation of )Y  is very blurred. 

Model-based prediction theory (both frequentist and Bayesian) overcome this by explicitly allowing for the 

impact of the sample design in model-based inference. 

In this paper I will adopt the frequentist interpretation of this framework, focussing on the use of the 

Missing Information Principle (the MIP) for model-based analytic inference in “messy” data situations 

where data from multiple sources are available. Other Waksberg Award papers have also discussed model-

based analytic inference from sample survey data (Scott, 2006; Rao, 2005; Pfeffermann, 2011), but none 

have zeroed in on the MIP and its use in the “messy” data that often arise in an integrated data context. 
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1.2 Weighting and complex sample designs 
 

Most surveys use complex sample designs, reflecting and exploiting the heterogeneity of their target 

populations. The complexities introduced by the interaction of the survey design with these sources of 

heterogeneity are often difficult to handle using standard statistical methods. One particular issue that often 

arises is the role of sample selection probabilities in the analysis of the survey data. Complex sample designs 

typically result in unequal selection probabilities, one consequence of which is that the distributions 

observed in the sample can be very different from those in the population from which the sample was 

selected. There is confusion amongst survey users, as well as among non-survey statisticians (Gelman, 

2007), about whether one should use selection probabilities in analysis, and if so, how this should be done 

in order to effectively “capture” the information about the sample design, and its effects, that they contain. 

A standard strategy is to weight for unequal selection probabilities when analysing survey data. The purpose 

of such weighting is to compensate for differences between the sample and population introduced by the 

sampling scheme (Pfeffermann, 1993). Using weighted summation of the sample data is attractive because 

it lends itself naturally to the estimation of linear parameters such as averages and totals, which are the 

primary objectives of many sample surveys, and also because linear estimators are very straightforward to 

build into survey estimation systems. 

There are two main approaches to constructing weights. Often this is via the reciprocals of the selection 

probabilities. Such weights have a long history in descriptive surveys but may also be incorporated in model 

fitting, for example by pseudo-likelihood methods (Skinner, Holt and Smith, 1989). In these methods 

estimating equations that assume simple random sampling are modified to incorporate the survey weights. 

Second, weights may incorporate auxiliary information concerning the population, for example in post-

stratification and regression estimation (Bethlehem and Keller, 1987; Chambers, 1996). In this case a 

multiple regression model for predicting survey variables by auxiliary variables is used to define the 

weights, with a widely used example being Generalized Regression (GREG) estimation (Särndal, Swensson 

and Wretman, 1992). A variant of this approach is calibration estimation (Deville and Särndal, 1992; 

Särndal, 2007), where weights are constructed so that they are close to the inverses of the selection 

probabilities while at the same time allowing the weighted estimates to agree with selected population 

moments of key auxiliary variables. 

The other principal concern with analysis involving sample survey data is how to make efficient use of 

external or auxiliary information when carrying out this analysis. Often, auxiliary information available 

about the population from a variety of sources (census, administrative registers, other surveys) is used to 

produce benchmarks that are used to constrain the survey estimates. Benchmarks are values of population 

characteristics or external estimates of these characteristics that are more reliable than unconstrained 

estimates derived from the sample data. Although many population benchmarks are often available, well-

known results on model over-fitting indicate that the number of benchmarks used in constraining survey 

weights should be limited to prevent instability of the resulting estimates. This leads to the conclusion that 

one should limit the number of calibration constraints imposed on the weights. The issue is particularly 
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important in multipurpose surveys, where the amount of related population information, and hence number 

of constraints, can be large (Bardsley and Chambers, 1984; Chambers, 1996). There are important practical 

advantages if the same weights are used for different estimates, and this can be achieved in model-based 

weighting if the same benchmarks are used for different survey variables. But this comes at a price. In 

particular, the resulting estimates can be inefficient, because the weights become very variable due to model 

over-parameterisation. Optimal methods for selecting the appropriate amount of external information to use 

in weighting have been discussed in the literature, but are limited to linear situations (Silva and Skinner, 

1997; Clark and Chambers, 2008). Little is known about the extension to nonlinear situations or to the role 

of calibration information in analytic inference. 

 
1.3 Analysis of complex survey data 
 

Much attention has been devoted to the analysis of complex data over the last three decades. For example, 

in the 1990s the UK ESRC Research Programme on Analysis of Large and Complex Datasets focussed on 

the development of methods for the statistical modelling of the complex data collected in social science 

investigations. Since then, there has been a rise in interest in the theoretical foundations of inference based 

on sample survey data (Krieger and Pfeffermann, 1992; Breckling, Chambers, Dorfman, Tam and Welsh, 

1994; Dorfman, Chambers and Wang, 2002; Little, 2003; Chambers and Skinner, 2003; Pfeffermann, 2011; 

Chambers, Steel, Wang and Welsh, 2012; Little, 2022). In particular, it is now accepted that statistical 

methods that assume that the distribution of the sample data and the distribution of the population data are 

identical generally lead to biased inference, since they take no account of either the complex sample design 

or the availability of auxiliary data. 

There are three frameworks for frequentist inference that are generally used to deal with this problem. 

 Pseudo-likelihood: This is a hybrid approach, with the unknown sufficient statistics in the 

population level likelihood estimating equations replaced by sample-weighted estimators (Kish 

and Frankel, 1974; Binder, 1983; Godambe and Thompson, 1986). The role of sample weights is 

therefore to adjust for differences between the sample distribution and the finite population 

distribution (Pfeffermann, 1993). Such weights usually have no connection with the variance 

structure of the data and so can lead to considerable inefficiency under the model. Furthermore, 

the weights used in practice are themselves adjusted, sometimes substantially, in order to 

integrate external population information (e.g., via calibration). However, weighted methods are 

very simple to implement and so are widely used. 

 Sample likelihood: An explicit model for the distribution of the sample data, based on the use of 

Bayes theorem to integrate the population model and the sampling procedure, is used to develop 

a likelihood (Krieger and Pfeffermann, 1992; Pfeffermann, Krieger and Rinott, 1998; Pfeffermann 

and Sverchkov, 1999, 2003). This sample likelihood approach is typically more efficient than 

pseudo-likelihood. However, since it focuses on the distribution of the sample data as the basis 



Survey Methodology, December 2023 223 

 

 
Statistics Canada, Catalogue No. 12-001-X 

for inference, rather than on the population, it ignores non-sample information from auxiliary 

integrated data, making it less than fully efficient. 

 Maximum likelihood: This is a fully efficient approach, where the auxiliary information and the 

sampling design are directly accounted for in the likelihood, itself defined by a joint model for 

the survey variables, the sampling and non-response processes and the auxiliary information. The 

basic methodology is set out in Breckling et al. (1994), while Chambers et al. (2012) provides a 

comprehensive development of maximum likelihood ideas in sample surveys. Adopting a 

maximum likelihood approach is conceptually appealing, but applying it to complex data requires 

care. Complex models are needed for the type of economic and social populations surveyed in 

practice, and the likelihood has to incorporate information about the sampling scheme and any 

auxiliary information about the population. A further difficulty arises in secondary analysis. Here 

the analyst does not always have access to information on how the data were obtained, and so 

suitable approximations need to be derived. Chambers, Dorfman and Wang (1998) consider 

likelihood-based analysis where sample design information is not provided, and in Section 5 of 

this paper I discuss the case where the analysis data set contains linked records but the analyst 

does not have access to the original data sets used in the linkage process. 

 
1.4 Multiple surveys and auxiliary data 
 

Extension of these approaches to multiple surveys and multiple auxiliary data sources is a relatively 

unexplored area of research, although the problem is well known, going back to the pioneering work of 

Patterson (1950) on composite estimation. Merkouris (2004) develops an integrated set of calibrated weights 

for use with the combined data from two independent surveys that measure the same variable of interest but 

use different types of auxiliary information. Elliott and Davis (2005) also consider the problem of weighting 

combined data on the same variable collected in two independent surveys, but allow one of these surveys to 

have a “higher quality” measurement process than the other, leading to a propensity-based adjustment to 

the original sample weights for the records from the second, “lower quality”, survey. In contrast to both 

these approaches, which are aimed at re-weighting the combined data set, and hence concerned with 

marginal analysis of the same variable using this combined data set, Strauss, Carroll, Bortnick, Menkedick, 

and Schultz (2001) consider how one would go about modelling a joint distribution using the combined data 

from two independent surveys. In particular, these authors focus on the situation where each survey 

contributes a different variable to this joint distribution, but there exists a third, typically much smaller, 

survey with information on both that can be used to create an estimate of this joint distribution by combining 

the joint information in the small survey with the marginal information in the two larger surveys. 

All of the references in the preceding paragraph address real issues that arise with integration of external 

auxiliary information with data from sample surveys. However, the approaches taken are problem specific 

and do not fit within a common inferential framework. When combined with efficient prediction, the MIP 

provides such a framework and can be used to develop solutions to a wide range of combining surveys 
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issues. In this paper I aim to show why this is the case in three important, but relatively straightforward, 

areas of application, and in doing so provide the reader with insight about a useful tool for tackling inference 

using what may be referred to as “messy” data. 

 
1.5 Summary of the paper 
 

This paper is meant to provide an overview of the MIP and its application, rather than a detailed 

methodological development. Consequently, I provide an informal definition of the MIP in Section 2 and 

in Section 3 I illustrate its use in combining data from two sources for the purpose of estimating a population 

regression relationship. In Section 4 I discuss the concept of informative sampling and use two simple 

examples to show how the MIP provides an appropriate framework for modelling sample data in this 

situation, while in Section 5 I show how the MIP can be used to suggest an efficient way of modelling linked 

data from two sources when the linkages can contain errors. At the close of this section I go on to show how 

these methods can then be used for small area estimation when records in different small area can be 

erroneously linked. Finally, in Section 6 I provide an overview and discussion of other applications where 

using the MIP has proved useful as well as some potential generalisations. 

 
2. The missing information principle and its use 
 

2.1 Messy data structures 
 

What are “the data”? From a classical statistical perspective the answer to this question might be typically 

characterized as a transparent “window” on the population of interest. But the real world is messier. There 

are multiple sources of data with varying levels of aggregation, suggesting that a more accurate charac-

terization is a distorted window on the target population, plus (perhaps) clearer windows on related 

populations. To illustrate this, consider some examples: 
 

Example 1: Values of Y  from register A  and values of X  from register B  plus values of both variables 

from a sample of records taken from a linked version of the two registers. The aim is to use the 

sample data plus the data from the two registers to model the Y X  relationship at register 

level (Imbens and Lancaster, 1994; Handcock, Rendall and Cheadle, 2005). 
 

Example 2: Values of Y  plus auxiliary variables X  and C  from survey A  plus values of the same 

variable Y  plus auxiliary variables Z  and C  from survey B.  Estimates of the population 

total of Y  based on a combined sample are required (Merkouris, 2004). 
 

Example 3: Values of “accurately measured” variables Y  and X  from a small survey A  and values of a 

“rough approximation” to X  from a much larger survey B  are available. This information is 

to be used to calculate small area estimates of Y  (Elliott and Davis, 2005). 
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Example 4: The analyst wishes to fit a model relating variables ,Y X  and Z  at a national level. She has 

access to values of variables Y  and Z  from a large national survey plus values of correlated 

variable X  and the same variable Z  from another, distinct, large national survey plus values 

of ,Y X  and Z  from a small, non-representative, third survey (Strauss et al., 2001). 

 

2.2 Using the Missing Information Principle to combine data sources 
 

The examples in the previous subsection illustrate pooling of multiple data sources, and all present 

problems for the analyst. However, they can be tackled by application of the Missing Information Principle 

or MIP. In particular, suppose that we can identify a model for the distribution of Y  in the target population, 

and this model is characterized by a parameter .  Suppose further that the data that we have for estimating 

this parameter are a mix of individual Y -values, values of other, related, variables, summary statistics, 

metadata (e.g., data definitions), paradata (e.g., information about how the data were obtained, sample 

weights, auxiliary data for the target population), related data from other surveys and other populations and 

so on. Opposed to this reality, the data we’d like to have for likelihood inference are data that define an ideal 

“rectangular” dataset containing representative data for the target population and related populations. 

A naïve approach in this situation is to assume that the population model for Y  also applies to the sample 

values of this variable, and so the maximum likelihood estimate for   can be calculated by maximising the 

sample contribution to the population likelihood. The corresponding “face value” maximum likelihood 

estimate for   is generally incorrect since the sampling method underpinning the population model 

(typically simple random sampling) will not be the one underpinning the sample data. Furthermore, the 

available data includes data from other sources that also contain information about .  The appropriate 

likelihood should therefore also take account of this information in order to arrive at the “full information” 

maximum likelihood estimate for .  

The MIP provides a route for going from a simple likelihood analysis based on the ideal dataset to the 

correct likelihood analysis for the actual data that are available. In particular, it states that likelihood-based 

inference using a “messy” observed dataset sD  can be achieved by carrying out likelihood-based inference 

using a larger “ideal” dataset UD  with the likelihood estimating equations defined by UD  replaced by their 

expected values given .sD  Note that it doesn’t matter what UD  is here. The only requirements are that sD  

(the data we have) is a subset of UD  (the data we would like to have), and that likelihood inference using 

UD  is straightforward. The MIP was first articulated by Orchard and Woodbury (1972) in the context of 

inference with missing data, and is closely related to the widely used EM algorithm (Dempster, Laird and 

Rubin, 1977). Its application to analysis of survey data was first described in Breckling et al. (1994). In our 

subsequent book, Chambers et al. (2012), we provide a comprehensive examination of how working within 

a MIP-based inferential framework leads to the maximum likelihood estimator (MLE) in a wide variety of 

messy data situations. In particular, the discussion in Sections 3 and 4 below summarises key aspects of this 

development by showing how the MIP can be used to fit simple population models to combined survey data. 
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In Section 5 I expand on this by showing how a difficult to compute MIP-based solution for one particular 

problem can be approximated by a much easier to compute MIP-based solution to a closely related problem. 

In order to apply the MIP, we work with the population distribution of all the data available to the survey 

analyst. This can be illustrated by considering the simple scenario where there is a single survey sample 

with non-response, linked to an auxiliary variables dataset, with a single analysis variable .Y  We use upper 

case to denote population quantities and lower case to denote sample quantities. Let respy  denote the vector 

of survey respondents’ values of Y  and let sr  denote the vector of response indicators for the sampled 

population units. We use US  to denote the vector of sample inclusion indicators for the surveyed population. 

The matrix of population values of the auxiliary variables, which can include cluster or PSU indicators, is 

denoted .UZ  Let   denote a vector of known population summary statistics. The available data are 

 resp , , , , .s s U U D y r S Z  In addition to resp ,y  the quantities , , ,s U U r S Z  potentially also contain 

information about .  In contrast, the ideal “rectangular” data are  , , , ,U U U U U D Y R S Z  with a density 

( ; )Uf D  that is straightforward to write down, and   is then either a component of   or defined by a 

1 1  transformation of the components of .  In either case if we can compute the MLE for ,  we can 

write down the MLE for .  Note that the likelihood generated by UD  is much easier to write down if UR  

or US  (or both) are ancillary for   given UZ  and .  That is, the distribution of UY  and that of UR  and 

US  are mutually independent given UZ  and .  

There are two basic quantities used in likelihood inference. They are the score function, i.e., the 

derivative with respect to   of the logarithm of the likelihood function, and the information function, i.e., 

the negative of the derivative of the score function with respect to .  The MLE is typically defined as a 

zero of the score function, while an estimate of the variance of MLE is the inverse of the information 

function evaluated at the MLE. 

Let x f  denote a vector of first order partial derivatives with respect to x  and let xx f  denote the matrix 

of second order partial derivatives with respect to .x  Then the MIP corresponds to two identities, proofs of 

which are set out in Lemma 2.1 of Chambers et al. (2012). 
 

The score identity: Provided the ideal data UD  include the available data ,sD  the available data score scs  

for the parameter   of the distribution of UD  is the conditional expectation, given these data, of the ideal 

data score scU  for ,  i.e., 

  sc log ( ; ) (sc ).s U s s UE f E   D D   

The information identity: The available data information info s  for   is the negative of the matrix of partial 

derivatives for the components of the available data score sc .s  This matrix can be written as the conditional 

expectation, given the available data, of the ideal data information infoU  for   minus the corresponding 

conditional variance of the ideal data score sc ,U  i.e., 

    info log ( ; ) Var log ( ; ) (info ) Var (sc ).s U s U s s U s UE f f E        D D D D   
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Note that the conditional expectations and variance in the score and information identities above are with 

respect to the distribution of the ideal data .UD  Also, in many applications scs  (and hence info )s  turns out 

to be a function of  obs
resp , , ,s s U D y r S  rather than of  resp , , , , .s s U U D y r S Z  In such cases it is not 

difficult to see that the score and information identities still hold, but with sD  replaced by obs.sD  See Result 2 

in Chambers et al. (1998). 

The MIP is sometimes taken as referring to the information identity only, since the conditional variance 

term in this identity corresponds to the loss of information about   due to observing the available data sD  

and not the ideal data .UD  In this paper I take the MIP as being defined by both identities. However, it is 

the score identity that I find the most useful when faced with a messy data situation since it leads to 

parameter estimates for a population level model. The information identity can be used to obtain uncertainty 

estimates by inverting the observed information, but these estimates can be obtained in a variety of other 

ways including direct differentiation of scs  as well as via bootstrap simulation of the fitted population level 

model. 

In effect, it is the score identity that specifies the MLE based on the available data, while it is the 

information identity that shows us how much information about the parameter of interest we actually have 

given the available data. This is not dissimilar to the way scU  is used to define a pseudo-likelihood estimator 

while the “observed information” about this estimator in the available data is given by the inverse of its 

estimated design variance. 

The use of the score identity in the MIP to obtain the MLEs given the available data is an example of the 

application of what may be termed the “Prediction Principle”, which is based on the fact that the minimum 

mean squared error predictor of the value of an unobserved random variable (say )Y  given the value of 

another random variable (say )X  is ( ).E Y X  This principle underpins the model-based approach to 

sampling inference, starting with the seminal contributions of Royall (1970) and Royall (1976). In the score 

identity Y  corresponds to scU  and X  corresponds to .sD  So the best predictor of the solution to sc 0U   

is the solution to  sc sc 0.s U sE D  Furthermore, since the ideal data score scU  is a function of the 

sufficient statistics for   defined by ,UD  the score identity also tells us that when scU  is a linear function 

of these sufficient statistics the best approximation to scU  given the available data sD  is obtained by 

replacing these population sufficient statistics in scU  by their expected values given .sD  

 
3. Combining survey data and marginal population information – 

Comparing the MIP with calibrated weighting 
 
3.1 Calibration weighting in surveys 
 

Likelihood analysis based on the MIP is a general and powerful way of incorporating external 

information into inference. However, its usefulness depends on our ability to construct models that capture 

the dependence between the survey variables and this external information at some “ideal” level and that 
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also allow straightforward conditioning on the available data. Calibrated weighting is a widely used method 

of survey estimation that also allows external information to be used, typically in the form of calibration 

constraints that ensure the weighted survey data are capable of exactly reproducing known finite population 

quantities. In most cases, the population quantities of interest are totals associated with auxiliary variables 

and so we consider constraints of the form s s U U
 w Z 1 Z  where UZ  is the matrix of the N  population 

values of a set of survey variables with known population totals, sZ  is the corresponding matrix of the n  

sample values, sw  is a vector of sample weights and U1  is a unitary N -vector. 

Deville and Särndal (1992) introduced the idea of using calibrated sample weights iw  that are closest to 

the expansion weights 
1

i


 where i  denotes the sample inclusion probability of population unit .i  There 

are a variety of metrics for measuring closeness that can be used for this purpose, but the most popular is 

the chi square metric 
1 1( ) ( )s s s sQ     w π w π  where 

1
s
π  is the vector of expansion weights and   is a 

positive definite matrix chosen by the analyst to reflect heteroskedasticity in the population values of the 

survey variables. Minimising Q  subject to calibration leads to weights 

 
cal 1 1 1 1 1( ) ( ).s s s s s U U s s

         w π Z Z Z Z 1 Z π   

An alternative take on calibration is to view it as ensuring model-unbiased linear prediction of population 

totals (Valliant, Dorfman and Royall, 2000; Chambers and Clark, 2012). This is because weighting implies 

the use of a linear predictor s s
w y  for the population total ,U U

1 Y  and if U U U Y Z e  with ( )U UE e Z  

,U0  then under non-informative sampling given UZ  any set of weights that are calibrated on UZ  will also 

define an unbiased predictor of U U
1 Y  under this linear model. So calibration is a good thing – provided the 

linear model assumption is valid. 

 
3.2 Application to data from two sources 
 

Consider the case where the population U  is such that the values iy  and ix  of two scalar variables, Y  

and X  are stored on separate registers, each of size .N  A simple random sample s  of n  units from one 

register is linked to the other via a unique common identifier, thus defining n  matched ( , )i iy x  pairs. Our 

aim is to use these linked sample data, plus auxiliary information corresponding to the population averages 

of Y  and X  from each register, to estimate the parameters ,   and 2  that characterise the population 

linear regression model i i iy x e      where the errors ie  are distributed as independent and identically 

distributed (iid) Gaussian random variables with zero mean and unit variance. 

The classical approach to fitting a population regression model like the one above given sample data is 

to use a pseudo-likelihood approach. See Kish and Frankel (1974), Binder (1983), Godambe and Thompson 

(1986) and Pfeffermann (1993). This is usually motivated as follows. Let UY  and UX  denote the vectors of 

population values of Y  and ,X  with ( ; )U Uf Y X  denoting the conditional probability density of these 

population values. Then, if the pair ( , )U UY X  were to be observed,   would be estimated as a solution to 
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sc log ( ; ) 0.U U Uf   Y X  But for any specified value of , scU  defines a finite population parameter 

(the “census score”) that we can estimate using the sample data and the sample weights, say by sc .w  The 

maximum pseudo-likelihood estimator (MPLE) of   is then the solution to the estimating equation sc 0.w   

Note that this approach does not specify how the sample weights should be constructed, only that sc 0w   

defines a “design-consistent” estimator of scU  for any permissible value of .  In particular, calibration 

weights can be used. For the case described above it is clear that there are three calibration constraints, 

defined by the population size ,N  the population mean of X  and the population mean of .Y  Substituting 

 U U U UZ 1 Y X  and setting   equal to the identity matrix of order ,N  calibration weights that satisfy 

these three constraints are given by 

 

1

cal

0

[ ] .
s s s s s s

s s s s s s s s s s s U s

s s s s s s U s

N
w N y y

n
x x


     

        
        

1 1 y 1 x 1

1 1 y x 1 y y y x y

1 x y x x x

  

Put cal 1 cal
ws i is

x N w x   and cal 1 cal .ws i is
y N w y   The corresponding calibrated MPLEs are then 

 

 
1

cal cal cal cal
CALmple

cal cal
CALmple CALmple

2 1 cal 2
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ˆ ( ) ( )

ˆˆ
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i i i ws i i i wss s
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N w y x



 

  





  

 

  

 



  

The alternative to this hybrid calibration-MPLE approach is to use the MIP. To start, note that the face 

value MLEs (i.e., MLEs based on an assumption of simple random sampling and no auxiliary information) 

for ,   and 2  are 

 

FVmle 2

FVmle FVmle

2 1 2
FVmle FVmle FVmle

( ) ( )
ˆ

( )

ˆˆ

ˆˆˆ ( ) .
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
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 




 

  






  

However, there is extra information. In particular, we know the population means Uy  and Ux  of Y  and 

.X  So the face value MLEs are no longer full information MLEs. The latter can be computed using the 

MIP. Given the Gaussian assumption, the components of the ideal (i.e., population) data score function are 
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2 2
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1
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Let a subscript of U s  denote the non-sampled part of the population. The corresponding components 

of the available data score function are then obtained by replacing the components of the ideal data score 

function by their conditional expectations given the sample values of Y  and X  and the values U sy   and 

U sx   of the non-sample means of Y  and .X  In order to do this, note that for non-sampled unit i  our 

Gaussian assumption for the error term in the population regression model, plus the fact of random sampling, 

allows us to write 

 
2 1 2

1 2 1 2

( )
,

( ) ( )

i i

U s

U s U s

y x N n
N

y x N n N n

   

   



  
 

        
      

         
X ∼   

where U sX  denotes the non-sampled values of .X  It is straightforward to see that the conditional 

distribution of Y  given ,X
U sy   and U sx   is then 

 2 1
, , ( ), 1i i U s U s U s i U sy x x y N y x x

N n
    

  
    

  
∼   

and so the MIP-based available data score function has components 
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The MIP-based MLEs are obtained by setting these score components to zero and solving for ,   and 
2.  The solutions are 

 MIPmle 2

( ) ( ) ( ) ( ) ( )ˆ
( ) ( ) ( ) ( )

i s i s s s U U s U s Us

i s s s U U s U s Us

x x y y nx y y N n x y y

x x nx x x N n x x x


 

 

      


     




  

 MIPmle MIPmle
ˆˆ

U Uy x     

and 

    
2 2

2
MIPmle MIPmle MIPmle MIPmle MIPmle

1 ˆ ˆˆ ˆˆ ( ) .
1

i i U s U ss
y x N n y x

n
           


   

These are just the weighted least squares (WLS) estimators of these parameters based on an extended 

sample consisting of the data values in s  (each with weight equal to one) plus an additional data value (with 

weight equal to )N n  defined by the known non-sample means U sy   and .U sx   Standard WLS variance 

estimation methods can therefore be applied. Furthermore, these MIP-based MLEs depend only on the 

sample values of Y  and X  and on the population means of Y  and X  and not also on the individual values 

in the population vector UX  so they are also the available data MLEs when all one has is auxiliary summary 

information corresponding to the population means of Y  and .X  
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Related results are reported in Handcock, Rendall and Cheadle (2005) who tackle the problem by 

maximising the face value likelihood generated by the sample values of Y  and X  subject to the constraint 

ˆˆ .U Uy x    This leads to the estimators 

 con 2 2

( ) ( ) ( ) ( )
ˆ

( ) ( )

i s i s s U s Us

i r s Us

x x y y n x x y y

x x n x x


    


  




  

 con con
ˆˆ

U Uy x     

and 

  
2

2 1
con con con

ˆˆˆ .i is
n y x       

In general, the differences between these constraint-based estimators and the MIP-based MLEs defined 

earlier will be small. 

 

3.3 Imprecise benchmarks 
 

So far, the population benchmarks Uy  and Ux  have been assumed to be precise. However, this is not 

always true. For example, they could be estimated from survey data themselves, albeit from surveys with 

much larger samples, and so may in fact have errors. This can arise, for example, if census coverage is 

incomplete, and so census outputs are adjusted for coverage error. It can also be the case that we have access 

to estimates derived from another larger survey rather than census values for these benchmarks. As long as 

the error or imprecision of such estimation is small, our MIP-based MLEs above are still valid. 

Asymptotically, if the benchmark estimates ( , )U Uy x   for ( , )U Uy x  satisfy 1 2( )U U py y o n   and Ux   
1 2( ),U px o n  and if they are used in place of ( , ),U Uy x  then it is easily seen that the resulting estimators 

MIPmle MIPmle( , )   are asymptotically equivalent to MIPmle MIPmle
ˆˆ( , )   apart from a negligible error of 1 2( ).po n  

However, this conclusion is not valid for 
2
MIPmle  unless a generally higher order accuracy of 1 2( )po n N  

for the benchmark estimates is assumed. 

Intuitively, one expects the extra information from knowing ( , )U Uy x  to contribute mainly to estimation 

of the intercept term   in the population regression model. To see that this is the case we write down the 

variances of MIPmle̂  and MIPmle
ˆ .  This can be done by differentiating the available data score function 

components, changing signs and evaluating at these MLEs to get the observed information matrix for the 

regression model parameters. This matrix can then be inverted to get the (asymptotic) variances and 

covariances of these MLEs. Alternatively, exploiting their equivalence to a WLS fit, we can obtain the 

variances of MIPmle̂  and MIPmle̂  directly. These are 
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Here (2)
sx  is the mean of the squares of the sample X -values. It can be shown that MIPmle

ˆVar ( )   

FVmle
ˆVar ( ),  with equality only if .s U sx x   Similarly MIPmle FVmle

ˆ ˆVar ( ) Var ( ),   with equality only if 
(2) ,s s U sx x x   which is extremely unlikely in practice. This confirms our intuition above. 

 
3.4 Comparing the efficiency of MIP with that of calibration for data 

integration 
 

How much more efficient is using a MIP-based approach to data integration compared with a calibration-

based approach? Some insight can be obtained from the results of a small model-based simulation study set 

out in Tables 3.1 and 3.2. Here population values were generated as 5i i iy x e    with iz
ix e  and iz  and 

ie  generated independently of one another as standard Gaussian. A total of 1,000 simulations were carried 

out for each scenario, corresponding to choice of ,N n  and the degree of imprecision in the benchmarks. 

Sampling in Table 3.1 was carried out using simple random sampling without replacement (SRSWOR) and 

three levels of imprecision in the population benchmarks were examined – no error in the benchmarks, 

benchmarks subject to census-level error (benchmark equal to true value plus a random error with standard 

deviation equal to the actual marginal standard deviation multiplied by 1 2 )N   and benchmarks subject to 

larger survey error (benchmark equal to true value plus a random error with standard deviation equal to the 

actual marginal standard deviation multiplied by 
1 2( 5) ).N 

 

The values shown in Table 3.1 are relative efficiencies, defined as the ratio of the 5% trimmed RMSE 

of a reference estimator to the corresponding 5% trimmed RMSE of the estimator of interest, expressed as 

a percentage. Values over 100 therefore indicate superior relative efficiency for the alternative estimator. A 

trimmed RMSE was used to measure efficiency in order to avoid distortions caused by a small number of 

outlying error values generated in the simulations. The reference estimator in Table 3.1 is the face value 

MLE under SRSWOR. It is clear that the MIP-based MLEs perform well. In contrast, the MPLEs based on 

calibrated weights are consistently less efficient for all three parameters of interest, even when the 

benchmarks contain errors. It is only when the benchmark errors are relatively large that the efficiency of 

the MIP-based MLEs falls below that of the face value MLEs. 

Table 3.2 shows the relative performances of the same estimators as in Table 3.1, but this time where an 

informative sampling method is used. In particular, the sample data here are selected with inclusion 

probabilities that are approximately proportional to their Y -values, and the reference estimation method is 

MPLE, with weights defined by inverse sample inclusion probabilities under probability proportional to Y  

(PPY) sampling. In contrast the calibrated MPLE is based on calibrated versions of these sample weights 

while the MIP-based MLE is the same as in Table 3.1, i.e., it based on an assumption of SRSWOR. This 

allows one to investigate the degree to which incorporation of auxiliary population information helps protect 

against bias induced by misspecification of the sampling method. The gains from using the MIP-based MLE, 

even under a misspecified sampling method, are very clear. In contrast, the MPLE based on calibration 

weights is much less efficient, even though it is based on essentially unbiased sampling weights. 
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Table 3.1  
Linear population model under SRSWOR and population benchmarks of varying quality. 
 

 
N  = 500 

n  = 20 
N  = 1,000 

n  = 50 
N  = 5,000 

n  = 200 
 Benchmarks Known Precisely 
   CALmple 103 127 143 
  MIPmle 134 145 150 
   CALmple 81 90 96 
  MIPmle 106 102 101 

2   CALmple 84 94 99 
  MIPmle 102 100 100 

 Benchmarks Subject to Census-level Error 
   CALmple 84 101 112 
  MIPmle 116 111 116 
   CALmple 73 89 96 
  MIPmle 104 100 100 

2   CALmple 78 88 97 
  MIPmle 103 101 100 

 Benchmarks Subject to Larger Survey Error 
   CALmple 64 71 75 
  MIPmle 86 80 78 
   CALmple 71 84 93 
  MIPmle 100 95 100 

2   CALmple 63 77 94 
  MIPmle 99 94 99 
Notes: Values shown are per cent relative efficiencies with respect to 5% trimmed RMSE of the face value MLE under SRSWOR. CALmple 

denotes the MPLE based on calibrated weights, while MIPmle denotes the MIP-based MLE. 
 MIP = Missing information principle; MLE = Maximum likelihood estimator; MPLE = Maximum pseudo-likelihood estimator; 

RMSE = Root mean square error; SRSWOR = Simple random sampling without replacement. 

 
Table 3.2  
Linear population model under PPY sampling and population benchmarks of varying quality. 
 

 
N  = 500 

n  = 20 
N  = 1,000 

n  = 50 
N  = 5,000 

n  = 200 
 Benchmarks Known Precisely 
   CALmple 118 143 159 
  MIPmle 201 210 222 
   CALmple 63 73 81 
  MIPmle 109 110 117 

2   CALmple 78 89 91 
  MIPmle 106 106 111 
 Benchmarks Subject to Census-level Error 
   CALmple 98 120 135 
  MIPmle 136 139 152 
   CALmple 65 70 77 
  MIPmle 107 112 121 

2   CALmple 77 82 90 
  MIPmle 108 107 109 

 Benchmarks Subject to Larger Survey Error 
   CALmple 69 74 89 
  MIPmle 84 76 82 
   CALmple 54 57 66 
  MIPmle 103 107 117 

2   CALmple 62 71 87 
  MIPmle 99 101 102 
Notes: Values shown are per cent relative efficiencies with respect to 5% trimmed RMSE of expansion-weighted MPLE under PPY sampling. 

CALmple denotes the MPLE based on calibrated weights, while MIPmle denotes the MIP-based MLE. 
 MIP = Missing information principle; MLE = Maximum likelihood estimator; MPLE = Maximum pseudo-likelihood estimator; PPY = 

probability proportional to Y; RMSE = Root mean square error. 
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The results set out in Tables 3.1 and 3.2 provide some evidence for claiming that parameter estimation 

based on application of the MIP is more efficient, and sometimes considerably more efficient, than 

parameter estimation based on maximum pseudo-likelihood, particularly when this approach is based on 

calibrated weights. As one might expect, the MIP-based estimate of   benefits most from the auxiliary 

information. However there are non-negligible gains for MIP-based estimates of   and 2  as well. 

Why is the use of calibration weights so inefficient here? One answer follows from taking a model-based 

perspective on calibration. Recollect that calibrated weighting implicitly assumes a linear model linking Y  

and the variables defining the calibration constraints. But one of those constraints involves ,Y  implying an 

over-parameterised model. It is known (Bardsley and Chambers, 1984) that such models lead to highly 

variable weights and inefficient inference. 

 
3.5 Another example of the use of the MIP for analysis based on integrated 

data sources 
 

Integration of information from external sources when analysing survey data can arise in many different 

ways, and using the MIP as a general-purpose tool for these situations can be beneficial. For example, 

Merkouris (2004) describes a situation where independent generalized regression (GREG) estimators of the 

population total of a variable Y  based on data from multiple surveys need to be efficiently combined. The 

solution that is put forward in this paper is to form an efficiently weighted average of these different GREG 

estimators, where the efficient weights are based on a common auxiliary variable, say ,C  measured in the 

different surveys. But a MIP-based approach is also possible. To illustrate, suppose that there are just two 

surveys, say A  and B,  with survey A  using calibrated weights based on constraints defined by auxiliary 

variables X  and C  and survey B  using calibrated weights based on constraints defined by auxiliary 

variables Z  and .C  From a model-based perspective, the ideal data set would be where all three auxiliaries 

are measured in both surveys, in which case the data from both surveys could be stacked and values of Y  

fitted to a linear model with three covariates ( ,X C  and ).Z  Parameters of this model can therefore be 

estimated using the MIP, with unknown values of Z  in survey A  replaced by their conditional expectations 

and unknown values of X  in survey B  replaced by their conditional expectations. The model-based 

regression estimator of the population total of Y  using the combined data from both surveys is then just N  

times the fitted value of the three parameter model at the population means of ,X C  and .Z  This is very 

similar to data fusion (Raessler, 2004). 

 
4. Using the MIP under informative sampling 
 
4.1 What do we mean by saying that a method of sampling is informative? 
 

In Section 3 above I assumed that the method of sampling was simple random, so that US  and UY  are 

conditionally independent given .UZ  This allowed the sample label set s  to be treated as fixed since US  is 



Survey Methodology, December 2023 235 

 

 
Statistics Canada, Catalogue No. 12-001-X 

then ancillary for the parameters of the ideal data model. If US  is not ancillary, application of the MIP 

requires one to model the joint distribution of the ideal data and the outcome of the sampling process. This 

is specific to the method used to select the sample, and so it is impossible to provide general results. Instead, 

in this section I provide some insight into the use of the MIP under informative sampling by showing how 

two special cases of informative sampling impact on inference in the case of a very simple single parameter 

population distribution. These simple examples illustrate how using the MIP to integrate the information in 

US  in these situations can substantially improve inference. Before doing this, however, it is useful to be a 

little clearer about what we mean when we say a method of sampling is informative. 

Broadly speaking, sampling is informative if distributions of population and sample values of Y  are 

different (Pfeffermann, 1993). However, after conditioning on a population auxiliary, the two distributions 

can be the same. Sampling is non-informative (informative) for inference about the distribution of Y  given 

some information if the associated conditional probability of observing a particular value of Y  given a 

random population draw is equal (not equal) to the same conditional probability given the value of a random 

sample draw. That is, informative/non-informative status depends on what is being conditioned on. In 

particular, suppose that we have complete response, so sr  contains no information and our sample values 

of Y  are .sy  This allows us to concentrate on the impact of conditioning on US  and .UZ  In the same way 

that the concepts of Missing Completely At Random, Missing At Random and Non-Ignorable Missingness 

are defined in the missing data literature (Rubin, 1976; Little and Rubin, 1987; Little, 2003), we can define 
 

Completely Non-Informative Sampling: The distribution of UY  is independent of US  and ,UZ  so the 

marginal distribution of sy  contains all relevant information for .  
 

Non-Informative Sampling Given :UZ  The distribution of U UY Z  is independent of that of U US Z  (i.e., 

US  is ancillary for   given ),UZ  so we have the same parameters for distributions of s Uy Z  and U UY Z  

and the parameter of interest   depends on the parameters of joint distribution of sy  and UZ  (i.e., the 

parameters of distribution of s Uy Z  and the parameters of the marginal distribution of ).UZ  Here we can 

ignore the sampling process in likelihood-based inference but cannot throw away UZ  information. 
 

Informative Sampling: Here ,UY US  and UZ  are jointly dependent and the parameter of interest   can 

depend on all the parameters of the joint distribution of these quantities. An immediate consequence is that 

the conditional distributions of UY  and sy  given the auxiliary information UZ  can be very different, and 

so inference about the parameters of U UY Z  cannot just focus on the likelihood generated by the conditional 

distribution of .s Uy Z  
 

It should be clear from the above that informativeness of the sampling method depends on the auxiliary 

information available to the survey data analyst, and how much this information “explains” the outcome of 

the sampling process. For example, cluster and multi-stage sampling can be modelled when the auxiliary 

information includes indicators for the population groupings corresponding to sampling units at the different 

stages of sampling. A sampling method that is informative in one situation may not be informative in 

another. For example, even if the sampling mechanism is entirely determined by the auxiliary information, 
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this mechanism can be informative if we do not (or cannot) include it in our survey data, as often happens 

in secondary data analysis. Furthermore, even if UZ  is included in the available data, the sampling method 

can still be informative if it also depends on variables not included in UZ  that are correlated with those in 

.UD  In this case, including the outcome US  of the sampling mechanism as part of UD  requires us to specify 

the joint density of UY  and US  given .UZ  From this we can determine the distribution of sy  and hence 

write down the likelihood for .  The traditional approach to likelihood inference under informative 

sampling achieves this by directly specifying the distribution of SY  given ,UZ  where S  is a random subset 

of U  with distribution determined by the outcome .US  An alternative is to use the MIP to specify the score 

and information functions directly. 

 
4.2 Applying the MIP to size-biased and cut-off sampling 
 

In order to illustrate the use of the MIP in this context, first note that a commonly used model for 

informative sampling is where sample inclusion depends directly on .UY  Two ways this can happen are 

when inclusion probabilities are functions of Y  and where there is cut-off sampling on .Y  The key ideas 

for dealing with these two situations are straightforwardly developed by assuming that the N  population 

values of Y  are independent and identically distributed draws from a single parameter exponential 

distribution with marginal density ( ; ) exp( ),f y y     allowing one to obtain explicit results for both 

cases. In what follows I therefore make this assumption, with the target of inference then being 
1( ) .E Y     

First, suppose that the sample of n  units is selected using size-biased sampling with known inclusion 

probabilities, 

 
( )

( )
i i

i

U U

n y z

N y z










  

but where   is unknown. Here iz  is a auxiliary “size” value associated with population unit i  and there is 

complete response. It is easy to see that ( ) ( ) ,i U i U i iN y N z nz ny      and so provided 2,n   values of 

Uy  and   are deducible from the sample values of Y  and their known inclusion probabilities. 

Consequently the available data are the sample Y  values  ;iy i s  and .Uy  Applying the MIP, it 

immediately follows that the available data score for   is 

    1 1 1sc ( ) { ; }, ( ) ( ).s i i U s U UU
E y y i s y N E y N y             

The MIP-based MLE for   is then MIPmle
ˆ ,Uy   i.e., the ideal data MLE. Similarly, the available data 

information for   is the population information for this parameter, 2 ,N   and, since 
1,    the estimated 

variance of MIPmle̂  is 
1 2 .UN y

 

Next consider what happens under cut-off sampling. Again assume complete response and population 

values distributed as one parameter exponential, with mean   the target of inference. But now suppose that 
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the vector of sample inclusion indicators is random, corresponding to all population units with ,iy K  for 

known .K  Then 

     1 1 1 1( , ) ( ) ( ) ( ) (1 )K K
U s s sE y K N ny N n E Y Y K N ny N n Ke e              y   

and so the available data score for   is 

 1 1sc ( ) ( ) ( ) (1 ) .K K
s sn y N n Ke e            

There is no analytic solution to setting this score function to zero, but it is easy to obtain numerically. If 

we let MIPmle̂  denote this solution then the MIP-based MLE of   is 

 MIPmle MIPmle
ˆ ˆ1 1

MIPmle
ˆ ( ) ( ) (1 ) .K K

sy N n n Ke e          

Here it is easiest to obtain the available data information for   by direct differentiation of the available 

data score for this parameter, i.e., as 
2 2 2info ( ) (1 ) ,K K

s n N n K e e          and so a large sample 

estimate of the variance of MIPmle̂  is  
MIPmle

1
4

ˆMIPmle
ˆ ˆ( ) info .sV

 
 




  

 

4.3 Maximum pseudo-likelihood under size-biased and cut-off sampling 
 

Alternatively, we could adopt a maximum pseudo-likelihood approach for both sampling methods 

above. For the case of size-biased sampling the maximum pseudo-likelihood estimator (MPLE) of ,  

obtained as the zero of the sample weighted estimate of the ideal data score, is the inverse of the Hájek 

estimator for the population mean of .Y  It immediately follows that the MPLE MPLE̂  of   is this Hájek 

estimator. Clearly MPLE̂  is suboptimal ‒ we know the inclusion probabilities ,i  so we know ,Uy  which 

is the ideal data MLE. However, MPLE̂  is approximately unbiased in large populations since 

 

1 1

MPLE 1 1

( ) ( )
ˆ( ) ( ).

( ) ( )

i i i iU U U U
U U

i i i U UU

I y y z n y z y
E E E E E y

I y z n y z

 


 

 

 

     
            




Y   

What about the case of cut-off sampling? Since pseudo-likelihood depends essentially on design 

consistency for its validity, and since this is turn requires that all population units have a non-zero chance 

of sample inclusion, it is clear that there is no MPLE for   under cut-off sampling. 

 

4.4 Maximum sample likelihood under size-biased and cut-off sampling 
 

The other well-known approach to inference under informative sampling is to maximize the sample 

likelihood. This is a model-based methodology (Krieger and Pfeffermann, 1992; Pfeffermann, Krieger and 

Rinott, 1998; Pfeffermann and Sverchkov, 2003) motivated by inferential methods for size-biased sampling 

that approximate the probability density sf  of the sample values making up sy  as a function of the 

probability density Uf  of the population values making up UY  and the sampling weights. In particular, 

Bayes Theorem is used to obtain the probability density of a randomly chosen sample value iy  as 

 
Pr ( ; ) ( ; )

( ; , ) ( )
Pr ( ; , )

i U i
s i U i

i s y f y
f y f y i s

i s

 
 

 


  


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where   is a nuisance parameter that characterizes the sample selection method. The estimator for the 

parameter   of interest is then defined by maximising the “sample likelihood” for ,  

 
Pr ( ; ) ( ; )

SL( , ; )
Pr ( ; , )

i U i
s

i s

i s y f y

i s

 
 

 





y   

as a function of .  Note that under this approach one needs to independently estimate the nuisance 

parameter .  

Applying the sample likelihood approach to estimation of the mean of an exponential distribution under 

the size-biased sampling scheme above, we first note the large sample approximation 

   1

1

( )
log SL( ; ) log exp( ) log( ) log( )

( )
i i

s i U s
i s U

y z
y n n z ny C

z


      

 





 
       

 
y   

where C  does not depend on .  Differentiating with respect to   leads to the sample likelihood score 

  1 1
SLsc 1 (1 ) .U sn z ny         

When 0   we have an explicit solution to SLsc 0  given by 2 ,sy   implying a maximum sample 

likelihood estimator (MSLE) for   of the form MSLE
ˆ 2.sy   No explicit solution exists for SLsc 0  when 

0,   so numerical methods need to be used. Also, when 0,   it is straightforward to show that in large 

samples ( ) 2 ,sE y   so MSLE̂  is approximately unbiased. 

A simple MSLE for   also exists under cut-off sampling. Here Pr ( ) Pr ( ) exp ( ),ii s y K K      so, 

up to an additive constant, the log of the sample likelihood for   under cut-off sampling is log ( )n    

( ).sn y K   It is easy to see that then the MSLE of   is MSLE
ˆ .sy K    This estimator is unbiased. 

 
4.5 Comparison of MIPmle, MPLE and MSLE 
 

Once again, small scale simulation results help put some perspective on how much efficiency is lost by 

using pseudo-likelihood or sample likelihood instead of full information likelihood based on application of 

the MIP with data from a single parameter exponential population. Tables 4.1 and 4.2 show bias and RMSE 

for size-biased sampling with 0   while Tables 4.3 and 4.4 show similar results for cut-off sampling. In 

all cases these results are based on 1,000 independent simulations. They show that a MIP-based MLE 

(MIPmle) is consistently preferable to estimation using maximum sample likelihood (MSLE) or maximum 

pseudo-likelihood (MPLE). Tables 4.1 and 4.2 also show that, as expected, maximum sample likelihood 

outperforms maximum pseudo-likelihood. These results are in line with what has been observed in other 

studies where using maximum pseudo-likelihood (by far the most prevalent method of parametric estimation 

with survey data) is inefficient (Dorfman, Chambers and Wang, 2002). Its only advantage would appear to 

be its simplicity and the widespread availability of software. 
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Table 4.1  
Size-biased sampling from a single parameter exponential population of size N  5,000 with 1   and with 
n  100. 

 

  Bias RMSE 
MIPmle MPLE MSLE MIPmle MPLE MSLE 

0.05 -0.0006 0.0040 -0.0018 0.0145 0.1424 0.0950 
0.25 -0.0002 0.0070 0.0009 0.0138 0.1147 0.0827 
0.50 0.0004 0.0094 0.0017 0.0139 0.1186 0.0813 
0.75 0.0004 0.0028 -0.0084 0.0140 0.1091 0.0763 
0.95 -0.0002 0.0074 -0.0047 0.0145 0.1134 0.0713 
Notes: Values of the auxiliary variable Z  were generated as a single parameter exponential with 1   and with Cor( , )Y Y Z    where 

2 1,     so increasing (decreasing) correlation implied decreasing (increasing) .  
 MIPmle = MIP-based MLE; MLE = Maximum likelihood estimator; MPLE = Maximum pseudo-likelihood estimator; MSLE = 

Maximum sample likelihood estimator; RMSE = Root mean square error. 

 
 

Table 4.2  
Same scenario as in Table 4.1 except that   0.5 and the impact of increasing n  is shown. 
 

n  Bias RMSE 
MIPmle MPLE MSLE MIPmle MPLE MSLE 

10 -0.0007 0.0611 -0.0139 0.0138 0.3457 0.2539 
30 0.0002 0.0255 -0.0061 0.0147 0.1986 0.1448 
100 0.0004 0.0094 0.0017 0.0139 0.1186 0.0813 
300 -0.0005 -0.0090 -0.0090 0.0142 0.0650 0.0460 
900 -0.0001 -0.0344 -0.0267 0.0144 0.0511 0.0371 
Notes: MIPmle = MIP-based MLE; MLE = Maximum likelihood estimator; MPLE = Maximum pseudo-likelihood estimator; MSLE = 

Maximum sample likelihood estimator; RMSE = Root mean square error. 
 

 
Table 4.3  
Cut-off sampling from a single parameter exponential distribution of size N  5,000 with 1   and with cut-
off 2.K   
 

  ( )E n  Bias RMSE 
MIPmle MSLE MIPmle MSLE 

0.4343 50 0.0108 -0.0016 0.0400 0.0646 
0.5112 100 0.0016 -0.0031 0.0197 0.0515 
0.7109 300 -0.0003 0.0020 0.0133 0.0393 
1.0172 700 -0.0008 0.0002 0.0162 0.0387 
1.6612 1,500 -0.0002 0.0010 0.0240 0.0424 
Notes: The impact of increasing expected sample size is shown. 
 MIPmle = MIP-based MLE; MLE = Maximum likelihood estimator; MSLE = Maximum sample likelihood estimator; RMSE = Root 

mean square error. 
 

 
Table 4.4  
Same scenario as in Table 4.3 except that the cut-off K  changes, with   modified to ensure expected sample 
sizes are as shown. 
 

K  ( )E n  Bias RMSE 
MIPmle MSLE MIPmle MSLE 

5 50 0.0254 -0.0020 0.0925 0.1522 
4 100 0.0038 -0.0025 0.0429 0.1045 
3 300 -0.0003 -0.0041 0.0202 0.0607 
2 700 0.0002 -0.0005 0.0160 0.0381 
1 1,500 0.0002 -0.0004 0.0122 0.0210 

Notes: The average value of   is 1.0048. 

 MIPmle = MIP-based MLE; MLE = Maximum likelihood estimator; MSLE = Maximum sample likelihood estimator; RMSE = Root 
mean square error. 
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4.6 Other examples of the use of the MIP under informative sampling 
 

There are other situations where sampling is informative because the sample design itself is informative. 

For example, size stratification (i.e., stratification based on a size variable Z  correlated with )Y  is 

informative when the size stratum boundaries are known, but the analyst does not have access to non-

sampled population values of .Z  This would often be the case in secondary analysis. For example, Dorfman, 

Chambers and Wang (2002) describe how the MIP can be used to approximate maximum likelihood 

estimates when Z  and Y  coincide. In a small-scale simulation study they show that using a MIP-based 

approach in this case leads to significant gains in efficiency compared with a maximum pseudo-likelihood 

approach using stratification weights. And even if Z  and Y  differ, it will usually be the case that they are 

highly correlated, in which case knowing that the non-sampled units within a stratum have values of Z  that 

lie between known bounds provides the analyst with information that can be used to modify inference about 

the stratum mean of Y  and hence its overall population mean. 

It has already been noted that using a maximum pseudo-likelihood approach can be inefficient. However, 

a powerful argument for its use in the past has been that it is design consistent, and so robust to 

misspecification of the population distribution of .Y  But this is usually relative to the use of a face value 

maximum likelihood approach, which ignores the information in the sample design and implicitly assumes 

simple random sampling. To illustrate, consider the following scenario, based on Examples 2 and 3 in 

Binder and Roberts (2003). Suppose that our assumed or working model for the population values of Y  is 

that they are independently and identically distributed as Gaussian with mean   and with variance 2.  

The sample design is stratified sampling based on an auxiliary size variable .Z  In particular, there are two 

strata, with stratum 1 (low values of )Z  sampled disproportionately less than stratum 2 (high values of ).Z  

In this case the face value MLE of   is the unweighted sample mean ,sy  ignoring the disproportionate 

stratification. However, the MPLE is the stratified sample mean 
1

1 1 2 2( ),st s sy N N y N y   where sjy  is the 

sample mean in stratum .j  

Now suppose that the working Gaussian model of a common mean and variance is misspecified, and in 

reality it is the conditional distribution of Y  given Z  that is Gaussian, with ( )E Y Z Z  and Var ( )Y Z   
2 .Z  We refer to this as the “true” model below. The target parameter   (the marginal mean of Y  across 

the population) under this true model is then  ( ) ( ).E E Y Z E Z    When N  is large it is reasonable to 

approximate it by  1
1 1 2 2( )UE z N N N      where 1, 2  are the means of Z  in strata 1 and 2 re-

spectively, with corresponding variances 
2
1 , 2

2 .  Consequently, under the true model, 
1

1 1( ) (sE y n n    

2 2)n  and 
1

1 1 2 2( ) ( ),stE y N N N     while 

     2 2 2 2 2 2 2
1 1 2 2Var ( )sy n n n           

and 

     2 2 1 2 2 2 2 1 2 2 2
1 1 1 2 2 2Var ( ) .sty N N n N n             
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Typically 2 2
1 2   so since 2 2n n N N  we see that that sty  is unbiased and has smaller variance than 

sy  under the true model. 

However, the face value MLE sy  makes no use of the available data on the size variable .Z  At a 

minimum this corresponds to the sample values of ,Z  which then allows the true regression model to be 

identified, and   estimated by 1ˆ .s sy z   Applying the MIP to this situation, and still using the working 

model to define the ideal data score, the MIP-based MLE is the solution of the available data score equation 

(here r  denotes the set of non-sampled population units) 

   ( ) 0.i i is r
y E y z        

In order to proceed further, one needs to be more specific about what one knows about the non-sampled 

Z  values. If this is just the stratum population sizes then a reasonable assumption is that the expected value 

and variance of Y  vary between the strata, and sty  is the MIP-based MLE. If in addition one knows the 

size stratum boundaries then the approach discussed following Table 4.4 can be adopted. However, suppose 

that one also knows the population average Uz  of .Z  It is easy to see that the MIP-based MLE is then 

MIPmle
ˆˆ .Uz   Furthermore, this MIP-based MLE is unbiased under the true model since MIPmle

ˆ( )E    
1

1 1 2 2( ),N N N     with 

  1 2 2 2 2 2 2 2
MIPmle 1 1 2 2
ˆVar ( ) ( ) .U sn E z z N N N          

Also, since 
2 2( ) 1U sE z z   under the specified stratified sample design, 

 

2 2 22 2
2 1 2 1 2

MIPmle 2 2 2
1 1

ˆVar ( ) Var ( ) 1 .j j j j

st j j j
j j j

N n N n
y n n

N n N N
    

 

    
             

     
    

The expression on right hand side above will typically be positive. This is supported by the small-scale 

simulation results shown in Table 4.5. That is, although the face value MLE is biased and inefficient under 

the true model, the MIP-based MLE that takes the information on Z  into account is unbiased under this 

model and usually more efficient than the MPLE. 

 
Table 4.5  

Simulation results for 1,000 independent repetitions of N  1,000, n  100, Z  distributed as single parameter 

exponential with mean 4, 1,    0.1 and a sample design with two strata defined by values below/above the 

population mean of .Z  
 

1n  2n  Bias RMSE 

sy  sty  MIPmle̂  sy  sty  MIPmle̂  

10 90 3.3461 -0.0036 -0.0033 3.3745 0.2843 0.1321 
25 75 2.3982 -0.0069 -0.0059 2.4319 0.2494 0.1280 
50 50 0.8554 0.0138 0.0062 0.9167 0.2546 0.1232 
propn allocation 0.0017 0.0021 0.0011 0.2698 0.2700 0.1333 
75 25 -0.7444 0.0044 -0.0047 0.7825 0.3220 0.1313 
90 10 -1.6860 0.0287 -0.0044 1.6957 0.4878 0.1294 
Notes: MIP = Missing information principle; MIPmle = MIP-based MLE; MLE = Maximum likelihood estimator; RMSE = Root mean square 

error. 
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5. Modelling using non-deterministically linked data 
 
5.1 Using the MIP when there is data linkage error 
 

Data linkage is the joining of two or more administrative or survey datasets using statistical matching 

(ADRN, 2012). A key feature of many linkage applications is a clear separation between the linkage process 

and subsequent analysis of the linked data. Typically, this separation is for reasons of confidentiality, in the 

sense that the linking agencies often use confidential data in their record matching. See Harron, Goldstein 

and Dibben (2016). The linked data set that eventuates is then made available to analysts but the information 

used in the linking is not. This is a secondary analysis situation. 

My focus here is on the bias in this analysis due to incorrect links, i.e., the bias that may arise if the 

linkage is not accurate enough (Lahiri and Larsen, 2005; Chambers, 2009; Kim and Chambers, 2012). Many 

of the linked data sets that are created are based on non-deterministic linking, where there is uncertainty 

about whether the data values in the linked record are actually for the same population unit. I also focus on 

the simplest scenario, where two population registers, denoted Y  and ,X  are linked, and the analyst, who 

has full access to the X -register, is provided with a sample of the records from the linked register. In 

particular, the Y -register contains values of a scalar random variable Y  and the X -register contains values 

of vector random variable .X  

Suppose that we are interested in modelling the conditional distribution of Y  given .X  This is 

straightforward given a random sample of correctly linked ( , )Y X  values. But, we do not have such a 

sample. Instead we have a sample of linked values 
*( , )Y X  where *Y Y  if the linkage is correct, but 

possibly not if it is incorrect. I say “possibly” here because depending on the scale of measurement of ,Y  

we can have *Y Y  even if the linkage is incorrect. 

To proceed further I introduce a set of sandbox assumptions that simplify further analysis. They are 

unlikely to hold in practice, but serve to define a useful “working model” for inference. These are 

 Both registers contain N  records, with no duplications, and linkage is 1 1  and complete. That 

is, all records in both registers are linkable, and no record in one register can be (eventually) 

linked to more than one record in the other register; 

 There is a categorical “blocking” variable B  recorded on both registers, measured without error 

on both, and taking Q  distinct values 1, 2, ,q Q …  such that all matching takes place within a 

block, i.e., records in both registers with the same value of ;B  

 The records on the linked data set are indexed in exactly the same way as they are indexed on the 

X -register. 

 

Suppose there are qM  records in each register with B q  (so ).qq
N M  Our second assumption 

above then constrains linkage errors to only occur within “blocks”. Let qy  and 
*
qy  denote the original and 

linked values of Y  in block .q  Under 1 1  and complete linkage it immediately follows that *
q q qy A y  

where qA  is an unknown random permutation matrix of order ,qM  i.e., entries of qA  are either zero or one, 
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with a value of one occurring just once in each row and column. Let X  denote the matrix of X  values in 

the X  register. Put ( )q qE A X T  and suppose that we have non-informative linkage given .X  That is, 

qA  is independent of qy  given X  and so 

 *( ) ( ; )q q qE E y X T y X   

where   denotes the vector of parameters of the conditional distribution of Y  given .X  These parameters 

are our primary target of inference. 

An efficient linkage process should ensure that correct linkages within a block are more likely than 

incorrect linkages. We therefore impose the restrictive but practically useful assumption that linkage errors 

are exchangeable within a block, i.e., the probability of a record being correctly linked in block q  is q  

while the probability that it is incorrectly linked is .q  We refer to this as an Exchangeable Linkage Errors 

or ELE model. Under 1 1  and complete linkage the ELE model implies ( 1) 1.q q qM     It immediately 

follows that ( ) ,q q q q q q q     T I 1 1  where qI  is the identity matrix of order qM  and q1  is the unitary 

vector of length .qM  

However, we do not have access to the full linked register. Instead we have a random sample s  of n  

records from this linked register. We extend the idea of non-informative linking by assuming that the random 

processes underpinning sample selection and linking are mutually independent and that these processes are 

both non-informative for the parameters of the distribution of Y  given .X  This ensures that linkage of a 

sample to a register is stochastically equivalent to sampling from a completely linked register. This register 

can be partitioned into Q  blocks with block q  itself partitioned into qm  sampled values followed by 

q qM m  non-sampled (and hence unobserved) linked values. Following standard practice, we use sub-

scripts of s  and r  to denote a partition into sampled and non-sampled values. Consequently sqA  is the 

matrix defined by those rows of qA  that correspond to sampled units, with ssqA  denoting those columns of 

sqA  that correspond to sampled units, and so on. We can then write the vector of sampled linked values in 

block q  as * ,sq sq qy A y  with ( ) [ ]sq sq q ssq srqE T A X T T  where ( )ssq q q sq q sq sq     T I 1 1  and srq T  

.q sq rq 1 1  

In order to carry out a maximum likelihood analysis in this situation we need to specify a model for the 

conditional distribution of Y  given .X  We assume a simple linear model with Gaussian errors for this 

purpose, i.e., we put 
2( , )N  y X X I∼

 
where I  is the identity matrix of order .N  However, our data 

consist of a sample of values of Y  from linked records. In order to apply the MIP in this case, we need to 

specify the conditional distribution of the correctly linked population values of Y  given these linked values. 

Now ( )q qE y X X  and 2Var ( ) ,q qy X I  while under ELE *( )sq sq qE y X T X  and 
*Var ( )sq y X  

* 2 .sq sq sq  I V  Here sqV  is the sample component of Var ( )q q qV A X X  and represents the increased 

heterogeneity in 
*
sqy  caused by incorrect linkage. Chambers (2009) shows that qV  is well approximated by 

the diagonal matrix with thi  diagonal term  2 (2) 2(1 ) ( ) ( )q q i q q qf f f f      where i if  x  and 
(2)

qf  is 

the average of the 
2

if  in block .q  Finally, we note that 

 
* 2Cov( , ) Cov( , ) Cov( , ) .q sq q sq q q q sq sq   y y X y A y X y y X T T   
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It is tempting to conclude from this (as I have done in the past) that the joint distribution of qy  and *
sqy  

given X  is then multivariate Gaussian with these moments. However, as pointed out by Zhang and Tuoto 

(2021), since the support of *
sqy  is just qy  this clearly cannot be true. However, if we are prepared to 

approximate this joint distribution by a Gaussian copula with the same first and second moments, then the 

MIP can be used to construct a corresponding approximation to the MLEs for the parameters   and 2  of 

the conditional distribution of qy  given * .sqy  This argument turns out to be surprisingly fruitful. 

Put 2 1( ) .sq sq sq sq  D T I V  Then 

 * 2 *( , ) ( )q sq q sq sq sq q sqE      y y X X D y T X a   

and 

 * 2 4Var ( , ) .q sq q sq sq sq   y y X I D T B   

That is, we can write * 1 2,q sq sq sq qy y X a B g∼  where ( , ).q q qNg 0 I∼  Next since * ,sq sq qy A y  the ideal 

data in block q  is the set { , }q qy X  while the available data is the set *{ , },sq qy X  when we treat ,qA  and 

hence ,sqA  as ancillary. In order to use the MIP we therefore first note that since 2( , ),q q qN  y X I∼  the 

score functions for   and 2  based on the ideal data are 

   2

1

sc ( )
Q

U q q q
q

  



 X y X   

  2 4 2 4 2

1 1

sc ( ) ( ) ( ) 2
Q Q

U e q q q q q q q q q q
q q

N N           

 

             y X y X y y X y X X   

so the MIP-based score function for   using the available data is 

      2 * *

1 1

sc ( , ) .
Q Q

s q q sq q q sq sq sq q
q q

E   

 

     X y y X X X D y T X   

In order to define the corresponding MIP-based score for 2  we first note that 

    * 1 2 1 2( , ) tr( )q q sq sq sq q sq sq q sq sq sqE E
       
 

y y y X a B g a B g a a B   

and 

 *( , ) .q q sq q sqE     X y y X X a   

This leads to a MIP-based available data score for 2  of the form 

 

     

   

2 4 2

1

* * 2

1

sc tr( )

tr ( ) .

Q

s sq q sq q sq
q

Q

sq sq q sq sq sq sq q sq
q

N

N

    

  







      
 

       
 





a X a X B

y T X D D y T X B
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Formal representations for the resulting estimators of   and 2  are obtained by setting these available 

data scores to zero and solving for these parameters. This leads to 

 

1

*
MIPmle

1 1

ˆ
Q Q

q sq sq q q sq sq
q q





 

   
     

   
 X D T X X D y   

and 

    2 1 * *
MIPmle

1

ˆ tr ( ) .
Q

sq sq q sq sq sq sq q sq
q

N  



      
 

 y T X D D y T X B   

Since sqD  (and hence )sqB  is a function of   and 2 ,  the above estimators are computed iteratively. 

They also require one to know (or at least have a good estimate of) the correct linkage probabilities in each 

block. This issue is discussed in more detail in Chambers and Diniz da Silva (2019) and highlights the 

importance of the simultaneous release of paradata about the linking process when linked data are released 

for secondary analysis. An important practical point that also needs to be made here is that the block size 

qM  will usually be very large, making computation of block-dimensioned quantities like sqD  and sqB  time 

consuming. So in the development below I introduce a further approximation, replacing qy  by sqy  in the 

ideal data. 

 
5.2 Application to small area estimation using non-deterministically linked 

data 
 

Probably the most common application of model-based ideas in survey sampling is small area estimation 

or SAE. That is, where the sampled population is partitioned into D  non-overlapping domains such that 

each domain is represented in the sample, but where the domain sample sizes are small, and sometimes even 

zero. It is standard to refer to these domains then as “small areas”, where “small” is actually a reference to 

the domain sample size. See Rao and Molina (2015) for a comprehensive discussion of methods that have 

been proposed for estimation of domain-specific quantities in this situation, with the most common target 

being the domain average of a variable Y  measured on the sampled population units. 

Here I focus on the special case where Y  is not measured directly on the sample but is obtained by 

linking the sample frame to another population register and then integrating the data from this register with 

the data directly obtained from the sampled units. This type of sample data acquisition is now increasingly 

common. Analysis variables in this integrated data set can exhibit increased heteroskedasticity (compared 

with an ideal data set where linkage is perfect) when records are incorrectly linked. This has the potential 

to lead to biased small area inference. See Briscolini, Di Consiglio, Liseo, Tancredi and Tuoto (2018). 

In order to show how MIP-based ideas coupled with an ELE linkage errors specification can be used in 

SAE I assume that the population distribution of Y  given a set of covariates X  is adequately modelled at 

the unit level by a linear mixed model with Gaussian random effects of the form 

 j j j jy e   x z u   
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where j  indexes individual population units, je  denotes individual model error, u  denotes a set of random 

area effects and jz  is a covariate characterising the impact of these area random effects on an individual 

population unit. The most common specification for this model in SAE is a random intercepts specification, 

where we associate a random effect iu  with each area i  and u  denotes the vector of these effects. In this 

case jz  is the vector that “picks out” the area in which unit j  is located. It is standard to assume non-

informative sampling within each area, in which case the sample data on Y  can be written in matrix form 

as 

 s s s s  y X Z u e   

where se  is a n-vector of uncorrelated zero mean Gaussian random variables with common variance 2 ,e  

u  is a D -vector of uncorrelated zero mean Gaussian random variables with variance 
2 ,u  and se  and u  

are distributed independently. 

With linked data spread across Q  blocks, however, we see 

 

*
1 1 1

*
2 2 2*

*

s s

s s

s s

sQ sQ Q

 
 

  
 
 
  

y A y

y A y
y A y

y A y


  

where diag( )s sqA A  and y  denotes the vector of actual (but unknown) Y -values in the population. Put 

diag( )s sqT T  and diag( ),s sqJ J  where ( )
q qsq q q sq q m M     T J 1 1  and ( ) .

q q q qsq m m M m 
 
 

J I 0  Then 

  

1 1

2 2* ,

s

s

s s

sQ Q

E  

 
 
  
 
  
 

T X

T X
y X Z T X

T X


  

  * 2 2 2 *Var( , ) ( ) ( ) ( )s e sq sq u sq u sp p q sq sp q p q            y X Z I V K T Z Z T1 1   

and 

 
* 2 2Cov( , , ) Cov( , , ) ( )s s s s e s u s s s s       y y X Z y A y X Z J Z Z T C T   

where ( )w1  equals one if statement w  is true and is zero otherwise, and sqK  (see Samart and Chambers, 

2014) represents the extra heterogeneity in 
*
sy  due to incorrect linkage of units in the same block but in 

different areas. Put   2 2Var , .s s e s u s s     y X Z I Z Z  Making the same Gaussian copula assumption as 

before, we can then write * 1 2, , ,s s s s sy y X Z a B g∼  with 

 * * 1 *( , , ) ( ) ( )s s s s s s s s sE      a y y X Z X C T y T X   

and 
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 * * 1Var ( , , ) ( ) .s s s s s s s s s
     B y y X Z C T T C   

Since *
s sy A y  the ideal data set underpinning the use of the MIP in this situation would normally 

include the population vector y  and, as in the previous development, application of the MIP would then 

proceed using the properties of the conditional distribution * , , .sy y X Z  However, this involves manipu-

lating N -dimensioned quantities, which is usually impractical. I therefore introduce a further approximation 

that replaces y  by sy  in the ideal data set. This has the immediate effect of replacing N -dimensioned 

quantities by n-dimensioned quantities in the score identity, which now depends on the first and second 

moments of the conditional distribution * , ,s sy y X Z  derived above. These can now be used to approximate 

the score functions for 
2, u   and 

2
e  based on the linked sample data, replacing the score functions for 

these parameters based on the ideal data set by their conditional expectations given the actual (i.e., linked) 

sample data. This process is the same as that already outlined for the simple regression case earlier so no 

details are provided here. Instead, I note that the popular maximum likelihood version of the Empirical Best 

Linear Predictor (EBLUP) of the mean iy  of Y  in area i  is of the form EBLUP ˆ ˆ
i i iy   x z u  where ̂  is the 

MLE for   and û  is the minimum MSE linear predictor for the vector of area effects u  when 
2, e   and 

2
u  are replaced by their MLEs. However, given linked sample data, the minimum MSE predictor of u  is 

its conditional expectation given these data. Under the Gaussian copula assumption this is 

 * 2 * 1 *( , , ) ( ) ( ).s u s s s sE     u y X Z Z T y T X   

When MIP-based MLE approximations for 
2, e   and 

2
u  are substituted in this expression we obtain a 

linkage error corrected predictor of the random effects vector ,u  which we denote by MIP
ˆ .u  Combining this 

with the MIP-based MLE approximation MIP̂  for   one can then compute a MIP-based predictor for the 

mean of Y  in area i  as MIP
MIP MIP
ˆ ˆ .i i iy   x z u  

I can illustrate the gains from using this MIP-based approach to SAE based on linked data via a small 

simulation. This assumes linkage errors follow an ELE model with known parameters (see Chambers (2009) 

for how one deals with an ELE model with estimated parameters). The target population consisted of D 

40 areas, with an average area population size of 500, so N  20,000. A random intercepts model was used 

to generate the ideal data values of Y  for unit j  in area i  according to 100 5 ,j j i jy x u e     where the 

values of jx  were generated as independent and identically distributed lognormal with a log scale mean of 

log(4.5)-0.5 and a log scale variance of 0.5. The area random effects iu  were independently generated as 

Gaussian with mean zero and variance 
2 2u   while the individual random effects je  were independently 

generated as Gaussian with mean zero and variance 
2 7.e   The actual linked values of Y  were then 

generated by independent repetitions of an ELE model within Q  40 blocks covering the population of 

interest. The blocks were defined independently of the small areas of interest, with 1q   in blocks 1-10, 

q  0.95 in blocks 11-20, q  0.9 in blocks 21-30 and q  0.85 in blocks 31-40. Blocks contained units 

from multiple small areas, with a block including units from an average of 5 small areas. As a consequence 

there was across area linkage error. Independent simple random samples were taken from each area, with 

area sample sizes ranging from 5 to 40 with an average of 25, so n  1,000 and the linked sample values of 

Y  as well as the population values of X  were then used to fit the random intercepts model. 
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The above scenario was independently simulated 100 times. In each simulation estimates of the model 

parameters were calculated for the ideal case (no linkage error for sample values) and for the naive case 

(linkage error ignored), in both cases via REML using the function lmer in R (R Core Team, 2019). 

Estimates were also calculated using the MIP-based approach described above, using the naive estimates as 

starting values. Table 5.1 shows the average values and RMSEs over the 100 simulations, while the boxplots 

in Figure 5.1 show the distributions of these parameter estimates over the same simulations. Observe that 

the measurement error due to linkage error causes naive estimates of the fixed effects to be biased, reflecting 

the fact that linkage error shrinks slope parameters towards zero, with naive estimates of between area 

variation reduced and corresponding estimates of within area variation greatly increased. This is exactly 

what one expects. The MIP-based estimates do not suffer from these problems. 

In addition, EBLUP-type estimates of the population average of Y  in each small area were calculated 

in each simulation, using the same parameter estimation methods (Ideal, Naive and MIP). For each small 

area and each simulation, the squared error and the absolute error of these EBLUP-type estimates were also 

computed. Figure 5.2 shows the boxplots of their corresponding mean squared error and mean absolute error 

values over the simulations for each area and for each parameter estimation method. These are denoted 

Area-MSE and Area-MAE respectively. 

These results show that a method for fitting a mixed model that allows for linkage error can lead to 

significant improvement over a naive approach that ignores linkage error. This is consistent with results 

presented in Samart and Chambers (2014), Briscolini et al. (2018) and Salvati, Fabrizi, Ranalli and 

Chambers (2021). Of these, it is only the first paper where linkage errors are allowed between distinct small 

areas. Note that the approach described in that paper is not based on use of the MIP but on direct 

development of the likelihood function generated by the linked data followed by approximation of the 

relevant score functions. It also assumes balanced data (all block by area cells have sample) in order to 

obtain a formula for .sqK  The same formula was used in the simulation reported here. In related research 

not presented here, Nicola Salvati and Enrico Fabrizi have empirically demonstrated that the small area 

estimates generated by the Samart-Chambers approach are less efficient than those generated by the MIP 

approach. 

 
Table 5.1  

Simulation results for 100 independent repetitions of the ELE linkage error scenario with N  20,000, n  1,000 

and Q  40 blocks. 
 

Parameter 
(True value) 

Average RMSE 
Ideal Naive MIP Ideal Naive MIP 

0  (100) 99.993 101.115 99.981 0.296 1.206 0.358 

1  (5) 5.004 4.637 5.006 0.051 0.384 0.078 
2
u  (2) 2.078 1.889 2.050 0.560 0.656 0.649 
2
u  (7) 7.016 16.651 7.438 0.326 9.975 1.166 

Notes: Independent SRSWOR samples were taken in each of D  40 areas with sample sizes ranging between 5 and 40. 
 ELE = Exchangeable linkage errors; MIP = Missing information principle; RMSE = Root mean square error; SRSWOR = Simple 

random sampling without replacement. 
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Figure 5.1 Boxplots showing the distributions of parameter estimate values in the simulations of the ELE 
linkage error scenario.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Notes: Dotted horizontal line shows the true value of each parameter. ELE = Exchangeable linkage errors; MIP = Missing information principle. 

 
Figure 5.2 Boxplots showing the distributions of area specific mean squared error (Area-MSE) and mean 

absolute error (Area-MAE) for the 40 areas in the ELE linkage error simulations. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Notes: ELE = Exchangeable linkage errors; MIP = Missing information principle. 
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Finally, it should be reiterated that application of the MIP approach with linked data is numerically 

intensive. This is because use of the ELE model to characterise linkage errors means that computations are 

effectively performed over all records in each of the blocks making up the X -register. A practical 

implementation of the MIP algorithm that can handle large-scale linked population registers (which can 

contain millions of records) is an ongoing research project. 

 
6. Discussion 
 

I never knew Joseph Waksberg, but I certainly knew of him. Lohr (2021) describes a research career at 

the US Census Bureau and at Westat that made important contributions to many areas of survey metho-

dology, including two that I subsequently became actively involved with ‒ census coverage adjustment and 

calibration of survey weights. However, it was Waksberg’s work on design and estimation using multiple 

frames that aligns most closely with the aims of this paper, since at their core these are about making 

maximum use of the information in combined data structures. In particular, his work shows us how to design 

sampling strategies that take advantage of this complexity to produce efficient estimates that relate to the 

population underpinning the combined data. 

My aim in this paper has not been design but estimation, and in particular the use of the Missing 

Information Principle as a guide for defining parametric estimators when modelling messy data. In the 

context of a multiple frames scenario with random sampling of each frame, the ideal data are the values 

associated with the union of the distinct population frames, and the estimating equations for model 

parameters given multiple frame sample data are defined by replacing the sufficient statistics in the ideal 

data score function by their conditional expectations given these available data. When these sufficient 

statistics are linear in functions of the ideal data values this usually corresponds to replacing function values 

for individual units by their conditional expectations given the information derived from their (potentially 

multiple) frame memberships. This can be a complex specification process, requiring different models for 

different amounts of frame overlap. 

There are many other messy data situations where application of the MIP leads to useful insights. Thus, 

Steel, Beh and Chambers (2004) report on how it can be used in likelihood-based inference with ecological 

data, i.e., where parameters of a joint distribution are of interest, but where the available data only provide 

information about marginal distributions. Here also having access to a very small sample taken from the 

joint distribution can have a very large impact in terms of improving the quality of inference. Another 

important application area where sampling is clearly informative is case-control sampling, see Prentice and 

Pyke (1979). Following the approach of Scott and Wild (1997) in this situation, Chambers and Wang (2008) 

use the MIP to develop MLEs for the parameters of a logistic regression model given case-control data. The 

simulation results they report show substantial improvement in efficiency over the standard approach for 

this model, which assumes simple random sampling in the fitting process and then discards the intercept 
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estimate. The MIP has been employed for efficient design as well, with Chipperfield, Barr and Steel (2018) 

using it in the context of efficient split questionnaire design. 

The book Chambers et al. (2012) contains many more examples of application of the MIP as well as 

much more detailed developments of the results sketched out in this paper. In particular these show the 

information functions based on the available data. However, as I stated at the start of this paper, I believe 

that it is the score identity component of the MIP that is most useful since it shows how estimation should 

proceed. Uncertainty estimation given these estimates can be derived from the information function, but 

they can also be derived via more direct Taylor Series approximations or via numerically intensive methods 

such as bootstrapping. 

When one views the score identity in the MIP from a more abstract perspective, it is clear that it is a 

special case of estimation based on the conditional expectation of a convenient estimating function. 

Consequently, if one generalises from the standard frequentist likelihood focus of this paper, it is interesting 

to note that an equivalent formulation of the score identity has been developed for estimating functions 

based on quasi-likelihood (Lin, Steel and Chambers, 2004). That is, there is scope for extension of the use 

of a MIP-based approach to estimation in messy data situations, for example those based on nonparametric 

likelihood approaches like empirical likelihood. Whether this leads to further insights remains to be seen, 

however. In any case such nonparametric extensions will also require methods for calculating the 

nonparametric equivalent of the conditional expectation operator reflecting the available information, 

perhaps via constrained parametric simulation. It will be interesting to see whether the development of these 

generalisations of the MIP will then allow it to accommodate the types of “large” machine learning models 

that are becoming more common. 

I am very grateful to the Waksberg Award Committee for giving me this opportunity to prepare this 

paper for Survey Methodology. Hopefully it will encourage other statisticians working with messy data to 

investigate whether the MIP (and its potential generalisations) can be a useful tool for making inferences 

based on these data. 

Finally, I would like to dedicate the preparation of this paper to my three friends and former colleagues 

from the University of Southampton, Fred Smith, Chris Skinner and Tim Holt, who have all now sadly 

passed away. Without the impetus of their groundbreaking book, Skinner, Holt and Smith (1989), and their 

insight and support during my years at Southampton, many of my personal contributions reported in this 

paper would not have been possible. 
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